Nickel-Containing Perovskites, PrNi0.4Fe0.6O3–δ and PrNi0.4Co0.6O3–δ, as Potential Electrodes for Protonic Ceramic Electrochemical Cells
Protonic ceramic fuel cells (PCFCs) offer a convenient means of converting chemical energy into electricity with high performance and efficiency at low- and intermediate-temperature ranges. However, in order to ensure good life-time stability of PCFCs, it is necessary to ensure rational chemical des...
Gespeichert in:
Veröffentlicht in: | Materials 2022-03, Vol.15 (6), p.2166 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 2166 |
container_title | Materials |
container_volume | 15 |
creator | Tarutin, Artem Kasyanova, Anna Vdovin, Gennady Lyagaeva, Julia Medvedev, Dmitry |
description | Protonic ceramic fuel cells (PCFCs) offer a convenient means of converting chemical energy into electricity with high performance and efficiency at low- and intermediate-temperature ranges. However, in order to ensure good life-time stability of PCFCs, it is necessary to ensure rational chemical design in functional materials. Within the present work, we propose new Ni-based perovskite phases of PrNi0.4M0.6O3–δ (where M = Co, Fe) for potential utilization in protonic ceramic electrochemical cells. Along with their successful synthesis, functional properties of the PrNi0.4M0.6O3–δ materials, such as chemical compatibility with a number of oxygen-ionic and proton-conducting electrolytes, thermal expansion behavior, electrical conductivity, and electrochemical behavior, were comprehensively studied. According to the obtained data, the Co-containing nickelate exhibits excellent conductivity and polarization behavior; on the other hand, it demonstrates a high reactivity with all studied electrolytes along with elevated thermal expansion coefficients. Conversely, while the iron-based nickelate had superior chemical and thermal compatibility, its transport characteristics were 2–5 times worse. Although, PrNi0.4Co0.6O3–δ and PrNi0.4Fe0.6O3–δ represent some disadvantages, this work provides a promising pathway for further improvement of Ni-based perovskite electrodes. |
doi_str_mv | 10.3390/ma15062166 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8954579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644012497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-55d0118f058b6f95c3a6ae3c5264044489e0f82155984af833be662d514cc68b3</originalsourceid><addsrcrecordid>eNpdkU1KLDEUhYMoKurEFRQ4EbHapPJjMhGkaJ-CaA90HNKpWxqtSjSpFpy5AidvK28dbxGuxIjtbyY3uffL4VwOQpsEjyhVeK83hGNRESEW0CpRSpREMbb47b6CNlK6wflQSmSlltEK5bRSgshV9Hzm7C10ZR38YJx3_qqYQAwP6dYNkHaLSTxzeMSOAI_EOX15-vv_X2F889Gvw1d_tzCpmIQB_OBMV4w7sEMMDaSiDTF_CEPwzhY1RNPnOp_ba8ivzNfQdWkdLbWmS7Axr2vo8mh8UR-Xp-d_TurD09JSQoeS8wYTIlvM5VS0iltqhAFqeSUYZoxJBbiVFeFcSWZaSekUhKgaTpi1Qk7pGjp4172bTXtobPYcTafvoutNfNTBOP1z4t21vgoPWirO-L7KAttzgRjuZ5AG3btk8wrGQ5glnY0wTCqm9jO69Qu9CbPo83pvVMVYzk9mauedsjGkFKH9NEOwfktafyVNXwHp5Zsc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642445068</pqid></control><display><type>article</type><title>Nickel-Containing Perovskites, PrNi0.4Fe0.6O3–δ and PrNi0.4Co0.6O3–δ, as Potential Electrodes for Protonic Ceramic Electrochemical Cells</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Tarutin, Artem ; Kasyanova, Anna ; Vdovin, Gennady ; Lyagaeva, Julia ; Medvedev, Dmitry</creator><creatorcontrib>Tarutin, Artem ; Kasyanova, Anna ; Vdovin, Gennady ; Lyagaeva, Julia ; Medvedev, Dmitry</creatorcontrib><description>Protonic ceramic fuel cells (PCFCs) offer a convenient means of converting chemical energy into electricity with high performance and efficiency at low- and intermediate-temperature ranges. However, in order to ensure good life-time stability of PCFCs, it is necessary to ensure rational chemical design in functional materials. Within the present work, we propose new Ni-based perovskite phases of PrNi0.4M0.6O3–δ (where M = Co, Fe) for potential utilization in protonic ceramic electrochemical cells. Along with their successful synthesis, functional properties of the PrNi0.4M0.6O3–δ materials, such as chemical compatibility with a number of oxygen-ionic and proton-conducting electrolytes, thermal expansion behavior, electrical conductivity, and electrochemical behavior, were comprehensively studied. According to the obtained data, the Co-containing nickelate exhibits excellent conductivity and polarization behavior; on the other hand, it demonstrates a high reactivity with all studied electrolytes along with elevated thermal expansion coefficients. Conversely, while the iron-based nickelate had superior chemical and thermal compatibility, its transport characteristics were 2–5 times worse. Although, PrNi0.4Co0.6O3–δ and PrNi0.4Fe0.6O3–δ represent some disadvantages, this work provides a promising pathway for further improvement of Ni-based perovskite electrodes.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15062166</identifier><identifier>PMID: 35329618</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Ceramics ; Chemical compatibility ; Chemical energy ; Climate change ; Composite materials ; Cooling ; Electrical resistivity ; Electrochemical analysis ; Electrochemical cells ; Electrode polarization ; Electrodes ; Electrolytes ; Electrolytic cells ; Fuel cells ; Functional materials ; Hydrogen ; Iron ; Nickel ; Nitrates ; Perovskites ; Software ; Thermal expansion ; Transport properties</subject><ispartof>Materials, 2022-03, Vol.15 (6), p.2166</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-55d0118f058b6f95c3a6ae3c5264044489e0f82155984af833be662d514cc68b3</citedby><cites>FETCH-LOGICAL-c313t-55d0118f058b6f95c3a6ae3c5264044489e0f82155984af833be662d514cc68b3</cites><orcidid>0000-0003-1660-6712 ; 0000-0001-5636-6499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954579/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954579/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Tarutin, Artem</creatorcontrib><creatorcontrib>Kasyanova, Anna</creatorcontrib><creatorcontrib>Vdovin, Gennady</creatorcontrib><creatorcontrib>Lyagaeva, Julia</creatorcontrib><creatorcontrib>Medvedev, Dmitry</creatorcontrib><title>Nickel-Containing Perovskites, PrNi0.4Fe0.6O3–δ and PrNi0.4Co0.6O3–δ, as Potential Electrodes for Protonic Ceramic Electrochemical Cells</title><title>Materials</title><description>Protonic ceramic fuel cells (PCFCs) offer a convenient means of converting chemical energy into electricity with high performance and efficiency at low- and intermediate-temperature ranges. However, in order to ensure good life-time stability of PCFCs, it is necessary to ensure rational chemical design in functional materials. Within the present work, we propose new Ni-based perovskite phases of PrNi0.4M0.6O3–δ (where M = Co, Fe) for potential utilization in protonic ceramic electrochemical cells. Along with their successful synthesis, functional properties of the PrNi0.4M0.6O3–δ materials, such as chemical compatibility with a number of oxygen-ionic and proton-conducting electrolytes, thermal expansion behavior, electrical conductivity, and electrochemical behavior, were comprehensively studied. According to the obtained data, the Co-containing nickelate exhibits excellent conductivity and polarization behavior; on the other hand, it demonstrates a high reactivity with all studied electrolytes along with elevated thermal expansion coefficients. Conversely, while the iron-based nickelate had superior chemical and thermal compatibility, its transport characteristics were 2–5 times worse. Although, PrNi0.4Co0.6O3–δ and PrNi0.4Fe0.6O3–δ represent some disadvantages, this work provides a promising pathway for further improvement of Ni-based perovskite electrodes.</description><subject>Ceramics</subject><subject>Chemical compatibility</subject><subject>Chemical energy</subject><subject>Climate change</subject><subject>Composite materials</subject><subject>Cooling</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>Electrochemical cells</subject><subject>Electrode polarization</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Fuel cells</subject><subject>Functional materials</subject><subject>Hydrogen</subject><subject>Iron</subject><subject>Nickel</subject><subject>Nitrates</subject><subject>Perovskites</subject><subject>Software</subject><subject>Thermal expansion</subject><subject>Transport properties</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU1KLDEUhYMoKurEFRQ4EbHapPJjMhGkaJ-CaA90HNKpWxqtSjSpFpy5AidvK28dbxGuxIjtbyY3uffL4VwOQpsEjyhVeK83hGNRESEW0CpRSpREMbb47b6CNlK6wflQSmSlltEK5bRSgshV9Hzm7C10ZR38YJx3_qqYQAwP6dYNkHaLSTxzeMSOAI_EOX15-vv_X2F889Gvw1d_tzCpmIQB_OBMV4w7sEMMDaSiDTF_CEPwzhY1RNPnOp_ba8ivzNfQdWkdLbWmS7Axr2vo8mh8UR-Xp-d_TurD09JSQoeS8wYTIlvM5VS0iltqhAFqeSUYZoxJBbiVFeFcSWZaSekUhKgaTpi1Qk7pGjp4172bTXtobPYcTafvoutNfNTBOP1z4t21vgoPWirO-L7KAttzgRjuZ5AG3btk8wrGQ5glnY0wTCqm9jO69Qu9CbPo83pvVMVYzk9mauedsjGkFKH9NEOwfktafyVNXwHp5Zsc</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Tarutin, Artem</creator><creator>Kasyanova, Anna</creator><creator>Vdovin, Gennady</creator><creator>Lyagaeva, Julia</creator><creator>Medvedev, Dmitry</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1660-6712</orcidid><orcidid>https://orcid.org/0000-0001-5636-6499</orcidid></search><sort><creationdate>20220315</creationdate><title>Nickel-Containing Perovskites, PrNi0.4Fe0.6O3–δ and PrNi0.4Co0.6O3–δ, as Potential Electrodes for Protonic Ceramic Electrochemical Cells</title><author>Tarutin, Artem ; Kasyanova, Anna ; Vdovin, Gennady ; Lyagaeva, Julia ; Medvedev, Dmitry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-55d0118f058b6f95c3a6ae3c5264044489e0f82155984af833be662d514cc68b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ceramics</topic><topic>Chemical compatibility</topic><topic>Chemical energy</topic><topic>Climate change</topic><topic>Composite materials</topic><topic>Cooling</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>Electrochemical cells</topic><topic>Electrode polarization</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Fuel cells</topic><topic>Functional materials</topic><topic>Hydrogen</topic><topic>Iron</topic><topic>Nickel</topic><topic>Nitrates</topic><topic>Perovskites</topic><topic>Software</topic><topic>Thermal expansion</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarutin, Artem</creatorcontrib><creatorcontrib>Kasyanova, Anna</creatorcontrib><creatorcontrib>Vdovin, Gennady</creatorcontrib><creatorcontrib>Lyagaeva, Julia</creatorcontrib><creatorcontrib>Medvedev, Dmitry</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarutin, Artem</au><au>Kasyanova, Anna</au><au>Vdovin, Gennady</au><au>Lyagaeva, Julia</au><au>Medvedev, Dmitry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nickel-Containing Perovskites, PrNi0.4Fe0.6O3–δ and PrNi0.4Co0.6O3–δ, as Potential Electrodes for Protonic Ceramic Electrochemical Cells</atitle><jtitle>Materials</jtitle><date>2022-03-15</date><risdate>2022</risdate><volume>15</volume><issue>6</issue><spage>2166</spage><pages>2166-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Protonic ceramic fuel cells (PCFCs) offer a convenient means of converting chemical energy into electricity with high performance and efficiency at low- and intermediate-temperature ranges. However, in order to ensure good life-time stability of PCFCs, it is necessary to ensure rational chemical design in functional materials. Within the present work, we propose new Ni-based perovskite phases of PrNi0.4M0.6O3–δ (where M = Co, Fe) for potential utilization in protonic ceramic electrochemical cells. Along with their successful synthesis, functional properties of the PrNi0.4M0.6O3–δ materials, such as chemical compatibility with a number of oxygen-ionic and proton-conducting electrolytes, thermal expansion behavior, electrical conductivity, and electrochemical behavior, were comprehensively studied. According to the obtained data, the Co-containing nickelate exhibits excellent conductivity and polarization behavior; on the other hand, it demonstrates a high reactivity with all studied electrolytes along with elevated thermal expansion coefficients. Conversely, while the iron-based nickelate had superior chemical and thermal compatibility, its transport characteristics were 2–5 times worse. Although, PrNi0.4Co0.6O3–δ and PrNi0.4Fe0.6O3–δ represent some disadvantages, this work provides a promising pathway for further improvement of Ni-based perovskite electrodes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35329618</pmid><doi>10.3390/ma15062166</doi><orcidid>https://orcid.org/0000-0003-1660-6712</orcidid><orcidid>https://orcid.org/0000-0001-5636-6499</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-03, Vol.15 (6), p.2166 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8954579 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Ceramics Chemical compatibility Chemical energy Climate change Composite materials Cooling Electrical resistivity Electrochemical analysis Electrochemical cells Electrode polarization Electrodes Electrolytes Electrolytic cells Fuel cells Functional materials Hydrogen Iron Nickel Nitrates Perovskites Software Thermal expansion Transport properties |
title | Nickel-Containing Perovskites, PrNi0.4Fe0.6O3–δ and PrNi0.4Co0.6O3–δ, as Potential Electrodes for Protonic Ceramic Electrochemical Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A36%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nickel-Containing%20Perovskites,%20PrNi0.4Fe0.6O3%E2%80%93%CE%B4%20and%20PrNi0.4Co0.6O3%E2%80%93%CE%B4,%20as%20Potential%20Electrodes%20for%20Protonic%20Ceramic%20Electrochemical%20Cells&rft.jtitle=Materials&rft.au=Tarutin,%20Artem&rft.date=2022-03-15&rft.volume=15&rft.issue=6&rft.spage=2166&rft.pages=2166-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15062166&rft_dat=%3Cproquest_pubme%3E2644012497%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642445068&rft_id=info:pmid/35329618&rfr_iscdi=true |