An accurate method for identifying recent recombinants from unaligned sequences
Abstract Motivation Recombination is a fundamental process in molecular evolution, and the identification of recombinant sequences is thus of major interest. However, current methods for detecting recombinants are primarily designed for aligned sequences. Thus, they struggle with analyses of highly...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2022-03, Vol.38 (7), p.1823-1829 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1829 |
---|---|
container_issue | 7 |
container_start_page | 1823 |
container_title | Bioinformatics |
container_volume | 38 |
creator | Feng, Qian Tiedje, Kathryn E Ruybal-Pesántez, Shazia Tonkin-Hill, Gerry Duffy, Michael F Day, Karen P Shim, Heejung Chan, Yao-Ban |
description | Abstract
Motivation
Recombination is a fundamental process in molecular evolution, and the identification of recombinant sequences is thus of major interest. However, current methods for detecting recombinants are primarily designed for aligned sequences. Thus, they struggle with analyses of highly diverse genes, such as the var genes of the malaria parasite Plasmodium falciparum, which are known to diversify primarily through recombination.
Results
We introduce an algorithm to detect recent recombinant sequences from a dataset without a full multiple alignment. Our algorithm can handle thousands of gene-length sequences without the need for a reference panel. We demonstrate the accuracy of our algorithm through extensive numerical simulations; in particular, it maintains its effectiveness in the presence of insertions and deletions. We apply our algorithm to a dataset of 17 335 DBLα types in var genes from Ghana, observing that sequences belonging to the same ups group or domain subclass recombine amongst themselves more frequently, and that non-recombinant DBLα types are more conserved than recombinant ones.
Availability and implementation
Source code is freely available at https://github.com/qianfeng2/detREC_program.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btac012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8963311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btac012</oup_id><sourcerecordid>2620082347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-46fd193354f0a159aedf308bedc1b8e5b80ae615a38ec5e7300654f57380d4283</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYMojq-_IF26qd40j0k3wjD4AsGNrkOa3o6RNhmTVvDfG5lRnJ2rm5BzvnvIIeScwiWFml01LjjfhTiY0dl01YzGAq32yBHlEsoKRL2fz0zOS66AzchxSm8AgnLOD8mMCahErdQReVr4wlg7RTNiMeD4GtoiYwvXoh9d9-n8qoho8-V7hKFx3vgxFV0MQzF507uVx7ZI-D6ht5hOyUFn-oRn23lCXm5vnpf35ePT3cNy8VhaLuRYctm1tGZM8A4MFbXBtmOgGmwtbRSKRoFBSYVhCq3AOQOQWSvmTEHLK8VOyPWGu56aIbtywGh6vY5uMPFTB-P07ot3r3oVPrSqJWOUZsDFFhBDzp5GPbhkse-NxzAlXckKQFWMz7NUbqQ2hpQidr9rKOjvNvRuG3rbRjae_w35a_v5_iygG0GY1v-FfgH5KJ_m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620082347</pqid></control><display><type>article</type><title>An accurate method for identifying recent recombinants from unaligned sequences</title><source>Oxford Journals Open Access Collection</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Feng, Qian ; Tiedje, Kathryn E ; Ruybal-Pesántez, Shazia ; Tonkin-Hill, Gerry ; Duffy, Michael F ; Day, Karen P ; Shim, Heejung ; Chan, Yao-Ban</creator><creatorcontrib>Feng, Qian ; Tiedje, Kathryn E ; Ruybal-Pesántez, Shazia ; Tonkin-Hill, Gerry ; Duffy, Michael F ; Day, Karen P ; Shim, Heejung ; Chan, Yao-Ban</creatorcontrib><description>Abstract
Motivation
Recombination is a fundamental process in molecular evolution, and the identification of recombinant sequences is thus of major interest. However, current methods for detecting recombinants are primarily designed for aligned sequences. Thus, they struggle with analyses of highly diverse genes, such as the var genes of the malaria parasite Plasmodium falciparum, which are known to diversify primarily through recombination.
Results
We introduce an algorithm to detect recent recombinant sequences from a dataset without a full multiple alignment. Our algorithm can handle thousands of gene-length sequences without the need for a reference panel. We demonstrate the accuracy of our algorithm through extensive numerical simulations; in particular, it maintains its effectiveness in the presence of insertions and deletions. We apply our algorithm to a dataset of 17 335 DBLα types in var genes from Ghana, observing that sequences belonging to the same ups group or domain subclass recombine amongst themselves more frequently, and that non-recombinant DBLα types are more conserved than recombinant ones.
Availability and implementation
Source code is freely available at https://github.com/qianfeng2/detREC_program.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btac012</identifier><identifier>PMID: 35025988</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Original Papers</subject><ispartof>Bioinformatics, 2022-03, Vol.38 (7), p.1823-1829</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. 2022</rights><rights>The Author(s) (2022). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-46fd193354f0a159aedf308bedc1b8e5b80ae615a38ec5e7300654f57380d4283</citedby><cites>FETCH-LOGICAL-c456t-46fd193354f0a159aedf308bedc1b8e5b80ae615a38ec5e7300654f57380d4283</cites><orcidid>0000-0003-4301-8545 ; 0000-0002-1375-9310 ; 0000-0002-0495-179X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963311/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963311/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35025988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Qian</creatorcontrib><creatorcontrib>Tiedje, Kathryn E</creatorcontrib><creatorcontrib>Ruybal-Pesántez, Shazia</creatorcontrib><creatorcontrib>Tonkin-Hill, Gerry</creatorcontrib><creatorcontrib>Duffy, Michael F</creatorcontrib><creatorcontrib>Day, Karen P</creatorcontrib><creatorcontrib>Shim, Heejung</creatorcontrib><creatorcontrib>Chan, Yao-Ban</creatorcontrib><title>An accurate method for identifying recent recombinants from unaligned sequences</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
Recombination is a fundamental process in molecular evolution, and the identification of recombinant sequences is thus of major interest. However, current methods for detecting recombinants are primarily designed for aligned sequences. Thus, they struggle with analyses of highly diverse genes, such as the var genes of the malaria parasite Plasmodium falciparum, which are known to diversify primarily through recombination.
Results
We introduce an algorithm to detect recent recombinant sequences from a dataset without a full multiple alignment. Our algorithm can handle thousands of gene-length sequences without the need for a reference panel. We demonstrate the accuracy of our algorithm through extensive numerical simulations; in particular, it maintains its effectiveness in the presence of insertions and deletions. We apply our algorithm to a dataset of 17 335 DBLα types in var genes from Ghana, observing that sequences belonging to the same ups group or domain subclass recombine amongst themselves more frequently, and that non-recombinant DBLα types are more conserved than recombinant ones.
Availability and implementation
Source code is freely available at https://github.com/qianfeng2/detREC_program.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Original Papers</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNkUtLxDAUhYMojq-_IF26qd40j0k3wjD4AsGNrkOa3o6RNhmTVvDfG5lRnJ2rm5BzvnvIIeScwiWFml01LjjfhTiY0dl01YzGAq32yBHlEsoKRL2fz0zOS66AzchxSm8AgnLOD8mMCahErdQReVr4wlg7RTNiMeD4GtoiYwvXoh9d9-n8qoho8-V7hKFx3vgxFV0MQzF507uVx7ZI-D6ht5hOyUFn-oRn23lCXm5vnpf35ePT3cNy8VhaLuRYctm1tGZM8A4MFbXBtmOgGmwtbRSKRoFBSYVhCq3AOQOQWSvmTEHLK8VOyPWGu56aIbtywGh6vY5uMPFTB-P07ot3r3oVPrSqJWOUZsDFFhBDzp5GPbhkse-NxzAlXckKQFWMz7NUbqQ2hpQidr9rKOjvNvRuG3rbRjae_w35a_v5_iygG0GY1v-FfgH5KJ_m</recordid><startdate>20220328</startdate><enddate>20220328</enddate><creator>Feng, Qian</creator><creator>Tiedje, Kathryn E</creator><creator>Ruybal-Pesántez, Shazia</creator><creator>Tonkin-Hill, Gerry</creator><creator>Duffy, Michael F</creator><creator>Day, Karen P</creator><creator>Shim, Heejung</creator><creator>Chan, Yao-Ban</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4301-8545</orcidid><orcidid>https://orcid.org/0000-0002-1375-9310</orcidid><orcidid>https://orcid.org/0000-0002-0495-179X</orcidid></search><sort><creationdate>20220328</creationdate><title>An accurate method for identifying recent recombinants from unaligned sequences</title><author>Feng, Qian ; Tiedje, Kathryn E ; Ruybal-Pesántez, Shazia ; Tonkin-Hill, Gerry ; Duffy, Michael F ; Day, Karen P ; Shim, Heejung ; Chan, Yao-Ban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-46fd193354f0a159aedf308bedc1b8e5b80ae615a38ec5e7300654f57380d4283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Original Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Qian</creatorcontrib><creatorcontrib>Tiedje, Kathryn E</creatorcontrib><creatorcontrib>Ruybal-Pesántez, Shazia</creatorcontrib><creatorcontrib>Tonkin-Hill, Gerry</creatorcontrib><creatorcontrib>Duffy, Michael F</creatorcontrib><creatorcontrib>Day, Karen P</creatorcontrib><creatorcontrib>Shim, Heejung</creatorcontrib><creatorcontrib>Chan, Yao-Ban</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Qian</au><au>Tiedje, Kathryn E</au><au>Ruybal-Pesántez, Shazia</au><au>Tonkin-Hill, Gerry</au><au>Duffy, Michael F</au><au>Day, Karen P</au><au>Shim, Heejung</au><au>Chan, Yao-Ban</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An accurate method for identifying recent recombinants from unaligned sequences</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2022-03-28</date><risdate>2022</risdate><volume>38</volume><issue>7</issue><spage>1823</spage><epage>1829</epage><pages>1823-1829</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Recombination is a fundamental process in molecular evolution, and the identification of recombinant sequences is thus of major interest. However, current methods for detecting recombinants are primarily designed for aligned sequences. Thus, they struggle with analyses of highly diverse genes, such as the var genes of the malaria parasite Plasmodium falciparum, which are known to diversify primarily through recombination.
Results
We introduce an algorithm to detect recent recombinant sequences from a dataset without a full multiple alignment. Our algorithm can handle thousands of gene-length sequences without the need for a reference panel. We demonstrate the accuracy of our algorithm through extensive numerical simulations; in particular, it maintains its effectiveness in the presence of insertions and deletions. We apply our algorithm to a dataset of 17 335 DBLα types in var genes from Ghana, observing that sequences belonging to the same ups group or domain subclass recombine amongst themselves more frequently, and that non-recombinant DBLα types are more conserved than recombinant ones.
Availability and implementation
Source code is freely available at https://github.com/qianfeng2/detREC_program.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35025988</pmid><doi>10.1093/bioinformatics/btac012</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4301-8545</orcidid><orcidid>https://orcid.org/0000-0002-1375-9310</orcidid><orcidid>https://orcid.org/0000-0002-0495-179X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2022-03, Vol.38 (7), p.1823-1829 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8963311 |
source | Oxford Journals Open Access Collection; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Original Papers |
title | An accurate method for identifying recent recombinants from unaligned sequences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20accurate%20method%20for%20identifying%20recent%20recombinants%20from%20unaligned%20sequences&rft.jtitle=Bioinformatics&rft.au=Feng,%20Qian&rft.date=2022-03-28&rft.volume=38&rft.issue=7&rft.spage=1823&rft.epage=1829&rft.pages=1823-1829&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btac012&rft_dat=%3Cproquest_pubme%3E2620082347%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620082347&rft_id=info:pmid/35025988&rft_oup_id=10.1093/bioinformatics/btac012&rfr_iscdi=true |