Thermal and Mechanical Properties of Amorphous Silicon Carbide Thin Films Using the Femtosecond Pump-Probe Technique

Nanoscale amorphous silicon carbide (a-SiC) thin films are widely used in engineering applications. It is important to obtain accurate information about their material properties because they often differ from those of the bulk state depending on the fabrication technique and process parameters. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-03, Vol.15 (6), p.2165
1. Verfasser: Kim, Yun Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 2165
container_title Materials
container_volume 15
creator Kim, Yun Young
description Nanoscale amorphous silicon carbide (a-SiC) thin films are widely used in engineering applications. It is important to obtain accurate information about their material properties because they often differ from those of the bulk state depending on the fabrication technique and process parameters. In this study, the thermal and mechanical properties of a-SiC thin films were evaluated using the femtosecond pump-probe technique, which provides high spatial and temporal resolutions sufficient to measure films that have a thickness of less than 300 nm. a-SiC films were grown using a plasma-enhanced chemical vapor deposition system, and the surface characteristics were analyzed using ellipsometry, atomic force microscopy, and X-ray reflectometry. The results show that the out-of-the-plane thermal conductivity of the films is lower than that of bulk crystalline SiC by two orders of magnitude, but the lower limit is dictated by the minimum thermal conductivity. In addition, a decrease in the mass density resulted in a reduced Young's modulus by 13.6-78.4% compared to the literature values, implying low Si-C bond density in the microstructures. The scale effect on both thermal conductivity and Young's modulus was not significant.
doi_str_mv 10.3390/ma15062165
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8954920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644011647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-80211f611e65f559877ff78cdefab47e26bc8b63f89bb7e946010557093815443</originalsourceid><addsrcrecordid>eNpdkV1r1jAYhoMobsyd-AMk4IkI1Xy3ORHGi68bTBz47jik6ZM1o01q0gr-ezM25zQnScjFxf3kRug1JR841-TjbKkkilEln6FjqrVqqBbi-ZPzETot5ZbUxTntmH6JjrjkTCvKj9F6GCHPdsI2DvgruNHG4Or1KqcF8hqg4OTx2ZzyMqat4O9hCi5FvLO5DwPgwxgi3odpLvi6hHiD1xHwHuY1FajcgK-2eWmqra9s1cfwY4NX6IW3U4HTh_0EXe8_H3bnzeW3Lxe7s8vGca7WpiOMUq8oBSW9lLprW-_bzg3gbS9aYKp3Xa-473Tft6CFIpRI2RLNOyqF4Cfo07132foZBgdxzXYySw6zzb9MssH8-xLDaG7ST9NpKTQjVfDuQZBTzV1WM4fiYJpshPobhikhCKVKtBV9-x96m7Yc63h3FBNCtYRV6v095XIqJYN_DEOJuevT_O2zwm-exn9E_7THfwN3J5rd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642446702</pqid></control><display><type>article</type><title>Thermal and Mechanical Properties of Amorphous Silicon Carbide Thin Films Using the Femtosecond Pump-Probe Technique</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Kim, Yun Young</creator><creatorcontrib>Kim, Yun Young</creatorcontrib><description>Nanoscale amorphous silicon carbide (a-SiC) thin films are widely used in engineering applications. It is important to obtain accurate information about their material properties because they often differ from those of the bulk state depending on the fabrication technique and process parameters. In this study, the thermal and mechanical properties of a-SiC thin films were evaluated using the femtosecond pump-probe technique, which provides high spatial and temporal resolutions sufficient to measure films that have a thickness of less than 300 nm. a-SiC films were grown using a plasma-enhanced chemical vapor deposition system, and the surface characteristics were analyzed using ellipsometry, atomic force microscopy, and X-ray reflectometry. The results show that the out-of-the-plane thermal conductivity of the films is lower than that of bulk crystalline SiC by two orders of magnitude, but the lower limit is dictated by the minimum thermal conductivity. In addition, a decrease in the mass density resulted in a reduced Young's modulus by 13.6-78.4% compared to the literature values, implying low Si-C bond density in the microstructures. The scale effect on both thermal conductivity and Young's modulus was not significant.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15062165</identifier><identifier>PMID: 35329613</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Amorphous materials ; Amorphous silicon ; Atomic force microscopy ; Boundary conditions ; Density ; Ellipsometry ; Heat conductivity ; Heat transfer ; Lasers ; Material properties ; Mechanical properties ; Microelectromechanical systems ; Modulus of elasticity ; Morphology ; Optics ; Plasma enhanced chemical vapor deposition ; Process parameters ; Scale effect ; Silicon carbide ; Simulation ; Surface properties ; Thermal conductivity ; Thermodynamic properties ; Thickness ; Thin films</subject><ispartof>Materials, 2022-03, Vol.15 (6), p.2165</ispartof><rights>2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the author. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-80211f611e65f559877ff78cdefab47e26bc8b63f89bb7e946010557093815443</citedby><cites>FETCH-LOGICAL-c336t-80211f611e65f559877ff78cdefab47e26bc8b63f89bb7e946010557093815443</cites><orcidid>0000-0001-8945-9843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954920/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954920/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35329613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Yun Young</creatorcontrib><title>Thermal and Mechanical Properties of Amorphous Silicon Carbide Thin Films Using the Femtosecond Pump-Probe Technique</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Nanoscale amorphous silicon carbide (a-SiC) thin films are widely used in engineering applications. It is important to obtain accurate information about their material properties because they often differ from those of the bulk state depending on the fabrication technique and process parameters. In this study, the thermal and mechanical properties of a-SiC thin films were evaluated using the femtosecond pump-probe technique, which provides high spatial and temporal resolutions sufficient to measure films that have a thickness of less than 300 nm. a-SiC films were grown using a plasma-enhanced chemical vapor deposition system, and the surface characteristics were analyzed using ellipsometry, atomic force microscopy, and X-ray reflectometry. The results show that the out-of-the-plane thermal conductivity of the films is lower than that of bulk crystalline SiC by two orders of magnitude, but the lower limit is dictated by the minimum thermal conductivity. In addition, a decrease in the mass density resulted in a reduced Young's modulus by 13.6-78.4% compared to the literature values, implying low Si-C bond density in the microstructures. The scale effect on both thermal conductivity and Young's modulus was not significant.</description><subject>Amorphous materials</subject><subject>Amorphous silicon</subject><subject>Atomic force microscopy</subject><subject>Boundary conditions</subject><subject>Density</subject><subject>Ellipsometry</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Lasers</subject><subject>Material properties</subject><subject>Mechanical properties</subject><subject>Microelectromechanical systems</subject><subject>Modulus of elasticity</subject><subject>Morphology</subject><subject>Optics</subject><subject>Plasma enhanced chemical vapor deposition</subject><subject>Process parameters</subject><subject>Scale effect</subject><subject>Silicon carbide</subject><subject>Simulation</subject><subject>Surface properties</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><subject>Thickness</subject><subject>Thin films</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV1r1jAYhoMobsyd-AMk4IkI1Xy3ORHGi68bTBz47jik6ZM1o01q0gr-ezM25zQnScjFxf3kRug1JR841-TjbKkkilEln6FjqrVqqBbi-ZPzETot5ZbUxTntmH6JjrjkTCvKj9F6GCHPdsI2DvgruNHG4Or1KqcF8hqg4OTx2ZzyMqat4O9hCi5FvLO5DwPgwxgi3odpLvi6hHiD1xHwHuY1FajcgK-2eWmqra9s1cfwY4NX6IW3U4HTh_0EXe8_H3bnzeW3Lxe7s8vGca7WpiOMUq8oBSW9lLprW-_bzg3gbS9aYKp3Xa-473Tft6CFIpRI2RLNOyqF4Cfo07132foZBgdxzXYySw6zzb9MssH8-xLDaG7ST9NpKTQjVfDuQZBTzV1WM4fiYJpshPobhikhCKVKtBV9-x96m7Yc63h3FBNCtYRV6v095XIqJYN_DEOJuevT_O2zwm-exn9E_7THfwN3J5rd</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Kim, Yun Young</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8945-9843</orcidid></search><sort><creationdate>20220315</creationdate><title>Thermal and Mechanical Properties of Amorphous Silicon Carbide Thin Films Using the Femtosecond Pump-Probe Technique</title><author>Kim, Yun Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-80211f611e65f559877ff78cdefab47e26bc8b63f89bb7e946010557093815443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amorphous materials</topic><topic>Amorphous silicon</topic><topic>Atomic force microscopy</topic><topic>Boundary conditions</topic><topic>Density</topic><topic>Ellipsometry</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Lasers</topic><topic>Material properties</topic><topic>Mechanical properties</topic><topic>Microelectromechanical systems</topic><topic>Modulus of elasticity</topic><topic>Morphology</topic><topic>Optics</topic><topic>Plasma enhanced chemical vapor deposition</topic><topic>Process parameters</topic><topic>Scale effect</topic><topic>Silicon carbide</topic><topic>Simulation</topic><topic>Surface properties</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yun Young</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yun Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal and Mechanical Properties of Amorphous Silicon Carbide Thin Films Using the Femtosecond Pump-Probe Technique</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-03-15</date><risdate>2022</risdate><volume>15</volume><issue>6</issue><spage>2165</spage><pages>2165-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Nanoscale amorphous silicon carbide (a-SiC) thin films are widely used in engineering applications. It is important to obtain accurate information about their material properties because they often differ from those of the bulk state depending on the fabrication technique and process parameters. In this study, the thermal and mechanical properties of a-SiC thin films were evaluated using the femtosecond pump-probe technique, which provides high spatial and temporal resolutions sufficient to measure films that have a thickness of less than 300 nm. a-SiC films were grown using a plasma-enhanced chemical vapor deposition system, and the surface characteristics were analyzed using ellipsometry, atomic force microscopy, and X-ray reflectometry. The results show that the out-of-the-plane thermal conductivity of the films is lower than that of bulk crystalline SiC by two orders of magnitude, but the lower limit is dictated by the minimum thermal conductivity. In addition, a decrease in the mass density resulted in a reduced Young's modulus by 13.6-78.4% compared to the literature values, implying low Si-C bond density in the microstructures. The scale effect on both thermal conductivity and Young's modulus was not significant.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35329613</pmid><doi>10.3390/ma15062165</doi><orcidid>https://orcid.org/0000-0001-8945-9843</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-03, Vol.15 (6), p.2165
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8954920
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Amorphous materials
Amorphous silicon
Atomic force microscopy
Boundary conditions
Density
Ellipsometry
Heat conductivity
Heat transfer
Lasers
Material properties
Mechanical properties
Microelectromechanical systems
Modulus of elasticity
Morphology
Optics
Plasma enhanced chemical vapor deposition
Process parameters
Scale effect
Silicon carbide
Simulation
Surface properties
Thermal conductivity
Thermodynamic properties
Thickness
Thin films
title Thermal and Mechanical Properties of Amorphous Silicon Carbide Thin Films Using the Femtosecond Pump-Probe Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20and%20Mechanical%20Properties%20of%20Amorphous%20Silicon%20Carbide%20Thin%20Films%20Using%20the%20Femtosecond%20Pump-Probe%20Technique&rft.jtitle=Materials&rft.au=Kim,%20Yun%20Young&rft.date=2022-03-15&rft.volume=15&rft.issue=6&rft.spage=2165&rft.pages=2165-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15062165&rft_dat=%3Cproquest_pubme%3E2644011647%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642446702&rft_id=info:pmid/35329613&rfr_iscdi=true