Superconducting Triplet Rim Currents in a Spin-Textured Ferromagnetic Disk

Since the discovery of the long-range superconducting proximity effect, the interaction between spin-triplet Cooper pairs and magnetic structures such as domain walls and vortices has been the subject of intense theoretical discussions, while the relevant experiments remain scarce. We have developed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2022-03, Vol.22 (6), p.2209-2216
Hauptverfasser: Fermin, Remko, van Dinter, Dyon, Hubert, Michel, Woltjes, Bart, Silaev, Mikhail, Aarts, Jan, Lahabi, Kaveh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Since the discovery of the long-range superconducting proximity effect, the interaction between spin-triplet Cooper pairs and magnetic structures such as domain walls and vortices has been the subject of intense theoretical discussions, while the relevant experiments remain scarce. We have developed nanostructured Josephson junctions with highly controllable spin texture, based on a disk-shaped Nb/Co bilayer. Here, the vortex magnetization of Co and the Cooper pairs of Nb conspire to induce long-range triplet (LRT) superconductivity in the ferromagnet. Surprisingly, the LRT correlations emerge in highly localized (sub-80 nm) channels at the rim of the ferromagnet, despite its trivial band structure. We show that these robust rim currents arise from the magnetization texture acting as an effective spin–orbit coupling, which results in spin accumulation at the bilayer–vacuum boundary. Lastly, we demonstrate that by altering the spin texture of a single ferromagnet, both 0 and π channels can be realized in the same device.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.1c04051