Influence of Epoxy Resin Curing Kinetics on the Mechanical Properties of Carbon Fiber Composites

In this study, the kinetic parameters belonging to the cross-linking process of a modified epoxy resin, Aerotuf 275-34™, were investigated. Resin curing kinetics are crucial to understanding the structure-property-processing relationship for manufacturing high-performance carbon-fiber-reinforced pol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2022-03, Vol.14 (6), p.1100
Hauptverfasser: Cruz-Cruz, Isidro, Ramírez-Herrera, Claudia A, Martínez-Romero, Oscar, Castillo-Márquez, Santos Armando, Jiménez-Cedeño, Isaac H, Olvera-Trejo, Daniel, Elías-Zúñiga, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 1100
container_title Polymers
container_volume 14
creator Cruz-Cruz, Isidro
Ramírez-Herrera, Claudia A
Martínez-Romero, Oscar
Castillo-Márquez, Santos Armando
Jiménez-Cedeño, Isaac H
Olvera-Trejo, Daniel
Elías-Zúñiga, Alex
description In this study, the kinetic parameters belonging to the cross-linking process of a modified epoxy resin, Aerotuf 275-34™, were investigated. Resin curing kinetics are crucial to understanding the structure-property-processing relationship for manufacturing high-performance carbon-fiber-reinforced polymer composites (CFRPCs). The parameters were obtained using differential scanning calorimetry (DSC) measurements and the Flynn-Wall-Ozawa, Kissinger, Borchardt-Daniels, and Friedman approaches. The DSC thermograms show two exothermic peaks that were deconvoluted as two separate reactions that follow autocatalytic models. Furthermore, the mechanical properties of produced carbon fiber/Aerotuf 275-34™ laminates using thermosetting polymers such as epoxies, phenolics, and cyanate esters were evaluated as a function of the conversion degree, and a close correlation was found between the degree of curing and the ultimate tensile strength (UTS). We found that when the composite material is cured at 160 °C for 15 min, it reaches a conversion degree of 0.97 and a UTS value that accounts for 95% of the maximum value obtained at 200 °C (180 MPa). Thus, the application of such processing conditions could be enough to achieve good mechanical properties of the composite laminates. These results suggest the possibility for the development of strategies towards manufacturing high-performance materials based on the modified epoxy resin (Aerotuf 275-34™) through the curing process.
doi_str_mv 10.3390/polym14061100
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8952319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644001509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-8b35957666e82ddef530ce3b21d272625804d426b3537c1aca79b2a49924e60c3</originalsourceid><addsrcrecordid>eNpdkUtLxTAQhYMoKurSrQTcuKnm3duNIMUXKoroOqbp1Btpk5q04v339uIDdTYzMN8cZuYgtEvJIecFOepDu-ioIIpSQlbQJiM5zwRXZPVXvYF2UnohUwipFM3X0QaXnEvB2SZ6uvRNO4K3gEODT_vwvsD3kJzH5Ridf8ZXzsPgbMLB42EO-Abs3HhnTYvvYughDg7ScrY0sZqYM1dBxGXo-pDcAGkbrTWmTbDzlbfQ49npQ3mRXd-eX5Yn15kVVA7ZrOKykLlSCmasrqGRnFjgFaM1y5lickZELZiaMJ5baqzJi4oZURRMgCKWb6HjT91-rDqoLfghmlb30XUmLnQwTv_teDfXz-FNzwrJOC0mgYMvgRheR0iD7lyy0LbGQxiTZkoIQqgkS3T_H_oSxuin85YUE2r6PZmo7JOyMaQUoflZhhK9tE__sW_i935f8EN_m8U_ANkole0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642462070</pqid></control><display><type>article</type><title>Influence of Epoxy Resin Curing Kinetics on the Mechanical Properties of Carbon Fiber Composites</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Cruz-Cruz, Isidro ; Ramírez-Herrera, Claudia A ; Martínez-Romero, Oscar ; Castillo-Márquez, Santos Armando ; Jiménez-Cedeño, Isaac H ; Olvera-Trejo, Daniel ; Elías-Zúñiga, Alex</creator><creatorcontrib>Cruz-Cruz, Isidro ; Ramírez-Herrera, Claudia A ; Martínez-Romero, Oscar ; Castillo-Márquez, Santos Armando ; Jiménez-Cedeño, Isaac H ; Olvera-Trejo, Daniel ; Elías-Zúñiga, Alex</creatorcontrib><description>In this study, the kinetic parameters belonging to the cross-linking process of a modified epoxy resin, Aerotuf 275-34™, were investigated. Resin curing kinetics are crucial to understanding the structure-property-processing relationship for manufacturing high-performance carbon-fiber-reinforced polymer composites (CFRPCs). The parameters were obtained using differential scanning calorimetry (DSC) measurements and the Flynn-Wall-Ozawa, Kissinger, Borchardt-Daniels, and Friedman approaches. The DSC thermograms show two exothermic peaks that were deconvoluted as two separate reactions that follow autocatalytic models. Furthermore, the mechanical properties of produced carbon fiber/Aerotuf 275-34™ laminates using thermosetting polymers such as epoxies, phenolics, and cyanate esters were evaluated as a function of the conversion degree, and a close correlation was found between the degree of curing and the ultimate tensile strength (UTS). We found that when the composite material is cured at 160 °C for 15 min, it reaches a conversion degree of 0.97 and a UTS value that accounts for 95% of the maximum value obtained at 200 °C (180 MPa). Thus, the application of such processing conditions could be enough to achieve good mechanical properties of the composite laminates. These results suggest the possibility for the development of strategies towards manufacturing high-performance materials based on the modified epoxy resin (Aerotuf 275-34™) through the curing process.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14061100</identifier><identifier>PMID: 35335432</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aeronautics ; Aerospace industry ; Bisphenol A ; Carbon fiber reinforced plastics ; Carbon fibers ; Composite materials ; Conversion ; Corrosion resistance ; Crosslinking ; Curing ; Cyanates ; Differential scanning calorimetry ; Epoxy resins ; Esters ; Exothermic reactions ; Fiber reinforced polymers ; Kinetics ; Laminates ; Manufacturing ; Mechanical properties ; NMR ; Nuclear magnetic resonance ; Parameter modification ; Polymer matrix composites ; Spectrum analysis ; Ultimate tensile strength ; Viscosity</subject><ispartof>Polymers, 2022-03, Vol.14 (6), p.1100</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-8b35957666e82ddef530ce3b21d272625804d426b3537c1aca79b2a49924e60c3</citedby><cites>FETCH-LOGICAL-c415t-8b35957666e82ddef530ce3b21d272625804d426b3537c1aca79b2a49924e60c3</cites><orcidid>0000-0002-4385-6269 ; 0000-0002-3837-2083 ; 0000-0001-6607-8810 ; 0000-0001-7752-3019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952319/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952319/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35335432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cruz-Cruz, Isidro</creatorcontrib><creatorcontrib>Ramírez-Herrera, Claudia A</creatorcontrib><creatorcontrib>Martínez-Romero, Oscar</creatorcontrib><creatorcontrib>Castillo-Márquez, Santos Armando</creatorcontrib><creatorcontrib>Jiménez-Cedeño, Isaac H</creatorcontrib><creatorcontrib>Olvera-Trejo, Daniel</creatorcontrib><creatorcontrib>Elías-Zúñiga, Alex</creatorcontrib><title>Influence of Epoxy Resin Curing Kinetics on the Mechanical Properties of Carbon Fiber Composites</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>In this study, the kinetic parameters belonging to the cross-linking process of a modified epoxy resin, Aerotuf 275-34™, were investigated. Resin curing kinetics are crucial to understanding the structure-property-processing relationship for manufacturing high-performance carbon-fiber-reinforced polymer composites (CFRPCs). The parameters were obtained using differential scanning calorimetry (DSC) measurements and the Flynn-Wall-Ozawa, Kissinger, Borchardt-Daniels, and Friedman approaches. The DSC thermograms show two exothermic peaks that were deconvoluted as two separate reactions that follow autocatalytic models. Furthermore, the mechanical properties of produced carbon fiber/Aerotuf 275-34™ laminates using thermosetting polymers such as epoxies, phenolics, and cyanate esters were evaluated as a function of the conversion degree, and a close correlation was found between the degree of curing and the ultimate tensile strength (UTS). We found that when the composite material is cured at 160 °C for 15 min, it reaches a conversion degree of 0.97 and a UTS value that accounts for 95% of the maximum value obtained at 200 °C (180 MPa). Thus, the application of such processing conditions could be enough to achieve good mechanical properties of the composite laminates. These results suggest the possibility for the development of strategies towards manufacturing high-performance materials based on the modified epoxy resin (Aerotuf 275-34™) through the curing process.</description><subject>Aeronautics</subject><subject>Aerospace industry</subject><subject>Bisphenol A</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Composite materials</subject><subject>Conversion</subject><subject>Corrosion resistance</subject><subject>Crosslinking</subject><subject>Curing</subject><subject>Cyanates</subject><subject>Differential scanning calorimetry</subject><subject>Epoxy resins</subject><subject>Esters</subject><subject>Exothermic reactions</subject><subject>Fiber reinforced polymers</subject><subject>Kinetics</subject><subject>Laminates</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Parameter modification</subject><subject>Polymer matrix composites</subject><subject>Spectrum analysis</subject><subject>Ultimate tensile strength</subject><subject>Viscosity</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkUtLxTAQhYMoKurSrQTcuKnm3duNIMUXKoroOqbp1Btpk5q04v339uIDdTYzMN8cZuYgtEvJIecFOepDu-ioIIpSQlbQJiM5zwRXZPVXvYF2UnohUwipFM3X0QaXnEvB2SZ6uvRNO4K3gEODT_vwvsD3kJzH5Ridf8ZXzsPgbMLB42EO-Abs3HhnTYvvYughDg7ScrY0sZqYM1dBxGXo-pDcAGkbrTWmTbDzlbfQ49npQ3mRXd-eX5Yn15kVVA7ZrOKykLlSCmasrqGRnFjgFaM1y5lickZELZiaMJ5baqzJi4oZURRMgCKWb6HjT91-rDqoLfghmlb30XUmLnQwTv_teDfXz-FNzwrJOC0mgYMvgRheR0iD7lyy0LbGQxiTZkoIQqgkS3T_H_oSxuin85YUE2r6PZmo7JOyMaQUoflZhhK9tE__sW_i935f8EN_m8U_ANkole0</recordid><startdate>20220309</startdate><enddate>20220309</enddate><creator>Cruz-Cruz, Isidro</creator><creator>Ramírez-Herrera, Claudia A</creator><creator>Martínez-Romero, Oscar</creator><creator>Castillo-Márquez, Santos Armando</creator><creator>Jiménez-Cedeño, Isaac H</creator><creator>Olvera-Trejo, Daniel</creator><creator>Elías-Zúñiga, Alex</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4385-6269</orcidid><orcidid>https://orcid.org/0000-0002-3837-2083</orcidid><orcidid>https://orcid.org/0000-0001-6607-8810</orcidid><orcidid>https://orcid.org/0000-0001-7752-3019</orcidid></search><sort><creationdate>20220309</creationdate><title>Influence of Epoxy Resin Curing Kinetics on the Mechanical Properties of Carbon Fiber Composites</title><author>Cruz-Cruz, Isidro ; Ramírez-Herrera, Claudia A ; Martínez-Romero, Oscar ; Castillo-Márquez, Santos Armando ; Jiménez-Cedeño, Isaac H ; Olvera-Trejo, Daniel ; Elías-Zúñiga, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-8b35957666e82ddef530ce3b21d272625804d426b3537c1aca79b2a49924e60c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aeronautics</topic><topic>Aerospace industry</topic><topic>Bisphenol A</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Composite materials</topic><topic>Conversion</topic><topic>Corrosion resistance</topic><topic>Crosslinking</topic><topic>Curing</topic><topic>Cyanates</topic><topic>Differential scanning calorimetry</topic><topic>Epoxy resins</topic><topic>Esters</topic><topic>Exothermic reactions</topic><topic>Fiber reinforced polymers</topic><topic>Kinetics</topic><topic>Laminates</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Parameter modification</topic><topic>Polymer matrix composites</topic><topic>Spectrum analysis</topic><topic>Ultimate tensile strength</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cruz-Cruz, Isidro</creatorcontrib><creatorcontrib>Ramírez-Herrera, Claudia A</creatorcontrib><creatorcontrib>Martínez-Romero, Oscar</creatorcontrib><creatorcontrib>Castillo-Márquez, Santos Armando</creatorcontrib><creatorcontrib>Jiménez-Cedeño, Isaac H</creatorcontrib><creatorcontrib>Olvera-Trejo, Daniel</creatorcontrib><creatorcontrib>Elías-Zúñiga, Alex</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cruz-Cruz, Isidro</au><au>Ramírez-Herrera, Claudia A</au><au>Martínez-Romero, Oscar</au><au>Castillo-Márquez, Santos Armando</au><au>Jiménez-Cedeño, Isaac H</au><au>Olvera-Trejo, Daniel</au><au>Elías-Zúñiga, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Epoxy Resin Curing Kinetics on the Mechanical Properties of Carbon Fiber Composites</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2022-03-09</date><risdate>2022</risdate><volume>14</volume><issue>6</issue><spage>1100</spage><pages>1100-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>In this study, the kinetic parameters belonging to the cross-linking process of a modified epoxy resin, Aerotuf 275-34™, were investigated. Resin curing kinetics are crucial to understanding the structure-property-processing relationship for manufacturing high-performance carbon-fiber-reinforced polymer composites (CFRPCs). The parameters were obtained using differential scanning calorimetry (DSC) measurements and the Flynn-Wall-Ozawa, Kissinger, Borchardt-Daniels, and Friedman approaches. The DSC thermograms show two exothermic peaks that were deconvoluted as two separate reactions that follow autocatalytic models. Furthermore, the mechanical properties of produced carbon fiber/Aerotuf 275-34™ laminates using thermosetting polymers such as epoxies, phenolics, and cyanate esters were evaluated as a function of the conversion degree, and a close correlation was found between the degree of curing and the ultimate tensile strength (UTS). We found that when the composite material is cured at 160 °C for 15 min, it reaches a conversion degree of 0.97 and a UTS value that accounts for 95% of the maximum value obtained at 200 °C (180 MPa). Thus, the application of such processing conditions could be enough to achieve good mechanical properties of the composite laminates. These results suggest the possibility for the development of strategies towards manufacturing high-performance materials based on the modified epoxy resin (Aerotuf 275-34™) through the curing process.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35335432</pmid><doi>10.3390/polym14061100</doi><orcidid>https://orcid.org/0000-0002-4385-6269</orcidid><orcidid>https://orcid.org/0000-0002-3837-2083</orcidid><orcidid>https://orcid.org/0000-0001-6607-8810</orcidid><orcidid>https://orcid.org/0000-0001-7752-3019</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2022-03, Vol.14 (6), p.1100
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8952319
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Aeronautics
Aerospace industry
Bisphenol A
Carbon fiber reinforced plastics
Carbon fibers
Composite materials
Conversion
Corrosion resistance
Crosslinking
Curing
Cyanates
Differential scanning calorimetry
Epoxy resins
Esters
Exothermic reactions
Fiber reinforced polymers
Kinetics
Laminates
Manufacturing
Mechanical properties
NMR
Nuclear magnetic resonance
Parameter modification
Polymer matrix composites
Spectrum analysis
Ultimate tensile strength
Viscosity
title Influence of Epoxy Resin Curing Kinetics on the Mechanical Properties of Carbon Fiber Composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Epoxy%20Resin%20Curing%20Kinetics%20on%20the%20Mechanical%20Properties%20of%20Carbon%20Fiber%20Composites&rft.jtitle=Polymers&rft.au=Cruz-Cruz,%20Isidro&rft.date=2022-03-09&rft.volume=14&rft.issue=6&rft.spage=1100&rft.pages=1100-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14061100&rft_dat=%3Cproquest_pubme%3E2644001509%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642462070&rft_id=info:pmid/35335432&rfr_iscdi=true