Boron Oxide Enhancing Stability of MoS2 Anode Materials for Lithium-Ion Batteries

Molybdenum disulfide (MoS2) is the most well-known transition metal chalcogenide for lithium storage applications because of its simple preparation process, superior optical, physical, and electrical properties, and high stability. However, recent research has shown that bare MoS2 nanosheet (NS) can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-03, Vol.15 (6), p.2034
Hauptverfasser: Nguyen, Thang Phan, Kim, Il Tae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 2034
container_title Materials
container_volume 15
creator Nguyen, Thang Phan
Kim, Il Tae
description Molybdenum disulfide (MoS2) is the most well-known transition metal chalcogenide for lithium storage applications because of its simple preparation process, superior optical, physical, and electrical properties, and high stability. However, recent research has shown that bare MoS2 nanosheet (NS) can be reformed to the bulk structure, and sulfur atoms can be dissolved in electrolytes or form polymeric structures, thereby preventing lithium insertion/desertion and reducing cycling performance. To enhance the electrochemical performance of the MoS2 NSs, B2O3 nanoparticles were decorated on the surface of MoS2 NSs via a sintering technique. The structure of B2O3 decorated MoS2 changed slightly with the formation of a lattice spacing of ~7.37 Å. The characterization of materials confirmed the formation of B2O3 crystals at 30% weight percentage of H3BO3 starting materials. In particular, the MoS2_B3 sample showed a stable capacity of ~500 mAh·g−1 after the first cycle. The cycling test delivered a high reversible specific capacity of ~82% of the second cycle after 100 cycles. Furthermore, the rate performance also showed a remarkable recovery capacity of ~98%. These results suggest that the use of B2O3 decorations could be a viable method for improving the stability of anode materials in lithium storage applications.
doi_str_mv 10.3390/ma15062034
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8949652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644012604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-b926481390ae9ff0c89b5443867ed0c994edfc3c21a3b3bbb3dc369aa91e35ca3</originalsourceid><addsrcrecordid>eNpdkV9LwzAUxYMoKroXP0HBFxGqSW7aNS-CjqmDjSHT55Cm6ZbRJpq04r69GQ7_3Zd74fw4nMNF6IzgKwCOr1tJMpxTDGwPHRPO85RwxvZ_3UdoEMIaxwEgBeWH6AgyoJwV-TF6unPe2WT-YSqdjO1KWmXsMll0sjSN6TaJq5OZW9Dk1rpIzGSnvZFNSGrnk6npVqZv00l0uJPdVtLhFB3UEdCD3T5BL_fj59FjOp0_TEa301RBAV1acpqzgsQKUvO6xqrgZcYYFPlQV1hxznRVK1CUSCihLEuoFORcSk40ZErCCbr58n3ty1ZXStvOy0a8etNKvxFOGvFXsWYllu5dFJzxPKPR4GJn4N1br0MnWhOUbhppteuDiPkYJjTHLKLn_9C1672N9bYUzYYYs2GkLr8o5V0IXtffYQgW22eJn2fBJ6nYhOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642570047</pqid></control><display><type>article</type><title>Boron Oxide Enhancing Stability of MoS2 Anode Materials for Lithium-Ion Batteries</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Nguyen, Thang Phan ; Kim, Il Tae</creator><creatorcontrib>Nguyen, Thang Phan ; Kim, Il Tae</creatorcontrib><description>Molybdenum disulfide (MoS2) is the most well-known transition metal chalcogenide for lithium storage applications because of its simple preparation process, superior optical, physical, and electrical properties, and high stability. However, recent research has shown that bare MoS2 nanosheet (NS) can be reformed to the bulk structure, and sulfur atoms can be dissolved in electrolytes or form polymeric structures, thereby preventing lithium insertion/desertion and reducing cycling performance. To enhance the electrochemical performance of the MoS2 NSs, B2O3 nanoparticles were decorated on the surface of MoS2 NSs via a sintering technique. The structure of B2O3 decorated MoS2 changed slightly with the formation of a lattice spacing of ~7.37 Å. The characterization of materials confirmed the formation of B2O3 crystals at 30% weight percentage of H3BO3 starting materials. In particular, the MoS2_B3 sample showed a stable capacity of ~500 mAh·g−1 after the first cycle. The cycling test delivered a high reversible specific capacity of ~82% of the second cycle after 100 cycles. Furthermore, the rate performance also showed a remarkable recovery capacity of ~98%. These results suggest that the use of B2O3 decorations could be a viable method for improving the stability of anode materials in lithium storage applications.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15062034</identifier><identifier>PMID: 35329486</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acids ; Anodes ; Boron ; Boron oxides ; Carbon ; Cycles ; Decoration ; Electrical properties ; Electrochemical analysis ; Electrode materials ; Electrodes ; Electrolytes ; Graphene ; Lithium ; Lithium-ion batteries ; Methods ; Microscopy ; Molybdenum disulfide ; Nanoparticles ; Optical properties ; Rechargeable batteries ; Stability ; Transition metal compounds</subject><ispartof>Materials, 2022-03, Vol.15 (6), p.2034</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-b926481390ae9ff0c89b5443867ed0c994edfc3c21a3b3bbb3dc369aa91e35ca3</citedby><cites>FETCH-LOGICAL-c383t-b926481390ae9ff0c89b5443867ed0c994edfc3c21a3b3bbb3dc369aa91e35ca3</cites><orcidid>0000-0002-8857-0061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949652/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949652/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Nguyen, Thang Phan</creatorcontrib><creatorcontrib>Kim, Il Tae</creatorcontrib><title>Boron Oxide Enhancing Stability of MoS2 Anode Materials for Lithium-Ion Batteries</title><title>Materials</title><description>Molybdenum disulfide (MoS2) is the most well-known transition metal chalcogenide for lithium storage applications because of its simple preparation process, superior optical, physical, and electrical properties, and high stability. However, recent research has shown that bare MoS2 nanosheet (NS) can be reformed to the bulk structure, and sulfur atoms can be dissolved in electrolytes or form polymeric structures, thereby preventing lithium insertion/desertion and reducing cycling performance. To enhance the electrochemical performance of the MoS2 NSs, B2O3 nanoparticles were decorated on the surface of MoS2 NSs via a sintering technique. The structure of B2O3 decorated MoS2 changed slightly with the formation of a lattice spacing of ~7.37 Å. The characterization of materials confirmed the formation of B2O3 crystals at 30% weight percentage of H3BO3 starting materials. In particular, the MoS2_B3 sample showed a stable capacity of ~500 mAh·g−1 after the first cycle. The cycling test delivered a high reversible specific capacity of ~82% of the second cycle after 100 cycles. Furthermore, the rate performance also showed a remarkable recovery capacity of ~98%. These results suggest that the use of B2O3 decorations could be a viable method for improving the stability of anode materials in lithium storage applications.</description><subject>Acids</subject><subject>Anodes</subject><subject>Boron</subject><subject>Boron oxides</subject><subject>Carbon</subject><subject>Cycles</subject><subject>Decoration</subject><subject>Electrical properties</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Graphene</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Molybdenum disulfide</subject><subject>Nanoparticles</subject><subject>Optical properties</subject><subject>Rechargeable batteries</subject><subject>Stability</subject><subject>Transition metal compounds</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV9LwzAUxYMoKroXP0HBFxGqSW7aNS-CjqmDjSHT55Cm6ZbRJpq04r69GQ7_3Zd74fw4nMNF6IzgKwCOr1tJMpxTDGwPHRPO85RwxvZ_3UdoEMIaxwEgBeWH6AgyoJwV-TF6unPe2WT-YSqdjO1KWmXsMll0sjSN6TaJq5OZW9Dk1rpIzGSnvZFNSGrnk6npVqZv00l0uJPdVtLhFB3UEdCD3T5BL_fj59FjOp0_TEa301RBAV1acpqzgsQKUvO6xqrgZcYYFPlQV1hxznRVK1CUSCihLEuoFORcSk40ZErCCbr58n3ty1ZXStvOy0a8etNKvxFOGvFXsWYllu5dFJzxPKPR4GJn4N1br0MnWhOUbhppteuDiPkYJjTHLKLn_9C1672N9bYUzYYYs2GkLr8o5V0IXtffYQgW22eJn2fBJ6nYhOA</recordid><startdate>20220310</startdate><enddate>20220310</enddate><creator>Nguyen, Thang Phan</creator><creator>Kim, Il Tae</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8857-0061</orcidid></search><sort><creationdate>20220310</creationdate><title>Boron Oxide Enhancing Stability of MoS2 Anode Materials for Lithium-Ion Batteries</title><author>Nguyen, Thang Phan ; Kim, Il Tae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-b926481390ae9ff0c89b5443867ed0c994edfc3c21a3b3bbb3dc369aa91e35ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acids</topic><topic>Anodes</topic><topic>Boron</topic><topic>Boron oxides</topic><topic>Carbon</topic><topic>Cycles</topic><topic>Decoration</topic><topic>Electrical properties</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Graphene</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Molybdenum disulfide</topic><topic>Nanoparticles</topic><topic>Optical properties</topic><topic>Rechargeable batteries</topic><topic>Stability</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Thang Phan</creatorcontrib><creatorcontrib>Kim, Il Tae</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Thang Phan</au><au>Kim, Il Tae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boron Oxide Enhancing Stability of MoS2 Anode Materials for Lithium-Ion Batteries</atitle><jtitle>Materials</jtitle><date>2022-03-10</date><risdate>2022</risdate><volume>15</volume><issue>6</issue><spage>2034</spage><pages>2034-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Molybdenum disulfide (MoS2) is the most well-known transition metal chalcogenide for lithium storage applications because of its simple preparation process, superior optical, physical, and electrical properties, and high stability. However, recent research has shown that bare MoS2 nanosheet (NS) can be reformed to the bulk structure, and sulfur atoms can be dissolved in electrolytes or form polymeric structures, thereby preventing lithium insertion/desertion and reducing cycling performance. To enhance the electrochemical performance of the MoS2 NSs, B2O3 nanoparticles were decorated on the surface of MoS2 NSs via a sintering technique. The structure of B2O3 decorated MoS2 changed slightly with the formation of a lattice spacing of ~7.37 Å. The characterization of materials confirmed the formation of B2O3 crystals at 30% weight percentage of H3BO3 starting materials. In particular, the MoS2_B3 sample showed a stable capacity of ~500 mAh·g−1 after the first cycle. The cycling test delivered a high reversible specific capacity of ~82% of the second cycle after 100 cycles. Furthermore, the rate performance also showed a remarkable recovery capacity of ~98%. These results suggest that the use of B2O3 decorations could be a viable method for improving the stability of anode materials in lithium storage applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35329486</pmid><doi>10.3390/ma15062034</doi><orcidid>https://orcid.org/0000-0002-8857-0061</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-03, Vol.15 (6), p.2034
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8949652
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Acids
Anodes
Boron
Boron oxides
Carbon
Cycles
Decoration
Electrical properties
Electrochemical analysis
Electrode materials
Electrodes
Electrolytes
Graphene
Lithium
Lithium-ion batteries
Methods
Microscopy
Molybdenum disulfide
Nanoparticles
Optical properties
Rechargeable batteries
Stability
Transition metal compounds
title Boron Oxide Enhancing Stability of MoS2 Anode Materials for Lithium-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boron%20Oxide%20Enhancing%20Stability%20of%20MoS2%20Anode%20Materials%20for%20Lithium-Ion%20Batteries&rft.jtitle=Materials&rft.au=Nguyen,%20Thang%20Phan&rft.date=2022-03-10&rft.volume=15&rft.issue=6&rft.spage=2034&rft.pages=2034-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15062034&rft_dat=%3Cproquest_pubme%3E2644012604%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642570047&rft_id=info:pmid/35329486&rfr_iscdi=true