Boron Oxide Enhancing Stability of MoS2 Anode Materials for Lithium-Ion Batteries
Molybdenum disulfide (MoS2) is the most well-known transition metal chalcogenide for lithium storage applications because of its simple preparation process, superior optical, physical, and electrical properties, and high stability. However, recent research has shown that bare MoS2 nanosheet (NS) can...
Gespeichert in:
Veröffentlicht in: | Materials 2022-03, Vol.15 (6), p.2034 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 2034 |
container_title | Materials |
container_volume | 15 |
creator | Nguyen, Thang Phan Kim, Il Tae |
description | Molybdenum disulfide (MoS2) is the most well-known transition metal chalcogenide for lithium storage applications because of its simple preparation process, superior optical, physical, and electrical properties, and high stability. However, recent research has shown that bare MoS2 nanosheet (NS) can be reformed to the bulk structure, and sulfur atoms can be dissolved in electrolytes or form polymeric structures, thereby preventing lithium insertion/desertion and reducing cycling performance. To enhance the electrochemical performance of the MoS2 NSs, B2O3 nanoparticles were decorated on the surface of MoS2 NSs via a sintering technique. The structure of B2O3 decorated MoS2 changed slightly with the formation of a lattice spacing of ~7.37 Å. The characterization of materials confirmed the formation of B2O3 crystals at 30% weight percentage of H3BO3 starting materials. In particular, the MoS2_B3 sample showed a stable capacity of ~500 mAh·g−1 after the first cycle. The cycling test delivered a high reversible specific capacity of ~82% of the second cycle after 100 cycles. Furthermore, the rate performance also showed a remarkable recovery capacity of ~98%. These results suggest that the use of B2O3 decorations could be a viable method for improving the stability of anode materials in lithium storage applications. |
doi_str_mv | 10.3390/ma15062034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8949652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644012604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-b926481390ae9ff0c89b5443867ed0c994edfc3c21a3b3bbb3dc369aa91e35ca3</originalsourceid><addsrcrecordid>eNpdkV9LwzAUxYMoKroXP0HBFxGqSW7aNS-CjqmDjSHT55Cm6ZbRJpq04r69GQ7_3Zd74fw4nMNF6IzgKwCOr1tJMpxTDGwPHRPO85RwxvZ_3UdoEMIaxwEgBeWH6AgyoJwV-TF6unPe2WT-YSqdjO1KWmXsMll0sjSN6TaJq5OZW9Dk1rpIzGSnvZFNSGrnk6npVqZv00l0uJPdVtLhFB3UEdCD3T5BL_fj59FjOp0_TEa301RBAV1acpqzgsQKUvO6xqrgZcYYFPlQV1hxznRVK1CUSCihLEuoFORcSk40ZErCCbr58n3ty1ZXStvOy0a8etNKvxFOGvFXsWYllu5dFJzxPKPR4GJn4N1br0MnWhOUbhppteuDiPkYJjTHLKLn_9C1672N9bYUzYYYs2GkLr8o5V0IXtffYQgW22eJn2fBJ6nYhOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642570047</pqid></control><display><type>article</type><title>Boron Oxide Enhancing Stability of MoS2 Anode Materials for Lithium-Ion Batteries</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Nguyen, Thang Phan ; Kim, Il Tae</creator><creatorcontrib>Nguyen, Thang Phan ; Kim, Il Tae</creatorcontrib><description>Molybdenum disulfide (MoS2) is the most well-known transition metal chalcogenide for lithium storage applications because of its simple preparation process, superior optical, physical, and electrical properties, and high stability. However, recent research has shown that bare MoS2 nanosheet (NS) can be reformed to the bulk structure, and sulfur atoms can be dissolved in electrolytes or form polymeric structures, thereby preventing lithium insertion/desertion and reducing cycling performance. To enhance the electrochemical performance of the MoS2 NSs, B2O3 nanoparticles were decorated on the surface of MoS2 NSs via a sintering technique. The structure of B2O3 decorated MoS2 changed slightly with the formation of a lattice spacing of ~7.37 Å. The characterization of materials confirmed the formation of B2O3 crystals at 30% weight percentage of H3BO3 starting materials. In particular, the MoS2_B3 sample showed a stable capacity of ~500 mAh·g−1 after the first cycle. The cycling test delivered a high reversible specific capacity of ~82% of the second cycle after 100 cycles. Furthermore, the rate performance also showed a remarkable recovery capacity of ~98%. These results suggest that the use of B2O3 decorations could be a viable method for improving the stability of anode materials in lithium storage applications.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15062034</identifier><identifier>PMID: 35329486</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acids ; Anodes ; Boron ; Boron oxides ; Carbon ; Cycles ; Decoration ; Electrical properties ; Electrochemical analysis ; Electrode materials ; Electrodes ; Electrolytes ; Graphene ; Lithium ; Lithium-ion batteries ; Methods ; Microscopy ; Molybdenum disulfide ; Nanoparticles ; Optical properties ; Rechargeable batteries ; Stability ; Transition metal compounds</subject><ispartof>Materials, 2022-03, Vol.15 (6), p.2034</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-b926481390ae9ff0c89b5443867ed0c994edfc3c21a3b3bbb3dc369aa91e35ca3</citedby><cites>FETCH-LOGICAL-c383t-b926481390ae9ff0c89b5443867ed0c994edfc3c21a3b3bbb3dc369aa91e35ca3</cites><orcidid>0000-0002-8857-0061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949652/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949652/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Nguyen, Thang Phan</creatorcontrib><creatorcontrib>Kim, Il Tae</creatorcontrib><title>Boron Oxide Enhancing Stability of MoS2 Anode Materials for Lithium-Ion Batteries</title><title>Materials</title><description>Molybdenum disulfide (MoS2) is the most well-known transition metal chalcogenide for lithium storage applications because of its simple preparation process, superior optical, physical, and electrical properties, and high stability. However, recent research has shown that bare MoS2 nanosheet (NS) can be reformed to the bulk structure, and sulfur atoms can be dissolved in electrolytes or form polymeric structures, thereby preventing lithium insertion/desertion and reducing cycling performance. To enhance the electrochemical performance of the MoS2 NSs, B2O3 nanoparticles were decorated on the surface of MoS2 NSs via a sintering technique. The structure of B2O3 decorated MoS2 changed slightly with the formation of a lattice spacing of ~7.37 Å. The characterization of materials confirmed the formation of B2O3 crystals at 30% weight percentage of H3BO3 starting materials. In particular, the MoS2_B3 sample showed a stable capacity of ~500 mAh·g−1 after the first cycle. The cycling test delivered a high reversible specific capacity of ~82% of the second cycle after 100 cycles. Furthermore, the rate performance also showed a remarkable recovery capacity of ~98%. These results suggest that the use of B2O3 decorations could be a viable method for improving the stability of anode materials in lithium storage applications.</description><subject>Acids</subject><subject>Anodes</subject><subject>Boron</subject><subject>Boron oxides</subject><subject>Carbon</subject><subject>Cycles</subject><subject>Decoration</subject><subject>Electrical properties</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Graphene</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Molybdenum disulfide</subject><subject>Nanoparticles</subject><subject>Optical properties</subject><subject>Rechargeable batteries</subject><subject>Stability</subject><subject>Transition metal compounds</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV9LwzAUxYMoKroXP0HBFxGqSW7aNS-CjqmDjSHT55Cm6ZbRJpq04r69GQ7_3Zd74fw4nMNF6IzgKwCOr1tJMpxTDGwPHRPO85RwxvZ_3UdoEMIaxwEgBeWH6AgyoJwV-TF6unPe2WT-YSqdjO1KWmXsMll0sjSN6TaJq5OZW9Dk1rpIzGSnvZFNSGrnk6npVqZv00l0uJPdVtLhFB3UEdCD3T5BL_fj59FjOp0_TEa301RBAV1acpqzgsQKUvO6xqrgZcYYFPlQV1hxznRVK1CUSCihLEuoFORcSk40ZErCCbr58n3ty1ZXStvOy0a8etNKvxFOGvFXsWYllu5dFJzxPKPR4GJn4N1br0MnWhOUbhppteuDiPkYJjTHLKLn_9C1672N9bYUzYYYs2GkLr8o5V0IXtffYQgW22eJn2fBJ6nYhOA</recordid><startdate>20220310</startdate><enddate>20220310</enddate><creator>Nguyen, Thang Phan</creator><creator>Kim, Il Tae</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8857-0061</orcidid></search><sort><creationdate>20220310</creationdate><title>Boron Oxide Enhancing Stability of MoS2 Anode Materials for Lithium-Ion Batteries</title><author>Nguyen, Thang Phan ; Kim, Il Tae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-b926481390ae9ff0c89b5443867ed0c994edfc3c21a3b3bbb3dc369aa91e35ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acids</topic><topic>Anodes</topic><topic>Boron</topic><topic>Boron oxides</topic><topic>Carbon</topic><topic>Cycles</topic><topic>Decoration</topic><topic>Electrical properties</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Graphene</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Molybdenum disulfide</topic><topic>Nanoparticles</topic><topic>Optical properties</topic><topic>Rechargeable batteries</topic><topic>Stability</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Thang Phan</creatorcontrib><creatorcontrib>Kim, Il Tae</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Thang Phan</au><au>Kim, Il Tae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boron Oxide Enhancing Stability of MoS2 Anode Materials for Lithium-Ion Batteries</atitle><jtitle>Materials</jtitle><date>2022-03-10</date><risdate>2022</risdate><volume>15</volume><issue>6</issue><spage>2034</spage><pages>2034-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Molybdenum disulfide (MoS2) is the most well-known transition metal chalcogenide for lithium storage applications because of its simple preparation process, superior optical, physical, and electrical properties, and high stability. However, recent research has shown that bare MoS2 nanosheet (NS) can be reformed to the bulk structure, and sulfur atoms can be dissolved in electrolytes or form polymeric structures, thereby preventing lithium insertion/desertion and reducing cycling performance. To enhance the electrochemical performance of the MoS2 NSs, B2O3 nanoparticles were decorated on the surface of MoS2 NSs via a sintering technique. The structure of B2O3 decorated MoS2 changed slightly with the formation of a lattice spacing of ~7.37 Å. The characterization of materials confirmed the formation of B2O3 crystals at 30% weight percentage of H3BO3 starting materials. In particular, the MoS2_B3 sample showed a stable capacity of ~500 mAh·g−1 after the first cycle. The cycling test delivered a high reversible specific capacity of ~82% of the second cycle after 100 cycles. Furthermore, the rate performance also showed a remarkable recovery capacity of ~98%. These results suggest that the use of B2O3 decorations could be a viable method for improving the stability of anode materials in lithium storage applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35329486</pmid><doi>10.3390/ma15062034</doi><orcidid>https://orcid.org/0000-0002-8857-0061</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-03, Vol.15 (6), p.2034 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8949652 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Acids Anodes Boron Boron oxides Carbon Cycles Decoration Electrical properties Electrochemical analysis Electrode materials Electrodes Electrolytes Graphene Lithium Lithium-ion batteries Methods Microscopy Molybdenum disulfide Nanoparticles Optical properties Rechargeable batteries Stability Transition metal compounds |
title | Boron Oxide Enhancing Stability of MoS2 Anode Materials for Lithium-Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boron%20Oxide%20Enhancing%20Stability%20of%20MoS2%20Anode%20Materials%20for%20Lithium-Ion%20Batteries&rft.jtitle=Materials&rft.au=Nguyen,%20Thang%20Phan&rft.date=2022-03-10&rft.volume=15&rft.issue=6&rft.spage=2034&rft.pages=2034-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15062034&rft_dat=%3Cproquest_pubme%3E2644012604%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642570047&rft_id=info:pmid/35329486&rfr_iscdi=true |