Ultrastable Covalent Triazine Organic Framework Based on Anthracene Moiety as Platform for High-Performance Carbon Dioxide Adsorption and Supercapacitors

Conductive and porous nitrogen-rich materials have great potential as supercapacitor electrode materials. The exceptional efficiency of such compounds, however, is dependent on their larger surface area and the level of nitrogen doping. To address these issues, we synthesized a porous covalent triaz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2022-03, Vol.23 (6), p.3174
Hauptverfasser: Mohamed, Mohamed Gamal, Sharma, Santosh U, Liu, Ni-Yun, Mansoure, Tharwat Hassan, Samy, Maha Mohamed, Chaganti, Swetha V, Chang, Yu-Lung, Lee, Jyh-Tsung, Kuo, Shiao-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 3174
container_title International journal of molecular sciences
container_volume 23
creator Mohamed, Mohamed Gamal
Sharma, Santosh U
Liu, Ni-Yun
Mansoure, Tharwat Hassan
Samy, Maha Mohamed
Chaganti, Swetha V
Chang, Yu-Lung
Lee, Jyh-Tsung
Kuo, Shiao-Wei
description Conductive and porous nitrogen-rich materials have great potential as supercapacitor electrode materials. The exceptional efficiency of such compounds, however, is dependent on their larger surface area and the level of nitrogen doping. To address these issues, we synthesized a porous covalent triazine framework (An-CTFs) based on 9,10-dicyanoanthracene (An-CN) units through an ionothermal reaction in the presence of different molar ratios of molten zinc chloride (ZnCl ) at 400 and 500 °C, yielding An-CTF-10-400, An-CTF-20-400, An-CTF-10-500, and An-CTF-20-500 microporous materials. According to N adsorption-desorption analyses (BET), these An-CTFs produced exceptionally high specific surface areas ranging from 406-751 m ·g . Furthermore, An-CTF-10-500 had a capacitance of 589 F·g , remarkable cycle stability up to 5000 cycles, up to 95% capacity retention, and strong CO adsorption capacity up to 5.65 mmol·g at 273 K. As a result, our An-CTFs are a good alternative for both electrochemical energy storage and CO uptake.
doi_str_mv 10.3390/ijms23063174
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8951433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2642496311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-9ca13240cc8816d1ed89433e2ab84ef27130074beec743f70741cbd901fab7e33</originalsourceid><addsrcrecordid>eNpdkUtv1DAUhSNERUthxxpZYsOCUL_y2iANA6WVilqJdm3dODczHhI72E6h_JP-23rUUg3d2FfXn8_18cmyN4x-FKKhR2YzBi5oKVgln2UHTHKeU1pWz3fq_exlCBtKueBF8yLbF4XgddEUB9nt1RA9hAjtgGTprmFAG8mlN_DXWCTnfgXWaHLsYcTfzv8knyFgR5wlCxvXHjQm6rszGG8IBHIxQOydH0layIlZrfML9NsGWJ30wbfp5hfj_pgOyaILzk_RpBbYjvyYJ_QaJtAmOh9eZXs9DAFfP-yH2dXx18vlSX52_u10uTjLtZA85o0GJrikWtc1KzuGXd1IIZBDW0vsecUEpZVsEXUlRV-lmum2ayjroa1QiMPs073uNLcjdslQ-pBBTd6M4G-UA6P-P7FmrVbuWtVNwdKkJPD-QcC7XzOGqEYTNA4DWHRzULyUklIhWJnQd0_QjZu9Tfa2FJdNSpEl6sM9pb0LwWP_-BhG1TZztZt5wt_uGniE_4Us7gDB56sj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642496311</pqid></control><display><type>article</type><title>Ultrastable Covalent Triazine Organic Framework Based on Anthracene Moiety as Platform for High-Performance Carbon Dioxide Adsorption and Supercapacitors</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Mohamed, Mohamed Gamal ; Sharma, Santosh U ; Liu, Ni-Yun ; Mansoure, Tharwat Hassan ; Samy, Maha Mohamed ; Chaganti, Swetha V ; Chang, Yu-Lung ; Lee, Jyh-Tsung ; Kuo, Shiao-Wei</creator><creatorcontrib>Mohamed, Mohamed Gamal ; Sharma, Santosh U ; Liu, Ni-Yun ; Mansoure, Tharwat Hassan ; Samy, Maha Mohamed ; Chaganti, Swetha V ; Chang, Yu-Lung ; Lee, Jyh-Tsung ; Kuo, Shiao-Wei</creatorcontrib><description>Conductive and porous nitrogen-rich materials have great potential as supercapacitor electrode materials. The exceptional efficiency of such compounds, however, is dependent on their larger surface area and the level of nitrogen doping. To address these issues, we synthesized a porous covalent triazine framework (An-CTFs) based on 9,10-dicyanoanthracene (An-CN) units through an ionothermal reaction in the presence of different molar ratios of molten zinc chloride (ZnCl ) at 400 and 500 °C, yielding An-CTF-10-400, An-CTF-20-400, An-CTF-10-500, and An-CTF-20-500 microporous materials. According to N adsorption-desorption analyses (BET), these An-CTFs produced exceptionally high specific surface areas ranging from 406-751 m ·g . Furthermore, An-CTF-10-500 had a capacitance of 589 F·g , remarkable cycle stability up to 5000 cycles, up to 95% capacity retention, and strong CO adsorption capacity up to 5.65 mmol·g at 273 K. As a result, our An-CTFs are a good alternative for both electrochemical energy storage and CO uptake.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms23063174</identifier><identifier>PMID: 35328595</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adsorption ; Anthracene ; Anthracenes ; Capacitance ; Carbon dioxide ; Carbon Dioxide - chemistry ; Charged particles ; Decomposition ; Electrode materials ; Electrodes ; Electrolytes ; Energy storage ; Graphene ; Investigations ; Metal-Organic Frameworks ; Microscopy ; Morphology ; Nitrogen ; Nitrogen - chemistry ; Porous materials ; Spectrum analysis ; Supercapacitors ; Surface chemistry ; Triazine ; Triazines - chemistry ; Zinc chloride</subject><ispartof>International journal of molecular sciences, 2022-03, Vol.23 (6), p.3174</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-9ca13240cc8816d1ed89433e2ab84ef27130074beec743f70741cbd901fab7e33</citedby><cites>FETCH-LOGICAL-c342t-9ca13240cc8816d1ed89433e2ab84ef27130074beec743f70741cbd901fab7e33</cites><orcidid>0000-0002-5848-0196 ; 0000-0003-0301-8372 ; 0000-0002-4306-7171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951433/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951433/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35328595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohamed, Mohamed Gamal</creatorcontrib><creatorcontrib>Sharma, Santosh U</creatorcontrib><creatorcontrib>Liu, Ni-Yun</creatorcontrib><creatorcontrib>Mansoure, Tharwat Hassan</creatorcontrib><creatorcontrib>Samy, Maha Mohamed</creatorcontrib><creatorcontrib>Chaganti, Swetha V</creatorcontrib><creatorcontrib>Chang, Yu-Lung</creatorcontrib><creatorcontrib>Lee, Jyh-Tsung</creatorcontrib><creatorcontrib>Kuo, Shiao-Wei</creatorcontrib><title>Ultrastable Covalent Triazine Organic Framework Based on Anthracene Moiety as Platform for High-Performance Carbon Dioxide Adsorption and Supercapacitors</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Conductive and porous nitrogen-rich materials have great potential as supercapacitor electrode materials. The exceptional efficiency of such compounds, however, is dependent on their larger surface area and the level of nitrogen doping. To address these issues, we synthesized a porous covalent triazine framework (An-CTFs) based on 9,10-dicyanoanthracene (An-CN) units through an ionothermal reaction in the presence of different molar ratios of molten zinc chloride (ZnCl ) at 400 and 500 °C, yielding An-CTF-10-400, An-CTF-20-400, An-CTF-10-500, and An-CTF-20-500 microporous materials. According to N adsorption-desorption analyses (BET), these An-CTFs produced exceptionally high specific surface areas ranging from 406-751 m ·g . Furthermore, An-CTF-10-500 had a capacitance of 589 F·g , remarkable cycle stability up to 5000 cycles, up to 95% capacity retention, and strong CO adsorption capacity up to 5.65 mmol·g at 273 K. As a result, our An-CTFs are a good alternative for both electrochemical energy storage and CO uptake.</description><subject>Adsorption</subject><subject>Anthracene</subject><subject>Anthracenes</subject><subject>Capacitance</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - chemistry</subject><subject>Charged particles</subject><subject>Decomposition</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>Investigations</subject><subject>Metal-Organic Frameworks</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Nitrogen</subject><subject>Nitrogen - chemistry</subject><subject>Porous materials</subject><subject>Spectrum analysis</subject><subject>Supercapacitors</subject><subject>Surface chemistry</subject><subject>Triazine</subject><subject>Triazines - chemistry</subject><subject>Zinc chloride</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkUtv1DAUhSNERUthxxpZYsOCUL_y2iANA6WVilqJdm3dODczHhI72E6h_JP-23rUUg3d2FfXn8_18cmyN4x-FKKhR2YzBi5oKVgln2UHTHKeU1pWz3fq_exlCBtKueBF8yLbF4XgddEUB9nt1RA9hAjtgGTprmFAG8mlN_DXWCTnfgXWaHLsYcTfzv8knyFgR5wlCxvXHjQm6rszGG8IBHIxQOydH0layIlZrfML9NsGWJ30wbfp5hfj_pgOyaILzk_RpBbYjvyYJ_QaJtAmOh9eZXs9DAFfP-yH2dXx18vlSX52_u10uTjLtZA85o0GJrikWtc1KzuGXd1IIZBDW0vsecUEpZVsEXUlRV-lmum2ayjroa1QiMPs073uNLcjdslQ-pBBTd6M4G-UA6P-P7FmrVbuWtVNwdKkJPD-QcC7XzOGqEYTNA4DWHRzULyUklIhWJnQd0_QjZu9Tfa2FJdNSpEl6sM9pb0LwWP_-BhG1TZztZt5wt_uGniE_4Us7gDB56sj</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Mohamed, Mohamed Gamal</creator><creator>Sharma, Santosh U</creator><creator>Liu, Ni-Yun</creator><creator>Mansoure, Tharwat Hassan</creator><creator>Samy, Maha Mohamed</creator><creator>Chaganti, Swetha V</creator><creator>Chang, Yu-Lung</creator><creator>Lee, Jyh-Tsung</creator><creator>Kuo, Shiao-Wei</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5848-0196</orcidid><orcidid>https://orcid.org/0000-0003-0301-8372</orcidid><orcidid>https://orcid.org/0000-0002-4306-7171</orcidid></search><sort><creationdate>20220315</creationdate><title>Ultrastable Covalent Triazine Organic Framework Based on Anthracene Moiety as Platform for High-Performance Carbon Dioxide Adsorption and Supercapacitors</title><author>Mohamed, Mohamed Gamal ; Sharma, Santosh U ; Liu, Ni-Yun ; Mansoure, Tharwat Hassan ; Samy, Maha Mohamed ; Chaganti, Swetha V ; Chang, Yu-Lung ; Lee, Jyh-Tsung ; Kuo, Shiao-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-9ca13240cc8816d1ed89433e2ab84ef27130074beec743f70741cbd901fab7e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>Anthracene</topic><topic>Anthracenes</topic><topic>Capacitance</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - chemistry</topic><topic>Charged particles</topic><topic>Decomposition</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>Investigations</topic><topic>Metal-Organic Frameworks</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Nitrogen</topic><topic>Nitrogen - chemistry</topic><topic>Porous materials</topic><topic>Spectrum analysis</topic><topic>Supercapacitors</topic><topic>Surface chemistry</topic><topic>Triazine</topic><topic>Triazines - chemistry</topic><topic>Zinc chloride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohamed, Mohamed Gamal</creatorcontrib><creatorcontrib>Sharma, Santosh U</creatorcontrib><creatorcontrib>Liu, Ni-Yun</creatorcontrib><creatorcontrib>Mansoure, Tharwat Hassan</creatorcontrib><creatorcontrib>Samy, Maha Mohamed</creatorcontrib><creatorcontrib>Chaganti, Swetha V</creatorcontrib><creatorcontrib>Chang, Yu-Lung</creatorcontrib><creatorcontrib>Lee, Jyh-Tsung</creatorcontrib><creatorcontrib>Kuo, Shiao-Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohamed, Mohamed Gamal</au><au>Sharma, Santosh U</au><au>Liu, Ni-Yun</au><au>Mansoure, Tharwat Hassan</au><au>Samy, Maha Mohamed</au><au>Chaganti, Swetha V</au><au>Chang, Yu-Lung</au><au>Lee, Jyh-Tsung</au><au>Kuo, Shiao-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrastable Covalent Triazine Organic Framework Based on Anthracene Moiety as Platform for High-Performance Carbon Dioxide Adsorption and Supercapacitors</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2022-03-15</date><risdate>2022</risdate><volume>23</volume><issue>6</issue><spage>3174</spage><pages>3174-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Conductive and porous nitrogen-rich materials have great potential as supercapacitor electrode materials. The exceptional efficiency of such compounds, however, is dependent on their larger surface area and the level of nitrogen doping. To address these issues, we synthesized a porous covalent triazine framework (An-CTFs) based on 9,10-dicyanoanthracene (An-CN) units through an ionothermal reaction in the presence of different molar ratios of molten zinc chloride (ZnCl ) at 400 and 500 °C, yielding An-CTF-10-400, An-CTF-20-400, An-CTF-10-500, and An-CTF-20-500 microporous materials. According to N adsorption-desorption analyses (BET), these An-CTFs produced exceptionally high specific surface areas ranging from 406-751 m ·g . Furthermore, An-CTF-10-500 had a capacitance of 589 F·g , remarkable cycle stability up to 5000 cycles, up to 95% capacity retention, and strong CO adsorption capacity up to 5.65 mmol·g at 273 K. As a result, our An-CTFs are a good alternative for both electrochemical energy storage and CO uptake.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35328595</pmid><doi>10.3390/ijms23063174</doi><orcidid>https://orcid.org/0000-0002-5848-0196</orcidid><orcidid>https://orcid.org/0000-0003-0301-8372</orcidid><orcidid>https://orcid.org/0000-0002-4306-7171</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2022-03, Vol.23 (6), p.3174
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8951433
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adsorption
Anthracene
Anthracenes
Capacitance
Carbon dioxide
Carbon Dioxide - chemistry
Charged particles
Decomposition
Electrode materials
Electrodes
Electrolytes
Energy storage
Graphene
Investigations
Metal-Organic Frameworks
Microscopy
Morphology
Nitrogen
Nitrogen - chemistry
Porous materials
Spectrum analysis
Supercapacitors
Surface chemistry
Triazine
Triazines - chemistry
Zinc chloride
title Ultrastable Covalent Triazine Organic Framework Based on Anthracene Moiety as Platform for High-Performance Carbon Dioxide Adsorption and Supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrastable%20Covalent%20Triazine%20Organic%20Framework%20Based%20on%20Anthracene%20Moiety%20as%20Platform%20for%20High-Performance%20Carbon%20Dioxide%20Adsorption%20and%20Supercapacitors&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Mohamed,%20Mohamed%20Gamal&rft.date=2022-03-15&rft.volume=23&rft.issue=6&rft.spage=3174&rft.pages=3174-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms23063174&rft_dat=%3Cproquest_pubme%3E2642496311%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642496311&rft_id=info:pmid/35328595&rfr_iscdi=true