Low Light Increases the Abundance of Light Reaction Proteins: Proteomics Analysis of Maize ( Zea mays L.) Grown at High Planting Density

Maize ( L.) is usually planted at high density, so most of its leaves grow in low light. Certain morphological and physiological traits improve leaf photosynthetic capacity under low light, but how light absorption, transmission, and transport respond at the proteomic level remains unclear. Here, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2022-03, Vol.23 (6), p.3015
Hauptverfasser: Zheng, Bin, Zhao, Wei, Ren, Tinghu, Zhang, Xinghui, Ning, Tangyuan, Liu, Peng, Li, Geng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 3015
container_title International journal of molecular sciences
container_volume 23
creator Zheng, Bin
Zhao, Wei
Ren, Tinghu
Zhang, Xinghui
Ning, Tangyuan
Liu, Peng
Li, Geng
description Maize ( L.) is usually planted at high density, so most of its leaves grow in low light. Certain morphological and physiological traits improve leaf photosynthetic capacity under low light, but how light absorption, transmission, and transport respond at the proteomic level remains unclear. Here, we used tandem mass tag (TMT) quantitative proteomics to investigate maize photosynthesis-related proteins under low light due to dense planting, finding increased levels of proteins related to photosystem II (PSII), PSI, and cytochrome . These increases likely promote intersystem electron transport and increased PSI end electron acceptor abundance. OJIP transient curves revealed increases in some fluorescence parameters under low light: quantum yield for electron transport (φE ), probability that an electron moves beyond the primary acceptor Q (ψ ), efficiency/probability of electron transfer from intersystem electron carriers to reduction end electron acceptors at the PSI acceptor side (δR ), quantum yield for reduction of end electron acceptors at the PSI acceptor side (φR ), and overall performance up to the PSI end electron acceptors (PI ). Thus, densely planted maize shows elevated light utilization through increased electron transport efficiency, which promotes coordination between PSII and PSI, as reflected by higher apparent quantum efficiency (AQE), lower light compensation point (LCP), and lower dark respiration rate (R ).
doi_str_mv 10.3390/ijms23063015
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8955883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2642431941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-3545cd530136ce8d9e3dcc254b7f4d776851024530354601429d1557630a8afb3</originalsourceid><addsrcrecordid>eNpd0VtrFDEUB_BQlN7ffJaALxXcmutc-iAsrbaFkZbSvvgSspkzu1lmkppkLOsn8GObumtZfcqB_PhzLgi9oeSU85p8tMshMk4KTqjcQftUMDYhpChfbdV76CDGJSGMM1nvoj0uOasEL_bRr8Y_4cbOFwlfOxNAR4g4LQBPZ6NrtTOAfbcBd6BNst7h2-ATWBfP1pUfrIl46nS_ijY--6_a_gR8gr-BxoNeRdycvseXwT85rBO-ymn4ttcuWTfHF-CiTasj9LrTfYTjzXuIHr58vj-_mjQ3l9fn02ZiBGVpwqWQppV5WF4YqNoaeGsMk2JWdqIty6KSlDCRQZYFyRuoWyplmdejK93N-CH6tM59HGcDtAZcCrpXj8EOOqyU11b9--PsQs39D1XVUlYVzwEnm4Dgv48QkxpsNNDnecCPUbFCCEIEp2Wm7_6jSz-GvKc_imVTC5rVh7UywccYoHtphhL1fGK1feLM324P8IL_3pT_BuqYoOM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642431941</pqid></control><display><type>article</type><title>Low Light Increases the Abundance of Light Reaction Proteins: Proteomics Analysis of Maize ( Zea mays L.) Grown at High Planting Density</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Zheng, Bin ; Zhao, Wei ; Ren, Tinghu ; Zhang, Xinghui ; Ning, Tangyuan ; Liu, Peng ; Li, Geng</creator><creatorcontrib>Zheng, Bin ; Zhao, Wei ; Ren, Tinghu ; Zhang, Xinghui ; Ning, Tangyuan ; Liu, Peng ; Li, Geng</creatorcontrib><description>Maize ( L.) is usually planted at high density, so most of its leaves grow in low light. Certain morphological and physiological traits improve leaf photosynthetic capacity under low light, but how light absorption, transmission, and transport respond at the proteomic level remains unclear. Here, we used tandem mass tag (TMT) quantitative proteomics to investigate maize photosynthesis-related proteins under low light due to dense planting, finding increased levels of proteins related to photosystem II (PSII), PSI, and cytochrome . These increases likely promote intersystem electron transport and increased PSI end electron acceptor abundance. OJIP transient curves revealed increases in some fluorescence parameters under low light: quantum yield for electron transport (φE ), probability that an electron moves beyond the primary acceptor Q (ψ ), efficiency/probability of electron transfer from intersystem electron carriers to reduction end electron acceptors at the PSI acceptor side (δR ), quantum yield for reduction of end electron acceptors at the PSI acceptor side (φR ), and overall performance up to the PSI end electron acceptors (PI ). Thus, densely planted maize shows elevated light utilization through increased electron transport efficiency, which promotes coordination between PSII and PSI, as reflected by higher apparent quantum efficiency (AQE), lower light compensation point (LCP), and lower dark respiration rate (R ).</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms23063015</identifier><identifier>PMID: 35328436</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Agricultural production ; Chlorophyll ; Chlorophyll - metabolism ; Chloroplasts ; Corn ; Crops ; Efficiency ; Electromagnetic absorption ; Electron transfer ; Electron transport ; Electron Transport - physiology ; Fluorescence ; Gene expression ; Light ; Morphology ; Photosynthesis ; Photosynthesis - physiology ; Photosystem I Protein Complex - metabolism ; Photosystem II ; Photosystem II Protein Complex - metabolism ; Physiology ; Plant Leaves - metabolism ; Planting density ; Proteins ; Proteomics ; Quantum efficiency ; Zea mays ; Zea mays - metabolism</subject><ispartof>International journal of molecular sciences, 2022-03, Vol.23 (6), p.3015</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-3545cd530136ce8d9e3dcc254b7f4d776851024530354601429d1557630a8afb3</citedby><cites>FETCH-LOGICAL-c412t-3545cd530136ce8d9e3dcc254b7f4d776851024530354601429d1557630a8afb3</cites><orcidid>0000-0001-5014-6217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8955883/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8955883/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35328436$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Bin</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Ren, Tinghu</creatorcontrib><creatorcontrib>Zhang, Xinghui</creatorcontrib><creatorcontrib>Ning, Tangyuan</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Li, Geng</creatorcontrib><title>Low Light Increases the Abundance of Light Reaction Proteins: Proteomics Analysis of Maize ( Zea mays L.) Grown at High Planting Density</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Maize ( L.) is usually planted at high density, so most of its leaves grow in low light. Certain morphological and physiological traits improve leaf photosynthetic capacity under low light, but how light absorption, transmission, and transport respond at the proteomic level remains unclear. Here, we used tandem mass tag (TMT) quantitative proteomics to investigate maize photosynthesis-related proteins under low light due to dense planting, finding increased levels of proteins related to photosystem II (PSII), PSI, and cytochrome . These increases likely promote intersystem electron transport and increased PSI end electron acceptor abundance. OJIP transient curves revealed increases in some fluorescence parameters under low light: quantum yield for electron transport (φE ), probability that an electron moves beyond the primary acceptor Q (ψ ), efficiency/probability of electron transfer from intersystem electron carriers to reduction end electron acceptors at the PSI acceptor side (δR ), quantum yield for reduction of end electron acceptors at the PSI acceptor side (φR ), and overall performance up to the PSI end electron acceptors (PI ). Thus, densely planted maize shows elevated light utilization through increased electron transport efficiency, which promotes coordination between PSII and PSI, as reflected by higher apparent quantum efficiency (AQE), lower light compensation point (LCP), and lower dark respiration rate (R ).</description><subject>Agricultural production</subject><subject>Chlorophyll</subject><subject>Chlorophyll - metabolism</subject><subject>Chloroplasts</subject><subject>Corn</subject><subject>Crops</subject><subject>Efficiency</subject><subject>Electromagnetic absorption</subject><subject>Electron transfer</subject><subject>Electron transport</subject><subject>Electron Transport - physiology</subject><subject>Fluorescence</subject><subject>Gene expression</subject><subject>Light</subject><subject>Morphology</subject><subject>Photosynthesis</subject><subject>Photosynthesis - physiology</subject><subject>Photosystem I Protein Complex - metabolism</subject><subject>Photosystem II</subject><subject>Photosystem II Protein Complex - metabolism</subject><subject>Physiology</subject><subject>Plant Leaves - metabolism</subject><subject>Planting density</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Quantum efficiency</subject><subject>Zea mays</subject><subject>Zea mays - metabolism</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0VtrFDEUB_BQlN7ffJaALxXcmutc-iAsrbaFkZbSvvgSspkzu1lmkppkLOsn8GObumtZfcqB_PhzLgi9oeSU85p8tMshMk4KTqjcQftUMDYhpChfbdV76CDGJSGMM1nvoj0uOasEL_bRr8Y_4cbOFwlfOxNAR4g4LQBPZ6NrtTOAfbcBd6BNst7h2-ATWBfP1pUfrIl46nS_ijY--6_a_gR8gr-BxoNeRdycvseXwT85rBO-ymn4ttcuWTfHF-CiTasj9LrTfYTjzXuIHr58vj-_mjQ3l9fn02ZiBGVpwqWQppV5WF4YqNoaeGsMk2JWdqIty6KSlDCRQZYFyRuoWyplmdejK93N-CH6tM59HGcDtAZcCrpXj8EOOqyU11b9--PsQs39D1XVUlYVzwEnm4Dgv48QkxpsNNDnecCPUbFCCEIEp2Wm7_6jSz-GvKc_imVTC5rVh7UywccYoHtphhL1fGK1feLM324P8IL_3pT_BuqYoOM</recordid><startdate>20220310</startdate><enddate>20220310</enddate><creator>Zheng, Bin</creator><creator>Zhao, Wei</creator><creator>Ren, Tinghu</creator><creator>Zhang, Xinghui</creator><creator>Ning, Tangyuan</creator><creator>Liu, Peng</creator><creator>Li, Geng</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5014-6217</orcidid></search><sort><creationdate>20220310</creationdate><title>Low Light Increases the Abundance of Light Reaction Proteins: Proteomics Analysis of Maize ( Zea mays L.) Grown at High Planting Density</title><author>Zheng, Bin ; Zhao, Wei ; Ren, Tinghu ; Zhang, Xinghui ; Ning, Tangyuan ; Liu, Peng ; Li, Geng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-3545cd530136ce8d9e3dcc254b7f4d776851024530354601429d1557630a8afb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural production</topic><topic>Chlorophyll</topic><topic>Chlorophyll - metabolism</topic><topic>Chloroplasts</topic><topic>Corn</topic><topic>Crops</topic><topic>Efficiency</topic><topic>Electromagnetic absorption</topic><topic>Electron transfer</topic><topic>Electron transport</topic><topic>Electron Transport - physiology</topic><topic>Fluorescence</topic><topic>Gene expression</topic><topic>Light</topic><topic>Morphology</topic><topic>Photosynthesis</topic><topic>Photosynthesis - physiology</topic><topic>Photosystem I Protein Complex - metabolism</topic><topic>Photosystem II</topic><topic>Photosystem II Protein Complex - metabolism</topic><topic>Physiology</topic><topic>Plant Leaves - metabolism</topic><topic>Planting density</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Quantum efficiency</topic><topic>Zea mays</topic><topic>Zea mays - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Bin</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Ren, Tinghu</creatorcontrib><creatorcontrib>Zhang, Xinghui</creatorcontrib><creatorcontrib>Ning, Tangyuan</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Li, Geng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Bin</au><au>Zhao, Wei</au><au>Ren, Tinghu</au><au>Zhang, Xinghui</au><au>Ning, Tangyuan</au><au>Liu, Peng</au><au>Li, Geng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Light Increases the Abundance of Light Reaction Proteins: Proteomics Analysis of Maize ( Zea mays L.) Grown at High Planting Density</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2022-03-10</date><risdate>2022</risdate><volume>23</volume><issue>6</issue><spage>3015</spage><pages>3015-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Maize ( L.) is usually planted at high density, so most of its leaves grow in low light. Certain morphological and physiological traits improve leaf photosynthetic capacity under low light, but how light absorption, transmission, and transport respond at the proteomic level remains unclear. Here, we used tandem mass tag (TMT) quantitative proteomics to investigate maize photosynthesis-related proteins under low light due to dense planting, finding increased levels of proteins related to photosystem II (PSII), PSI, and cytochrome . These increases likely promote intersystem electron transport and increased PSI end electron acceptor abundance. OJIP transient curves revealed increases in some fluorescence parameters under low light: quantum yield for electron transport (φE ), probability that an electron moves beyond the primary acceptor Q (ψ ), efficiency/probability of electron transfer from intersystem electron carriers to reduction end electron acceptors at the PSI acceptor side (δR ), quantum yield for reduction of end electron acceptors at the PSI acceptor side (φR ), and overall performance up to the PSI end electron acceptors (PI ). Thus, densely planted maize shows elevated light utilization through increased electron transport efficiency, which promotes coordination between PSII and PSI, as reflected by higher apparent quantum efficiency (AQE), lower light compensation point (LCP), and lower dark respiration rate (R ).</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35328436</pmid><doi>10.3390/ijms23063015</doi><orcidid>https://orcid.org/0000-0001-5014-6217</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2022-03, Vol.23 (6), p.3015
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8955883
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Agricultural production
Chlorophyll
Chlorophyll - metabolism
Chloroplasts
Corn
Crops
Efficiency
Electromagnetic absorption
Electron transfer
Electron transport
Electron Transport - physiology
Fluorescence
Gene expression
Light
Morphology
Photosynthesis
Photosynthesis - physiology
Photosystem I Protein Complex - metabolism
Photosystem II
Photosystem II Protein Complex - metabolism
Physiology
Plant Leaves - metabolism
Planting density
Proteins
Proteomics
Quantum efficiency
Zea mays
Zea mays - metabolism
title Low Light Increases the Abundance of Light Reaction Proteins: Proteomics Analysis of Maize ( Zea mays L.) Grown at High Planting Density
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Light%20Increases%20the%20Abundance%20of%20Light%20Reaction%20Proteins:%20Proteomics%20Analysis%20of%20Maize%20(%20Zea%20mays%20L.)%20Grown%20at%20High%20Planting%20Density&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Zheng,%20Bin&rft.date=2022-03-10&rft.volume=23&rft.issue=6&rft.spage=3015&rft.pages=3015-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms23063015&rft_dat=%3Cproquest_pubme%3E2642431941%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642431941&rft_id=info:pmid/35328436&rfr_iscdi=true