Novel mitochondrial gene rearrangements pattern in the millipede Polydesmus sp. GZCS‐2019 and phylogenetic analysis of the Myriapoda
The subphylum Myriapoda included four extant classes (Chilopoda, Symphyla, Diplopoda, and Pauropoda). Due to the limitation of taxon sampling, the phylogenetic relationships within Myriapoda remained contentious, especially for Diplopoda. Herein, we determined the complete mitochondrial genome of Po...
Gespeichert in:
Veröffentlicht in: | Ecology and evolution 2022-03, Vol.12 (3), p.e8764-n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e8764 |
container_title | Ecology and evolution |
container_volume | 12 |
creator | Zuo, Qing Zhang, Zhisheng Shen, Yanjun |
description | The subphylum Myriapoda included four extant classes (Chilopoda, Symphyla, Diplopoda, and Pauropoda). Due to the limitation of taxon sampling, the phylogenetic relationships within Myriapoda remained contentious, especially for Diplopoda. Herein, we determined the complete mitochondrial genome of Polydesmus sp. GZCS‐2019 (Myriapoda: Polydesmida) and the mitochondrial genomes are circular molecules of 15,036 bp, with all genes encoded on + strand. The A+T content is 66.1%, making the chain asymmetric, and exhibits negative AT‐skew (−0.236). Several genes rearrangements were detected and we propose a new rearrangement model: “TD (N\R) L + C” based on the genome‐scale duplication + (non‐random/random) loss + recombination. Phylogenetic analyses demonstrated that Chilopoda and Symphyla both were monophyletic group, whereas Pauropoda was embedded in Diplopoda to form the Dignatha. Divergence time showed the first split of Myriapoda occurred between the Chilopoda and other classes (Wenlock period of Silurian). We combine phylogenetic analysis, divergence time, and gene arrangement to yield valuable insights into the evolutionary history and classification relationship of Myriapoda and these results support a monophyletic Progoneata and the relationship (Chilopoda + (Symphyla + (Diplopoda + Pauropoda))) within myriapod. Our results help to better explain the gene rearrangement events of the invertebrate mitogenome and lay the foundation for further phylogenetic study of Myriapoda.
We determined the complete mitochondrial genome of Polydesmus sp. GZCS‐2019 and all genes encoded on + strand. Several genes rearrangements were detected and we propose a new rearrangement model: “TD (N\R) L + C” based on the genome‐scale duplication + (non‐random/random) loss + recombination. We combine phylogenetic analysis, divergence time, and gene arrangement to yield valuable insights into the evolutionary history and classification relationship of Myriapoda and these results support a monophyletic Progoneata and the relationship (Chilopoda + (Symphyla + (Diplopoda + Pauropoda))) within myriapod. |
doi_str_mv | 10.1002/ece3.8764 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8948135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645858862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-e5b451e8cb770180a4ebb68fc118e5bf9bd5c468549762a72304d83ea4e66cf3</originalsourceid><addsrcrecordid>eNp1kctu1DAUhi0EotXQBS-ALLGBxUydxLdskNBoKEjlItEVG8txTmZcOXawk6LsWLHmGXkSPDOlKkh4Y8vn8-dj_wg9LciqIKQ8BwPVSgpOH6DTklC2FILJh_fWJ-gspWuSByclJeIxOqlYxTgT9Sn68SHcgMO9HYPZBd9Gqx3eggccQceo_RZ68GPCgx5HiB5bj8cd5APO2QFawJ-Cm1tI_ZRwGlb44sv686_vP0tS1Fj7Fg-72YW9cLQmb2g3J5tw6A6W93O-bwitfoIeddolOLudF-jqzeZq_XZ5-fHi3fr15dJUoqJLYA1lBUjTCEEKSTSFpuGyM0Uhc62rm5YZyiWjteClFmVFaCsryBznpqsW6NVRO0xND63JL4vaqSHaXsdZBW3V3xVvd2obbpSsqSzyry3Qi1tBDF8nSKPqbTLgnPYQpqRKTplkUvIyo8__Qa_DFPMHHCgqGBWlyNTLI2ViSClCd9dMQdQ-X7XPV-3zzeyz-93fkX_SzMD5EfhmHcz_N6nNelMdlL8Bz7ax6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644754727</pqid></control><display><type>article</type><title>Novel mitochondrial gene rearrangements pattern in the millipede Polydesmus sp. GZCS‐2019 and phylogenetic analysis of the Myriapoda</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Zuo, Qing ; Zhang, Zhisheng ; Shen, Yanjun</creator><creatorcontrib>Zuo, Qing ; Zhang, Zhisheng ; Shen, Yanjun</creatorcontrib><description>The subphylum Myriapoda included four extant classes (Chilopoda, Symphyla, Diplopoda, and Pauropoda). Due to the limitation of taxon sampling, the phylogenetic relationships within Myriapoda remained contentious, especially for Diplopoda. Herein, we determined the complete mitochondrial genome of Polydesmus sp. GZCS‐2019 (Myriapoda: Polydesmida) and the mitochondrial genomes are circular molecules of 15,036 bp, with all genes encoded on + strand. The A+T content is 66.1%, making the chain asymmetric, and exhibits negative AT‐skew (−0.236). Several genes rearrangements were detected and we propose a new rearrangement model: “TD (N\R) L + C” based on the genome‐scale duplication + (non‐random/random) loss + recombination. Phylogenetic analyses demonstrated that Chilopoda and Symphyla both were monophyletic group, whereas Pauropoda was embedded in Diplopoda to form the Dignatha. Divergence time showed the first split of Myriapoda occurred between the Chilopoda and other classes (Wenlock period of Silurian). We combine phylogenetic analysis, divergence time, and gene arrangement to yield valuable insights into the evolutionary history and classification relationship of Myriapoda and these results support a monophyletic Progoneata and the relationship (Chilopoda + (Symphyla + (Diplopoda + Pauropoda))) within myriapod. Our results help to better explain the gene rearrangement events of the invertebrate mitogenome and lay the foundation for further phylogenetic study of Myriapoda.
We determined the complete mitochondrial genome of Polydesmus sp. GZCS‐2019 and all genes encoded on + strand. Several genes rearrangements were detected and we propose a new rearrangement model: “TD (N\R) L + C” based on the genome‐scale duplication + (non‐random/random) loss + recombination. We combine phylogenetic analysis, divergence time, and gene arrangement to yield valuable insights into the evolutionary history and classification relationship of Myriapoda and these results support a monophyletic Progoneata and the relationship (Chilopoda + (Symphyla + (Diplopoda + Pauropoda))) within myriapod.</description><identifier>ISSN: 2045-7758</identifier><identifier>EISSN: 2045-7758</identifier><identifier>DOI: 10.1002/ece3.8764</identifier><identifier>PMID: 35356579</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Chilopoda ; Diplopoda ; Divergence ; Evolutionary Ecology ; evolutionary history ; Gene rearrangement ; Genes ; Genomes ; Invertebrates ; Mitochondria ; Molecular biology ; Morphology ; Myriapoda ; Pauropoda ; Phylogenetics ; Phylogeny ; Polydesmus ; Recombination ; Silurian ; Symphyla ; Transfer RNA</subject><ispartof>Ecology and evolution, 2022-03, Vol.12 (3), p.e8764-n/a</ispartof><rights>2022 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-e5b451e8cb770180a4ebb68fc118e5bf9bd5c468549762a72304d83ea4e66cf3</citedby><cites>FETCH-LOGICAL-c3734-e5b451e8cb770180a4ebb68fc118e5bf9bd5c468549762a72304d83ea4e66cf3</cites><orcidid>0000-0003-4182-6012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948135/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948135/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35356579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zuo, Qing</creatorcontrib><creatorcontrib>Zhang, Zhisheng</creatorcontrib><creatorcontrib>Shen, Yanjun</creatorcontrib><title>Novel mitochondrial gene rearrangements pattern in the millipede Polydesmus sp. GZCS‐2019 and phylogenetic analysis of the Myriapoda</title><title>Ecology and evolution</title><addtitle>Ecol Evol</addtitle><description>The subphylum Myriapoda included four extant classes (Chilopoda, Symphyla, Diplopoda, and Pauropoda). Due to the limitation of taxon sampling, the phylogenetic relationships within Myriapoda remained contentious, especially for Diplopoda. Herein, we determined the complete mitochondrial genome of Polydesmus sp. GZCS‐2019 (Myriapoda: Polydesmida) and the mitochondrial genomes are circular molecules of 15,036 bp, with all genes encoded on + strand. The A+T content is 66.1%, making the chain asymmetric, and exhibits negative AT‐skew (−0.236). Several genes rearrangements were detected and we propose a new rearrangement model: “TD (N\R) L + C” based on the genome‐scale duplication + (non‐random/random) loss + recombination. Phylogenetic analyses demonstrated that Chilopoda and Symphyla both were monophyletic group, whereas Pauropoda was embedded in Diplopoda to form the Dignatha. Divergence time showed the first split of Myriapoda occurred between the Chilopoda and other classes (Wenlock period of Silurian). We combine phylogenetic analysis, divergence time, and gene arrangement to yield valuable insights into the evolutionary history and classification relationship of Myriapoda and these results support a monophyletic Progoneata and the relationship (Chilopoda + (Symphyla + (Diplopoda + Pauropoda))) within myriapod. Our results help to better explain the gene rearrangement events of the invertebrate mitogenome and lay the foundation for further phylogenetic study of Myriapoda.
We determined the complete mitochondrial genome of Polydesmus sp. GZCS‐2019 and all genes encoded on + strand. Several genes rearrangements were detected and we propose a new rearrangement model: “TD (N\R) L + C” based on the genome‐scale duplication + (non‐random/random) loss + recombination. We combine phylogenetic analysis, divergence time, and gene arrangement to yield valuable insights into the evolutionary history and classification relationship of Myriapoda and these results support a monophyletic Progoneata and the relationship (Chilopoda + (Symphyla + (Diplopoda + Pauropoda))) within myriapod.</description><subject>Chilopoda</subject><subject>Diplopoda</subject><subject>Divergence</subject><subject>Evolutionary Ecology</subject><subject>evolutionary history</subject><subject>Gene rearrangement</subject><subject>Genes</subject><subject>Genomes</subject><subject>Invertebrates</subject><subject>Mitochondria</subject><subject>Molecular biology</subject><subject>Morphology</subject><subject>Myriapoda</subject><subject>Pauropoda</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Polydesmus</subject><subject>Recombination</subject><subject>Silurian</subject><subject>Symphyla</subject><subject>Transfer RNA</subject><issn>2045-7758</issn><issn>2045-7758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kctu1DAUhi0EotXQBS-ALLGBxUydxLdskNBoKEjlItEVG8txTmZcOXawk6LsWLHmGXkSPDOlKkh4Y8vn8-dj_wg9LciqIKQ8BwPVSgpOH6DTklC2FILJh_fWJ-gspWuSByclJeIxOqlYxTgT9Sn68SHcgMO9HYPZBd9Gqx3eggccQceo_RZ68GPCgx5HiB5bj8cd5APO2QFawJ-Cm1tI_ZRwGlb44sv686_vP0tS1Fj7Fg-72YW9cLQmb2g3J5tw6A6W93O-bwitfoIeddolOLudF-jqzeZq_XZ5-fHi3fr15dJUoqJLYA1lBUjTCEEKSTSFpuGyM0Uhc62rm5YZyiWjteClFmVFaCsryBznpqsW6NVRO0xND63JL4vaqSHaXsdZBW3V3xVvd2obbpSsqSzyry3Qi1tBDF8nSKPqbTLgnPYQpqRKTplkUvIyo8__Qa_DFPMHHCgqGBWlyNTLI2ViSClCd9dMQdQ-X7XPV-3zzeyz-93fkX_SzMD5EfhmHcz_N6nNelMdlL8Bz7ax6g</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Zuo, Qing</creator><creator>Zhang, Zhisheng</creator><creator>Shen, Yanjun</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4182-6012</orcidid></search><sort><creationdate>202203</creationdate><title>Novel mitochondrial gene rearrangements pattern in the millipede Polydesmus sp. GZCS‐2019 and phylogenetic analysis of the Myriapoda</title><author>Zuo, Qing ; Zhang, Zhisheng ; Shen, Yanjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-e5b451e8cb770180a4ebb68fc118e5bf9bd5c468549762a72304d83ea4e66cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chilopoda</topic><topic>Diplopoda</topic><topic>Divergence</topic><topic>Evolutionary Ecology</topic><topic>evolutionary history</topic><topic>Gene rearrangement</topic><topic>Genes</topic><topic>Genomes</topic><topic>Invertebrates</topic><topic>Mitochondria</topic><topic>Molecular biology</topic><topic>Morphology</topic><topic>Myriapoda</topic><topic>Pauropoda</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Polydesmus</topic><topic>Recombination</topic><topic>Silurian</topic><topic>Symphyla</topic><topic>Transfer RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Qing</creatorcontrib><creatorcontrib>Zhang, Zhisheng</creatorcontrib><creatorcontrib>Shen, Yanjun</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, Qing</au><au>Zhang, Zhisheng</au><au>Shen, Yanjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel mitochondrial gene rearrangements pattern in the millipede Polydesmus sp. GZCS‐2019 and phylogenetic analysis of the Myriapoda</atitle><jtitle>Ecology and evolution</jtitle><addtitle>Ecol Evol</addtitle><date>2022-03</date><risdate>2022</risdate><volume>12</volume><issue>3</issue><spage>e8764</spage><epage>n/a</epage><pages>e8764-n/a</pages><issn>2045-7758</issn><eissn>2045-7758</eissn><abstract>The subphylum Myriapoda included four extant classes (Chilopoda, Symphyla, Diplopoda, and Pauropoda). Due to the limitation of taxon sampling, the phylogenetic relationships within Myriapoda remained contentious, especially for Diplopoda. Herein, we determined the complete mitochondrial genome of Polydesmus sp. GZCS‐2019 (Myriapoda: Polydesmida) and the mitochondrial genomes are circular molecules of 15,036 bp, with all genes encoded on + strand. The A+T content is 66.1%, making the chain asymmetric, and exhibits negative AT‐skew (−0.236). Several genes rearrangements were detected and we propose a new rearrangement model: “TD (N\R) L + C” based on the genome‐scale duplication + (non‐random/random) loss + recombination. Phylogenetic analyses demonstrated that Chilopoda and Symphyla both were monophyletic group, whereas Pauropoda was embedded in Diplopoda to form the Dignatha. Divergence time showed the first split of Myriapoda occurred between the Chilopoda and other classes (Wenlock period of Silurian). We combine phylogenetic analysis, divergence time, and gene arrangement to yield valuable insights into the evolutionary history and classification relationship of Myriapoda and these results support a monophyletic Progoneata and the relationship (Chilopoda + (Symphyla + (Diplopoda + Pauropoda))) within myriapod. Our results help to better explain the gene rearrangement events of the invertebrate mitogenome and lay the foundation for further phylogenetic study of Myriapoda.
We determined the complete mitochondrial genome of Polydesmus sp. GZCS‐2019 and all genes encoded on + strand. Several genes rearrangements were detected and we propose a new rearrangement model: “TD (N\R) L + C” based on the genome‐scale duplication + (non‐random/random) loss + recombination. We combine phylogenetic analysis, divergence time, and gene arrangement to yield valuable insights into the evolutionary history and classification relationship of Myriapoda and these results support a monophyletic Progoneata and the relationship (Chilopoda + (Symphyla + (Diplopoda + Pauropoda))) within myriapod.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>35356579</pmid><doi>10.1002/ece3.8764</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4182-6012</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-7758 |
ispartof | Ecology and evolution, 2022-03, Vol.12 (3), p.e8764-n/a |
issn | 2045-7758 2045-7758 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8948135 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Wiley Online Library All Journals; PubMed Central |
subjects | Chilopoda Diplopoda Divergence Evolutionary Ecology evolutionary history Gene rearrangement Genes Genomes Invertebrates Mitochondria Molecular biology Morphology Myriapoda Pauropoda Phylogenetics Phylogeny Polydesmus Recombination Silurian Symphyla Transfer RNA |
title | Novel mitochondrial gene rearrangements pattern in the millipede Polydesmus sp. GZCS‐2019 and phylogenetic analysis of the Myriapoda |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A28%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20mitochondrial%20gene%20rearrangements%20pattern%20in%20the%20millipede%20Polydesmus%20sp.%20GZCS%E2%80%902019%20and%20phylogenetic%20analysis%20of%20the%20Myriapoda&rft.jtitle=Ecology%20and%20evolution&rft.au=Zuo,%20Qing&rft.date=2022-03&rft.volume=12&rft.issue=3&rft.spage=e8764&rft.epage=n/a&rft.pages=e8764-n/a&rft.issn=2045-7758&rft.eissn=2045-7758&rft_id=info:doi/10.1002/ece3.8764&rft_dat=%3Cproquest_pubme%3E2645858862%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2644754727&rft_id=info:pmid/35356579&rfr_iscdi=true |