Repeated cocaine administration upregulates CB2 receptor expression in striatal medium-spiny neurons that express dopamine D1 receptors in mice

Cannabinoid CB 2 receptors (CB 2 R) are importantly involved in drug reward and addiction. However, the cellular mechanisms underlying CB 2 R action remain unclear. We have previously reported that cocaine self-administration upregulates CB 2 R expression in midbrain dopamine (DA) neurons. In the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta pharmacologica Sinica 2022-04, Vol.43 (4), p.876-888
Hauptverfasser: Zhang, Hai-Ying, De Biase, Lindsay, Chandra, Ramesh, Shen, Hui, Liu, Qing-Rong, Gardner, Eliot, Lobo, Mary Kay, Xi, Zheng-Xiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 888
container_issue 4
container_start_page 876
container_title Acta pharmacologica Sinica
container_volume 43
creator Zhang, Hai-Ying
De Biase, Lindsay
Chandra, Ramesh
Shen, Hui
Liu, Qing-Rong
Gardner, Eliot
Lobo, Mary Kay
Xi, Zheng-Xiong
description Cannabinoid CB 2 receptors (CB 2 R) are importantly involved in drug reward and addiction. However, the cellular mechanisms underlying CB 2 R action remain unclear. We have previously reported that cocaine self-administration upregulates CB 2 R expression in midbrain dopamine (DA) neurons. In the present study, we investigated whether cocaine or heroin also alters CB 2 R expression in striatal medium-spiny neurons that express dopamine D 1 or D 2 receptors (D 1 -MSNs, D 2 -MSNs) and microglia. Due to the concern of CB 2 R antibody specificity, we developed three mouse CB 2 -specific probes to detect CB 2 R mRNA using quantitative RT-PCR and RNAscope in situ hybridization (ISH) assays. We found that a single injection of cocaine failed to alter, while repeated cocaine injections or self-administration dose-dependently upregulated CB 2 R gene expression in both brain (cortex and striatum) and periphery (spleen). In contrast, repeated administration of heroin produced a dose-dependent reduction in striatal CB 2 mRNA expression. RNAscope ISH assays detected CB 2 R mRNA in striatal D 1 - and D 2 -MSNs, not in microglia. We then used transgenic CX3CR1 eGFP/+ microglia reporter mice and D 1 - or D 2 -Cre-RiboTag mice to purify striatal microglia or ribosome-associated mRNAs from CX3CR1 eGFP/+ , D 1 -MSNs, or D 2 -MSNs, respectively. We found that CB 2 R upregulation occurred mainly in D 1 -MSNs, not in D 2 -MSNs or microglia, in the nucleus accumbens rather than the dorsal striatum. These findings indicate that repeated cocaine exposure may upregulate CB 2 R expression in both brain and spleen, with regional and cell type-specific profiles. In the striatum, CB 2 R upregulation occurs mainly in D 1 -MSNs in the nucleus accumbens. Given the important role of D 1 -MSNs in brain reward function, the present findings provide new insight into mechanisms by which brain CB 2 Rs modulate cocaine action.
doi_str_mv 10.1038/s41401-021-00712-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8975868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555965049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-2d07d6917b00dccde010f7d773dc3f062786a80bfb2e48a3568128ceae55b2683</originalsourceid><addsrcrecordid>eNp9kc2KFTEQhYMozjj6Aq4Cbty05j_pjaDXXxgQRNchnVTfydCdtEn34DyFr2zu3HFEFy5CBeo7p6o4CD2l5AUl3LysggpCO8LaI5qyTt1Dp1QL2Wkmxf32V5p2ghh-gh7VekkIZ5z2D9EJF5wqwukp-vkFFnArBOyzdzEBdmGOKda1uDXmhLelwH6bGlLx7g3DBTwsay4YfrROrQcmJtz46FY34RlC3OauLjFd4wRbyani9cKtvwU45MXNh0lv6Z1bPXjM0cNj9GB0U4Unt_UMfXv_7uvuY3f--cOn3evzzgtJ144FooPqqR4ICd4HIJSMOmjNg-cjUUwb5QwZxoGBMI5LZSgzHhxIOTBl-Bl6dfRdtqGt7CG1gye7lDi7cm2zi_bvTooXdp-vrOm1NDcGz28NSv6-QV3tHKuHaXIJ8lYtk1L2ShLRN_TZP-hl3kpq51mmhCJUUckaxY6UL7nWAuPdMpTYQ972mLdtedubvK1qIn4U1QanPZQ_1v9R_QL5cK_S</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646016152</pqid></control><display><type>article</type><title>Repeated cocaine administration upregulates CB2 receptor expression in striatal medium-spiny neurons that express dopamine D1 receptors in mice</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zhang, Hai-Ying ; De Biase, Lindsay ; Chandra, Ramesh ; Shen, Hui ; Liu, Qing-Rong ; Gardner, Eliot ; Lobo, Mary Kay ; Xi, Zheng-Xiong</creator><creatorcontrib>Zhang, Hai-Ying ; De Biase, Lindsay ; Chandra, Ramesh ; Shen, Hui ; Liu, Qing-Rong ; Gardner, Eliot ; Lobo, Mary Kay ; Xi, Zheng-Xiong</creatorcontrib><description>Cannabinoid CB 2 receptors (CB 2 R) are importantly involved in drug reward and addiction. However, the cellular mechanisms underlying CB 2 R action remain unclear. We have previously reported that cocaine self-administration upregulates CB 2 R expression in midbrain dopamine (DA) neurons. In the present study, we investigated whether cocaine or heroin also alters CB 2 R expression in striatal medium-spiny neurons that express dopamine D 1 or D 2 receptors (D 1 -MSNs, D 2 -MSNs) and microglia. Due to the concern of CB 2 R antibody specificity, we developed three mouse CB 2 -specific probes to detect CB 2 R mRNA using quantitative RT-PCR and RNAscope in situ hybridization (ISH) assays. We found that a single injection of cocaine failed to alter, while repeated cocaine injections or self-administration dose-dependently upregulated CB 2 R gene expression in both brain (cortex and striatum) and periphery (spleen). In contrast, repeated administration of heroin produced a dose-dependent reduction in striatal CB 2 mRNA expression. RNAscope ISH assays detected CB 2 R mRNA in striatal D 1 - and D 2 -MSNs, not in microglia. We then used transgenic CX3CR1 eGFP/+ microglia reporter mice and D 1 - or D 2 -Cre-RiboTag mice to purify striatal microglia or ribosome-associated mRNAs from CX3CR1 eGFP/+ , D 1 -MSNs, or D 2 -MSNs, respectively. We found that CB 2 R upregulation occurred mainly in D 1 -MSNs, not in D 2 -MSNs or microglia, in the nucleus accumbens rather than the dorsal striatum. These findings indicate that repeated cocaine exposure may upregulate CB 2 R expression in both brain and spleen, with regional and cell type-specific profiles. In the striatum, CB 2 R upregulation occurs mainly in D 1 -MSNs in the nucleus accumbens. Given the important role of D 1 -MSNs in brain reward function, the present findings provide new insight into mechanisms by which brain CB 2 Rs modulate cocaine action.</description><identifier>ISSN: 1671-4083</identifier><identifier>EISSN: 1745-7254</identifier><identifier>DOI: 10.1038/s41401-021-00712-6</identifier><identifier>PMID: 34316031</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Addictions ; Biomedical and Life Sciences ; Biomedicine ; Cannabinoid CB2 receptors ; Caudate-putamen ; Cocaine ; Dopamine ; Dopamine D1 receptors ; Dopamine D2 receptors ; Drug addiction ; Drug self-administration ; Gene expression ; Heroin ; Hybridization ; Immunology ; Internal Medicine ; Medical Microbiology ; Mesencephalon ; Microglia ; Neostriatum ; Nucleus accumbens ; Pharmacology/Toxicology ; Polymerase chain reaction ; Reinforcement ; Spiny neurons ; Spleen ; Transgenic mice ; Vaccine</subject><ispartof>Acta pharmacologica Sinica, 2022-04, Vol.43 (4), p.876-888</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021</rights><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-2d07d6917b00dccde010f7d773dc3f062786a80bfb2e48a3568128ceae55b2683</citedby><cites>FETCH-LOGICAL-c451t-2d07d6917b00dccde010f7d773dc3f062786a80bfb2e48a3568128ceae55b2683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8975868/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8975868/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Zhang, Hai-Ying</creatorcontrib><creatorcontrib>De Biase, Lindsay</creatorcontrib><creatorcontrib>Chandra, Ramesh</creatorcontrib><creatorcontrib>Shen, Hui</creatorcontrib><creatorcontrib>Liu, Qing-Rong</creatorcontrib><creatorcontrib>Gardner, Eliot</creatorcontrib><creatorcontrib>Lobo, Mary Kay</creatorcontrib><creatorcontrib>Xi, Zheng-Xiong</creatorcontrib><title>Repeated cocaine administration upregulates CB2 receptor expression in striatal medium-spiny neurons that express dopamine D1 receptors in mice</title><title>Acta pharmacologica Sinica</title><addtitle>Acta Pharmacol Sin</addtitle><description>Cannabinoid CB 2 receptors (CB 2 R) are importantly involved in drug reward and addiction. However, the cellular mechanisms underlying CB 2 R action remain unclear. We have previously reported that cocaine self-administration upregulates CB 2 R expression in midbrain dopamine (DA) neurons. In the present study, we investigated whether cocaine or heroin also alters CB 2 R expression in striatal medium-spiny neurons that express dopamine D 1 or D 2 receptors (D 1 -MSNs, D 2 -MSNs) and microglia. Due to the concern of CB 2 R antibody specificity, we developed three mouse CB 2 -specific probes to detect CB 2 R mRNA using quantitative RT-PCR and RNAscope in situ hybridization (ISH) assays. We found that a single injection of cocaine failed to alter, while repeated cocaine injections or self-administration dose-dependently upregulated CB 2 R gene expression in both brain (cortex and striatum) and periphery (spleen). In contrast, repeated administration of heroin produced a dose-dependent reduction in striatal CB 2 mRNA expression. RNAscope ISH assays detected CB 2 R mRNA in striatal D 1 - and D 2 -MSNs, not in microglia. We then used transgenic CX3CR1 eGFP/+ microglia reporter mice and D 1 - or D 2 -Cre-RiboTag mice to purify striatal microglia or ribosome-associated mRNAs from CX3CR1 eGFP/+ , D 1 -MSNs, or D 2 -MSNs, respectively. We found that CB 2 R upregulation occurred mainly in D 1 -MSNs, not in D 2 -MSNs or microglia, in the nucleus accumbens rather than the dorsal striatum. These findings indicate that repeated cocaine exposure may upregulate CB 2 R expression in both brain and spleen, with regional and cell type-specific profiles. In the striatum, CB 2 R upregulation occurs mainly in D 1 -MSNs in the nucleus accumbens. Given the important role of D 1 -MSNs in brain reward function, the present findings provide new insight into mechanisms by which brain CB 2 Rs modulate cocaine action.</description><subject>Addictions</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cannabinoid CB2 receptors</subject><subject>Caudate-putamen</subject><subject>Cocaine</subject><subject>Dopamine</subject><subject>Dopamine D1 receptors</subject><subject>Dopamine D2 receptors</subject><subject>Drug addiction</subject><subject>Drug self-administration</subject><subject>Gene expression</subject><subject>Heroin</subject><subject>Hybridization</subject><subject>Immunology</subject><subject>Internal Medicine</subject><subject>Medical Microbiology</subject><subject>Mesencephalon</subject><subject>Microglia</subject><subject>Neostriatum</subject><subject>Nucleus accumbens</subject><subject>Pharmacology/Toxicology</subject><subject>Polymerase chain reaction</subject><subject>Reinforcement</subject><subject>Spiny neurons</subject><subject>Spleen</subject><subject>Transgenic mice</subject><subject>Vaccine</subject><issn>1671-4083</issn><issn>1745-7254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc2KFTEQhYMozjj6Aq4Cbty05j_pjaDXXxgQRNchnVTfydCdtEn34DyFr2zu3HFEFy5CBeo7p6o4CD2l5AUl3LysggpCO8LaI5qyTt1Dp1QL2Wkmxf32V5p2ghh-gh7VekkIZ5z2D9EJF5wqwukp-vkFFnArBOyzdzEBdmGOKda1uDXmhLelwH6bGlLx7g3DBTwsay4YfrROrQcmJtz46FY34RlC3OauLjFd4wRbyani9cKtvwU45MXNh0lv6Z1bPXjM0cNj9GB0U4Unt_UMfXv_7uvuY3f--cOn3evzzgtJ144FooPqqR4ICd4HIJSMOmjNg-cjUUwb5QwZxoGBMI5LZSgzHhxIOTBl-Bl6dfRdtqGt7CG1gye7lDi7cm2zi_bvTooXdp-vrOm1NDcGz28NSv6-QV3tHKuHaXIJ8lYtk1L2ShLRN_TZP-hl3kpq51mmhCJUUckaxY6UL7nWAuPdMpTYQ972mLdtedubvK1qIn4U1QanPZQ_1v9R_QL5cK_S</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Zhang, Hai-Ying</creator><creator>De Biase, Lindsay</creator><creator>Chandra, Ramesh</creator><creator>Shen, Hui</creator><creator>Liu, Qing-Rong</creator><creator>Gardner, Eliot</creator><creator>Lobo, Mary Kay</creator><creator>Xi, Zheng-Xiong</creator><general>Springer Singapore</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220401</creationdate><title>Repeated cocaine administration upregulates CB2 receptor expression in striatal medium-spiny neurons that express dopamine D1 receptors in mice</title><author>Zhang, Hai-Ying ; De Biase, Lindsay ; Chandra, Ramesh ; Shen, Hui ; Liu, Qing-Rong ; Gardner, Eliot ; Lobo, Mary Kay ; Xi, Zheng-Xiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-2d07d6917b00dccde010f7d773dc3f062786a80bfb2e48a3568128ceae55b2683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Addictions</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cannabinoid CB2 receptors</topic><topic>Caudate-putamen</topic><topic>Cocaine</topic><topic>Dopamine</topic><topic>Dopamine D1 receptors</topic><topic>Dopamine D2 receptors</topic><topic>Drug addiction</topic><topic>Drug self-administration</topic><topic>Gene expression</topic><topic>Heroin</topic><topic>Hybridization</topic><topic>Immunology</topic><topic>Internal Medicine</topic><topic>Medical Microbiology</topic><topic>Mesencephalon</topic><topic>Microglia</topic><topic>Neostriatum</topic><topic>Nucleus accumbens</topic><topic>Pharmacology/Toxicology</topic><topic>Polymerase chain reaction</topic><topic>Reinforcement</topic><topic>Spiny neurons</topic><topic>Spleen</topic><topic>Transgenic mice</topic><topic>Vaccine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hai-Ying</creatorcontrib><creatorcontrib>De Biase, Lindsay</creatorcontrib><creatorcontrib>Chandra, Ramesh</creatorcontrib><creatorcontrib>Shen, Hui</creatorcontrib><creatorcontrib>Liu, Qing-Rong</creatorcontrib><creatorcontrib>Gardner, Eliot</creatorcontrib><creatorcontrib>Lobo, Mary Kay</creatorcontrib><creatorcontrib>Xi, Zheng-Xiong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta pharmacologica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hai-Ying</au><au>De Biase, Lindsay</au><au>Chandra, Ramesh</au><au>Shen, Hui</au><au>Liu, Qing-Rong</au><au>Gardner, Eliot</au><au>Lobo, Mary Kay</au><au>Xi, Zheng-Xiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Repeated cocaine administration upregulates CB2 receptor expression in striatal medium-spiny neurons that express dopamine D1 receptors in mice</atitle><jtitle>Acta pharmacologica Sinica</jtitle><stitle>Acta Pharmacol Sin</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>43</volume><issue>4</issue><spage>876</spage><epage>888</epage><pages>876-888</pages><issn>1671-4083</issn><eissn>1745-7254</eissn><abstract>Cannabinoid CB 2 receptors (CB 2 R) are importantly involved in drug reward and addiction. However, the cellular mechanisms underlying CB 2 R action remain unclear. We have previously reported that cocaine self-administration upregulates CB 2 R expression in midbrain dopamine (DA) neurons. In the present study, we investigated whether cocaine or heroin also alters CB 2 R expression in striatal medium-spiny neurons that express dopamine D 1 or D 2 receptors (D 1 -MSNs, D 2 -MSNs) and microglia. Due to the concern of CB 2 R antibody specificity, we developed three mouse CB 2 -specific probes to detect CB 2 R mRNA using quantitative RT-PCR and RNAscope in situ hybridization (ISH) assays. We found that a single injection of cocaine failed to alter, while repeated cocaine injections or self-administration dose-dependently upregulated CB 2 R gene expression in both brain (cortex and striatum) and periphery (spleen). In contrast, repeated administration of heroin produced a dose-dependent reduction in striatal CB 2 mRNA expression. RNAscope ISH assays detected CB 2 R mRNA in striatal D 1 - and D 2 -MSNs, not in microglia. We then used transgenic CX3CR1 eGFP/+ microglia reporter mice and D 1 - or D 2 -Cre-RiboTag mice to purify striatal microglia or ribosome-associated mRNAs from CX3CR1 eGFP/+ , D 1 -MSNs, or D 2 -MSNs, respectively. We found that CB 2 R upregulation occurred mainly in D 1 -MSNs, not in D 2 -MSNs or microglia, in the nucleus accumbens rather than the dorsal striatum. These findings indicate that repeated cocaine exposure may upregulate CB 2 R expression in both brain and spleen, with regional and cell type-specific profiles. In the striatum, CB 2 R upregulation occurs mainly in D 1 -MSNs in the nucleus accumbens. Given the important role of D 1 -MSNs in brain reward function, the present findings provide new insight into mechanisms by which brain CB 2 Rs modulate cocaine action.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><pmid>34316031</pmid><doi>10.1038/s41401-021-00712-6</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1671-4083
ispartof Acta pharmacologica Sinica, 2022-04, Vol.43 (4), p.876-888
issn 1671-4083
1745-7254
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8975868
source PubMed Central; Alma/SFX Local Collection
subjects Addictions
Biomedical and Life Sciences
Biomedicine
Cannabinoid CB2 receptors
Caudate-putamen
Cocaine
Dopamine
Dopamine D1 receptors
Dopamine D2 receptors
Drug addiction
Drug self-administration
Gene expression
Heroin
Hybridization
Immunology
Internal Medicine
Medical Microbiology
Mesencephalon
Microglia
Neostriatum
Nucleus accumbens
Pharmacology/Toxicology
Polymerase chain reaction
Reinforcement
Spiny neurons
Spleen
Transgenic mice
Vaccine
title Repeated cocaine administration upregulates CB2 receptor expression in striatal medium-spiny neurons that express dopamine D1 receptors in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Repeated%20cocaine%20administration%20upregulates%20CB2%20receptor%20expression%20in%20striatal%20medium-spiny%20neurons%20that%20express%20dopamine%20D1%20receptors%20in%20mice&rft.jtitle=Acta%20pharmacologica%20Sinica&rft.au=Zhang,%20Hai-Ying&rft.date=2022-04-01&rft.volume=43&rft.issue=4&rft.spage=876&rft.epage=888&rft.pages=876-888&rft.issn=1671-4083&rft.eissn=1745-7254&rft_id=info:doi/10.1038/s41401-021-00712-6&rft_dat=%3Cproquest_pubme%3E2555965049%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646016152&rft_id=info:pmid/34316031&rfr_iscdi=true