Thermal and Mechanical Properties of Amorphous Silicon Carbide Thin Films Using the Femtosecond Pump-Probe Technique
Nanoscale amorphous silicon carbide (a-SiC) thin films are widely used in engineering applications. It is important to obtain accurate information about their material properties because they often differ from those of the bulk state depending on the fabrication technique and process parameters. In...
Gespeichert in:
Veröffentlicht in: | Materials 2022-03, Vol.15 (6), p.2165 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 2165 |
container_title | Materials |
container_volume | 15 |
creator | Kim, Yun Young |
description | Nanoscale amorphous silicon carbide (a-SiC) thin films are widely used in engineering applications. It is important to obtain accurate information about their material properties because they often differ from those of the bulk state depending on the fabrication technique and process parameters. In this study, the thermal and mechanical properties of a-SiC thin films were evaluated using the femtosecond pump-probe technique, which provides high spatial and temporal resolutions sufficient to measure films that have a thickness of less than 300 nm. a-SiC films were grown using a plasma-enhanced chemical vapor deposition system, and the surface characteristics were analyzed using ellipsometry, atomic force microscopy, and X-ray reflectometry. The results show that the out-of-the-plane thermal conductivity of the films is lower than that of bulk crystalline SiC by two orders of magnitude, but the lower limit is dictated by the minimum thermal conductivity. In addition, a decrease in the mass density resulted in a reduced Young's modulus by 13.6-78.4% compared to the literature values, implying low Si-C bond density in the microstructures. The scale effect on both thermal conductivity and Young's modulus was not significant. |
doi_str_mv | 10.3390/ma15062165 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8954920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644011647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-80211f611e65f559877ff78cdefab47e26bc8b63f89bb7e946010557093815443</originalsourceid><addsrcrecordid>eNpdkV1r1jAYhoMobsyd-AMk4IkI1Xy3ORHGi68bTBz47jik6ZM1o01q0gr-ezM25zQnScjFxf3kRug1JR841-TjbKkkilEln6FjqrVqqBbi-ZPzETot5ZbUxTntmH6JjrjkTCvKj9F6GCHPdsI2DvgruNHG4Or1KqcF8hqg4OTx2ZzyMqat4O9hCi5FvLO5DwPgwxgi3odpLvi6hHiD1xHwHuY1FajcgK-2eWmqra9s1cfwY4NX6IW3U4HTh_0EXe8_H3bnzeW3Lxe7s8vGca7WpiOMUq8oBSW9lLprW-_bzg3gbS9aYKp3Xa-473Tft6CFIpRI2RLNOyqF4Cfo07132foZBgdxzXYySw6zzb9MssH8-xLDaG7ST9NpKTQjVfDuQZBTzV1WM4fiYJpshPobhikhCKVKtBV9-x96m7Yc63h3FBNCtYRV6v095XIqJYN_DEOJuevT_O2zwm-exn9E_7THfwN3J5rd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642446702</pqid></control><display><type>article</type><title>Thermal and Mechanical Properties of Amorphous Silicon Carbide Thin Films Using the Femtosecond Pump-Probe Technique</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Kim, Yun Young</creator><creatorcontrib>Kim, Yun Young</creatorcontrib><description>Nanoscale amorphous silicon carbide (a-SiC) thin films are widely used in engineering applications. It is important to obtain accurate information about their material properties because they often differ from those of the bulk state depending on the fabrication technique and process parameters. In this study, the thermal and mechanical properties of a-SiC thin films were evaluated using the femtosecond pump-probe technique, which provides high spatial and temporal resolutions sufficient to measure films that have a thickness of less than 300 nm. a-SiC films were grown using a plasma-enhanced chemical vapor deposition system, and the surface characteristics were analyzed using ellipsometry, atomic force microscopy, and X-ray reflectometry. The results show that the out-of-the-plane thermal conductivity of the films is lower than that of bulk crystalline SiC by two orders of magnitude, but the lower limit is dictated by the minimum thermal conductivity. In addition, a decrease in the mass density resulted in a reduced Young's modulus by 13.6-78.4% compared to the literature values, implying low Si-C bond density in the microstructures. The scale effect on both thermal conductivity and Young's modulus was not significant.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15062165</identifier><identifier>PMID: 35329613</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Amorphous materials ; Amorphous silicon ; Atomic force microscopy ; Boundary conditions ; Density ; Ellipsometry ; Heat conductivity ; Heat transfer ; Lasers ; Material properties ; Mechanical properties ; Microelectromechanical systems ; Modulus of elasticity ; Morphology ; Optics ; Plasma enhanced chemical vapor deposition ; Process parameters ; Scale effect ; Silicon carbide ; Simulation ; Surface properties ; Thermal conductivity ; Thermodynamic properties ; Thickness ; Thin films</subject><ispartof>Materials, 2022-03, Vol.15 (6), p.2165</ispartof><rights>2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the author. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-80211f611e65f559877ff78cdefab47e26bc8b63f89bb7e946010557093815443</citedby><cites>FETCH-LOGICAL-c336t-80211f611e65f559877ff78cdefab47e26bc8b63f89bb7e946010557093815443</cites><orcidid>0000-0001-8945-9843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954920/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954920/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35329613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Yun Young</creatorcontrib><title>Thermal and Mechanical Properties of Amorphous Silicon Carbide Thin Films Using the Femtosecond Pump-Probe Technique</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Nanoscale amorphous silicon carbide (a-SiC) thin films are widely used in engineering applications. It is important to obtain accurate information about their material properties because they often differ from those of the bulk state depending on the fabrication technique and process parameters. In this study, the thermal and mechanical properties of a-SiC thin films were evaluated using the femtosecond pump-probe technique, which provides high spatial and temporal resolutions sufficient to measure films that have a thickness of less than 300 nm. a-SiC films were grown using a plasma-enhanced chemical vapor deposition system, and the surface characteristics were analyzed using ellipsometry, atomic force microscopy, and X-ray reflectometry. The results show that the out-of-the-plane thermal conductivity of the films is lower than that of bulk crystalline SiC by two orders of magnitude, but the lower limit is dictated by the minimum thermal conductivity. In addition, a decrease in the mass density resulted in a reduced Young's modulus by 13.6-78.4% compared to the literature values, implying low Si-C bond density in the microstructures. The scale effect on both thermal conductivity and Young's modulus was not significant.</description><subject>Amorphous materials</subject><subject>Amorphous silicon</subject><subject>Atomic force microscopy</subject><subject>Boundary conditions</subject><subject>Density</subject><subject>Ellipsometry</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Lasers</subject><subject>Material properties</subject><subject>Mechanical properties</subject><subject>Microelectromechanical systems</subject><subject>Modulus of elasticity</subject><subject>Morphology</subject><subject>Optics</subject><subject>Plasma enhanced chemical vapor deposition</subject><subject>Process parameters</subject><subject>Scale effect</subject><subject>Silicon carbide</subject><subject>Simulation</subject><subject>Surface properties</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><subject>Thickness</subject><subject>Thin films</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV1r1jAYhoMobsyd-AMk4IkI1Xy3ORHGi68bTBz47jik6ZM1o01q0gr-ezM25zQnScjFxf3kRug1JR841-TjbKkkilEln6FjqrVqqBbi-ZPzETot5ZbUxTntmH6JjrjkTCvKj9F6GCHPdsI2DvgruNHG4Or1KqcF8hqg4OTx2ZzyMqat4O9hCi5FvLO5DwPgwxgi3odpLvi6hHiD1xHwHuY1FajcgK-2eWmqra9s1cfwY4NX6IW3U4HTh_0EXe8_H3bnzeW3Lxe7s8vGca7WpiOMUq8oBSW9lLprW-_bzg3gbS9aYKp3Xa-473Tft6CFIpRI2RLNOyqF4Cfo07132foZBgdxzXYySw6zzb9MssH8-xLDaG7ST9NpKTQjVfDuQZBTzV1WM4fiYJpshPobhikhCKVKtBV9-x96m7Yc63h3FBNCtYRV6v095XIqJYN_DEOJuevT_O2zwm-exn9E_7THfwN3J5rd</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Kim, Yun Young</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8945-9843</orcidid></search><sort><creationdate>20220315</creationdate><title>Thermal and Mechanical Properties of Amorphous Silicon Carbide Thin Films Using the Femtosecond Pump-Probe Technique</title><author>Kim, Yun Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-80211f611e65f559877ff78cdefab47e26bc8b63f89bb7e946010557093815443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amorphous materials</topic><topic>Amorphous silicon</topic><topic>Atomic force microscopy</topic><topic>Boundary conditions</topic><topic>Density</topic><topic>Ellipsometry</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Lasers</topic><topic>Material properties</topic><topic>Mechanical properties</topic><topic>Microelectromechanical systems</topic><topic>Modulus of elasticity</topic><topic>Morphology</topic><topic>Optics</topic><topic>Plasma enhanced chemical vapor deposition</topic><topic>Process parameters</topic><topic>Scale effect</topic><topic>Silicon carbide</topic><topic>Simulation</topic><topic>Surface properties</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yun Young</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yun Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal and Mechanical Properties of Amorphous Silicon Carbide Thin Films Using the Femtosecond Pump-Probe Technique</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-03-15</date><risdate>2022</risdate><volume>15</volume><issue>6</issue><spage>2165</spage><pages>2165-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Nanoscale amorphous silicon carbide (a-SiC) thin films are widely used in engineering applications. It is important to obtain accurate information about their material properties because they often differ from those of the bulk state depending on the fabrication technique and process parameters. In this study, the thermal and mechanical properties of a-SiC thin films were evaluated using the femtosecond pump-probe technique, which provides high spatial and temporal resolutions sufficient to measure films that have a thickness of less than 300 nm. a-SiC films were grown using a plasma-enhanced chemical vapor deposition system, and the surface characteristics were analyzed using ellipsometry, atomic force microscopy, and X-ray reflectometry. The results show that the out-of-the-plane thermal conductivity of the films is lower than that of bulk crystalline SiC by two orders of magnitude, but the lower limit is dictated by the minimum thermal conductivity. In addition, a decrease in the mass density resulted in a reduced Young's modulus by 13.6-78.4% compared to the literature values, implying low Si-C bond density in the microstructures. The scale effect on both thermal conductivity and Young's modulus was not significant.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35329613</pmid><doi>10.3390/ma15062165</doi><orcidid>https://orcid.org/0000-0001-8945-9843</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-03, Vol.15 (6), p.2165 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8954920 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Amorphous materials Amorphous silicon Atomic force microscopy Boundary conditions Density Ellipsometry Heat conductivity Heat transfer Lasers Material properties Mechanical properties Microelectromechanical systems Modulus of elasticity Morphology Optics Plasma enhanced chemical vapor deposition Process parameters Scale effect Silicon carbide Simulation Surface properties Thermal conductivity Thermodynamic properties Thickness Thin films |
title | Thermal and Mechanical Properties of Amorphous Silicon Carbide Thin Films Using the Femtosecond Pump-Probe Technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20and%20Mechanical%20Properties%20of%20Amorphous%20Silicon%20Carbide%20Thin%20Films%20Using%20the%20Femtosecond%20Pump-Probe%20Technique&rft.jtitle=Materials&rft.au=Kim,%20Yun%20Young&rft.date=2022-03-15&rft.volume=15&rft.issue=6&rft.spage=2165&rft.pages=2165-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15062165&rft_dat=%3Cproquest_pubme%3E2644011647%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642446702&rft_id=info:pmid/35329613&rfr_iscdi=true |