Assessing Pandemic Uncertainty on Conditions of Vaccination and Self-isolation
A share of predictable information about the forthcoming state of a three-sided coin (susceptible—infected—immune) with the regular and random transition times between states is used for assessing the degree of pandemic uncertainty in our model. Unreliable and unsafe vaccines (that do not guarantee...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2021, Vol.42 (14), p.3550-3560 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3560 |
---|---|
container_issue | 14 |
container_start_page | 3550 |
container_title | Lobachevskii journal of mathematics |
container_volume | 42 |
creator | Volchenkov, D. |
description | A share of predictable information about the forthcoming state of a
three-sided coin
(susceptible—infected—immune) with the regular and random transition times between states is used for assessing the degree of pandemic uncertainty in our model. Unreliable and unsafe vaccines (that do not guarantee absolute immunity) as well as long self-isolation making transition times random increase the degree of pandemic uncertainty, worsening the damaging impact for both society and the economy. |
doi_str_mv | 10.1134/S1995080222020184 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8962943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645184004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-7a94cb4c55eb8b16f19233f7487d8fb66ff5e5b100714c35a47fd8e4807ac98e3</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4Dr0SSTySQboRRfUFSodRsymaSmTJOaTIX-vaktioir-ziPezkAnGN0iXFJr6ZYiApxRAhBBGFOD8AAc8wLIRg5zH2Giy1-DE5SWqBMZIwNwOMoJZOS83P4rHxrlk7Dmdcm9sr5fgODh-PgW9e74BMMFr4qrZ1X2xlmAZyazhYuhe5rdQqOrOqSOdvXIZjd3ryM74vJ093DeDQpdElpX9RKUN1QXVWm4Q1mFgtSlramvG65bRiztjJVgxGqMdVlpWhtW24oR7XSgptyCK53vqt1szStNr6PqpOr6JYqbmRQTv5GvHuT8_AheY5D0DIbXOwNYnhfm9TLRVhHn3-WhNEqB4gQzSy8Y-kYUorGfl_ASG5zl39yzxqy06TM9XMTf5z_F30CgD2F3w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645184004</pqid></control><display><type>article</type><title>Assessing Pandemic Uncertainty on Conditions of Vaccination and Self-isolation</title><source>SpringerNature Journals</source><creator>Volchenkov, D.</creator><creatorcontrib>Volchenkov, D.</creatorcontrib><description>A share of predictable information about the forthcoming state of a
three-sided coin
(susceptible—infected—immune) with the regular and random transition times between states is used for assessing the degree of pandemic uncertainty in our model. Unreliable and unsafe vaccines (that do not guarantee absolute immunity) as well as long self-isolation making transition times random increase the degree of pandemic uncertainty, worsening the damaging impact for both society and the economy.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080222020184</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Geometry ; Impact analysis ; Impact damage ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Pandemics ; Probability Theory and Stochastic Processes ; Uncertainty</subject><ispartof>Lobachevskii journal of mathematics, 2021, Vol.42 (14), p.3550-3560</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-7a94cb4c55eb8b16f19233f7487d8fb66ff5e5b100714c35a47fd8e4807ac98e3</citedby><cites>FETCH-LOGICAL-c344t-7a94cb4c55eb8b16f19233f7487d8fb66ff5e5b100714c35a47fd8e4807ac98e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080222020184$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080222020184$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Volchenkov, D.</creatorcontrib><title>Assessing Pandemic Uncertainty on Conditions of Vaccination and Self-isolation</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>A share of predictable information about the forthcoming state of a
three-sided coin
(susceptible—infected—immune) with the regular and random transition times between states is used for assessing the degree of pandemic uncertainty in our model. Unreliable and unsafe vaccines (that do not guarantee absolute immunity) as well as long self-isolation making transition times random increase the degree of pandemic uncertainty, worsening the damaging impact for both society and the economy.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Geometry</subject><subject>Impact analysis</subject><subject>Impact damage</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Pandemics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Uncertainty</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgrX6Au4Dr0SSTySQboRRfUFSodRsymaSmTJOaTIX-vaktioir-ziPezkAnGN0iXFJr6ZYiApxRAhBBGFOD8AAc8wLIRg5zH2Giy1-DE5SWqBMZIwNwOMoJZOS83P4rHxrlk7Dmdcm9sr5fgODh-PgW9e74BMMFr4qrZ1X2xlmAZyazhYuhe5rdQqOrOqSOdvXIZjd3ryM74vJ093DeDQpdElpX9RKUN1QXVWm4Q1mFgtSlramvG65bRiztjJVgxGqMdVlpWhtW24oR7XSgptyCK53vqt1szStNr6PqpOr6JYqbmRQTv5GvHuT8_AheY5D0DIbXOwNYnhfm9TLRVhHn3-WhNEqB4gQzSy8Y-kYUorGfl_ASG5zl39yzxqy06TM9XMTf5z_F30CgD2F3w</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Volchenkov, D.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>2021</creationdate><title>Assessing Pandemic Uncertainty on Conditions of Vaccination and Self-isolation</title><author>Volchenkov, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-7a94cb4c55eb8b16f19233f7487d8fb66ff5e5b100714c35a47fd8e4807ac98e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Geometry</topic><topic>Impact analysis</topic><topic>Impact damage</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Pandemics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volchenkov, D.</creatorcontrib><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volchenkov, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing Pandemic Uncertainty on Conditions of Vaccination and Self-isolation</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2021</date><risdate>2021</risdate><volume>42</volume><issue>14</issue><spage>3550</spage><epage>3560</epage><pages>3550-3560</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>A share of predictable information about the forthcoming state of a
three-sided coin
(susceptible—infected—immune) with the regular and random transition times between states is used for assessing the degree of pandemic uncertainty in our model. Unreliable and unsafe vaccines (that do not guarantee absolute immunity) as well as long self-isolation making transition times random increase the degree of pandemic uncertainty, worsening the damaging impact for both society and the economy.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080222020184</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2021, Vol.42 (14), p.3550-3560 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8962943 |
source | SpringerNature Journals |
subjects | Algebra Analysis Geometry Impact analysis Impact damage Mathematical Logic and Foundations Mathematics Mathematics and Statistics Pandemics Probability Theory and Stochastic Processes Uncertainty |
title | Assessing Pandemic Uncertainty on Conditions of Vaccination and Self-isolation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20Pandemic%20Uncertainty%20on%20Conditions%20of%20Vaccination%20and%20Self-isolation&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Volchenkov,%20D.&rft.date=2021&rft.volume=42&rft.issue=14&rft.spage=3550&rft.epage=3560&rft.pages=3550-3560&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080222020184&rft_dat=%3Cproquest_pubme%3E2645184004%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645184004&rft_id=info:pmid/&rfr_iscdi=true |