Stable QTL for malate levels in ripe fruit and their transferability across Vitis species

Malate is a major contributor to the sourness of grape berries ( spp.) and their products, such as wine. Excessive malate at maturity, commonly observed in wild grapes, is detrimental to grape and wine quality and complicates the introgression of valuable disease resistance and cold hardy genes thro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Horticulture research 2022, Vol.9, p.uhac009
Hauptverfasser: Reshef, Noam, Karn, Avinash, Manns, David C, Mansfield, Anna Katharine, Cadle-Davidson, Lance, Reisch, Bruce, Sacks, Gavin L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Malate is a major contributor to the sourness of grape berries ( spp.) and their products, such as wine. Excessive malate at maturity, commonly observed in wild grapes, is detrimental to grape and wine quality and complicates the introgression of valuable disease resistance and cold hardy genes through breeding. This study investigated an interspecific family that exhibited strong and stable variation in malate at ripeness for five years and tested the separate contribution of accumulation, degradation, and dilution to malate concentration in ripe fruit in the last year of study. Genotyping was performed using transferable rhAmpSeq haplotype markers, based on the collinear core genome. Three significant QTL for ripe fruit malate on chromosomes 1, 7, and 17, accounted for over two-fold and 6.9 g/L differences, and explained 40.6% of the phenotypic variation. QTL on chromosomes 7 and 17 were stable in all and in three out of five years, respectively. Variation in pre-veraison malate was the major contributor to variation in ripe fruit malate (39%), and based on two and five years of data, respectively, their associated QTL overlapped on chromosome 7, indicating a common genetic basis. However, use of transferable markers on a closely related family did not yield a common QTL across families. This suggests that diverse physiological mechanisms regulate the levels of this key metabolite in the genus, a conclusion supported by a review of over a dozen publications from the past decade, showing malate-associated genetic loci on all 19 chromosomes.
ISSN:2662-6810
2052-7276
2052-7276
DOI:10.1093/hr/uhac009