Identification of a Steroid Hormone-Associated Gene Signature Predicting the Prognosis of Prostate Cancer through an Integrative Bioinformatics Analysis
The importance of anti-androgen therapy for prostate cancer (PC) has been well recognized. However, the mechanisms underlying prostate cancer resistance to anti-androgens are not completely understood. Therefore, identifying pharmacological targets in driving the development of castration-resistant...
Gespeichert in:
Veröffentlicht in: | Cancers 2022-03, Vol.14 (6), p.1565 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 1565 |
container_title | Cancers |
container_volume | 14 |
creator | Lai, Yo-Liang Liu, Chia-Hsin Wang, Shu-Chi Huang, Shu-Pin Cho, Yi-Chun Bao, Bo-Ying Su, Chia-Cheng Yeh, Hsin-Chih Lee, Cheng-Hsueh Teng, Pai-Chi Chuu, Chih-Pin Chen, Deng-Neng Li, Chia-Yang Cheng, Wei-Chung |
description | The importance of anti-androgen therapy for prostate cancer (PC) has been well recognized. However, the mechanisms underlying prostate cancer resistance to anti-androgens are not completely understood. Therefore, identifying pharmacological targets in driving the development of castration-resistant PC is necessary. In the present study, we sought to identify core genes in regulating steroid hormone pathways and associating them with the disease progression of PC. The selection of steroid hormone-associated genes was identified from functional databases, including gene ontology, KEGG, and Reactome. The gene expression profiles and relevant clinical information of patients with PC were obtained from TCGA and used to examine the genes associated with steroid hormone. The machine-learning algorithm was performed for key feature selection and signature construction. With the integrative bioinformatics analysis, an eight-gene signature, including
,
,
,
,
,
,
, and
was established. Patients with higher expression of this gene signature had worse progression-free interval in both univariate and multivariate cox models adjusted for clinical variables. The expression of the gene signatures also showed the aggressiveness consistently in two external cohorts, PCS and PAM50. Our findings demonstrated a validated eight-gene signature could successfully predict PC prognosis and regulate the steroid hormone pathway. |
doi_str_mv | 10.3390/cancers14061565 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8946240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644021240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-8ac15e903b0e07960f671e6f3fd29bc1629a96ea180657b1a4b2d79839ee6d8e3</originalsourceid><addsrcrecordid>eNpdkU1LHTEUhkNRqljX3ZWAGzdT8zWZyUa4vbR6QaigrkMmc2ZuZG5ik4zgP_HnNtdrxZpNcshz3vPxIvSVku-cK3JmjbcQExVE0lrWn9AhIw2rpFRi7937AB2ndE_K4Zw2svmMDnjNmWwYP0TPqx58doOzJrvgcRiwwTcZYnA9vgxxEzxUi5SCdSZDjy_AA75xozd5joCvI_TOZudHnNfbMIw-JJe2OiVIuSTh5UufBYhhHtfYeLzyGcZYKj4C_uGC80OpVEKb8MKb6akofEH7g5kSHL_eR-ju18_b5WV19ftitVxcVVYwmqvWWFqDIrwjQBolySAbCnLgQ89UZ6lkyigJhrZE1k1HjehY36iWKwDZt8CP0PlO92HuNtDbso1oJv0Q3cbEJx2M0___eLfWY3jUrRKSCVIETl8FYvgzQ8p645KFaTIewpw0k0IQRnfoyQf0PsyxDPxCMV6L4lehznaULQtMEYa3ZijRW-P1B-NLxrf3M7zx_2zmfwGGlK4T</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642354669</pqid></control><display><type>article</type><title>Identification of a Steroid Hormone-Associated Gene Signature Predicting the Prognosis of Prostate Cancer through an Integrative Bioinformatics Analysis</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Lai, Yo-Liang ; Liu, Chia-Hsin ; Wang, Shu-Chi ; Huang, Shu-Pin ; Cho, Yi-Chun ; Bao, Bo-Ying ; Su, Chia-Cheng ; Yeh, Hsin-Chih ; Lee, Cheng-Hsueh ; Teng, Pai-Chi ; Chuu, Chih-Pin ; Chen, Deng-Neng ; Li, Chia-Yang ; Cheng, Wei-Chung</creator><creatorcontrib>Lai, Yo-Liang ; Liu, Chia-Hsin ; Wang, Shu-Chi ; Huang, Shu-Pin ; Cho, Yi-Chun ; Bao, Bo-Ying ; Su, Chia-Cheng ; Yeh, Hsin-Chih ; Lee, Cheng-Hsueh ; Teng, Pai-Chi ; Chuu, Chih-Pin ; Chen, Deng-Neng ; Li, Chia-Yang ; Cheng, Wei-Chung</creatorcontrib><description>The importance of anti-androgen therapy for prostate cancer (PC) has been well recognized. However, the mechanisms underlying prostate cancer resistance to anti-androgens are not completely understood. Therefore, identifying pharmacological targets in driving the development of castration-resistant PC is necessary. In the present study, we sought to identify core genes in regulating steroid hormone pathways and associating them with the disease progression of PC. The selection of steroid hormone-associated genes was identified from functional databases, including gene ontology, KEGG, and Reactome. The gene expression profiles and relevant clinical information of patients with PC were obtained from TCGA and used to examine the genes associated with steroid hormone. The machine-learning algorithm was performed for key feature selection and signature construction. With the integrative bioinformatics analysis, an eight-gene signature, including
,
,
,
,
,
,
, and
was established. Patients with higher expression of this gene signature had worse progression-free interval in both univariate and multivariate cox models adjusted for clinical variables. The expression of the gene signatures also showed the aggressiveness consistently in two external cohorts, PCS and PAM50. Our findings demonstrated a validated eight-gene signature could successfully predict PC prognosis and regulate the steroid hormone pathway.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers14061565</identifier><identifier>PMID: 35326723</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Androgens ; Bioinformatics ; Carcinogenesis ; Castration ; Datasets ; Estrone sulfotransferase ; Gene expression ; Genomes ; Genomics ; Medical prognosis ; Metastasis ; Mutation ; Otology ; Patients ; Prognosis ; Prostate cancer ; Steroids ; Survival analysis</subject><ispartof>Cancers, 2022-03, Vol.14 (6), p.1565</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-8ac15e903b0e07960f671e6f3fd29bc1629a96ea180657b1a4b2d79839ee6d8e3</citedby><cites>FETCH-LOGICAL-c421t-8ac15e903b0e07960f671e6f3fd29bc1629a96ea180657b1a4b2d79839ee6d8e3</cites><orcidid>0000-0003-2968-6125 ; 0000-0002-2880-8365 ; 0000-0002-1229-4857 ; 0000-0001-5689-9850 ; 0000-0001-9691-7507 ; 0000-0002-1872-466X ; 0000-0003-4113-629X ; 0000-0001-8445-6264 ; 0000-0001-5510-6513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8946240/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8946240/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35326723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lai, Yo-Liang</creatorcontrib><creatorcontrib>Liu, Chia-Hsin</creatorcontrib><creatorcontrib>Wang, Shu-Chi</creatorcontrib><creatorcontrib>Huang, Shu-Pin</creatorcontrib><creatorcontrib>Cho, Yi-Chun</creatorcontrib><creatorcontrib>Bao, Bo-Ying</creatorcontrib><creatorcontrib>Su, Chia-Cheng</creatorcontrib><creatorcontrib>Yeh, Hsin-Chih</creatorcontrib><creatorcontrib>Lee, Cheng-Hsueh</creatorcontrib><creatorcontrib>Teng, Pai-Chi</creatorcontrib><creatorcontrib>Chuu, Chih-Pin</creatorcontrib><creatorcontrib>Chen, Deng-Neng</creatorcontrib><creatorcontrib>Li, Chia-Yang</creatorcontrib><creatorcontrib>Cheng, Wei-Chung</creatorcontrib><title>Identification of a Steroid Hormone-Associated Gene Signature Predicting the Prognosis of Prostate Cancer through an Integrative Bioinformatics Analysis</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>The importance of anti-androgen therapy for prostate cancer (PC) has been well recognized. However, the mechanisms underlying prostate cancer resistance to anti-androgens are not completely understood. Therefore, identifying pharmacological targets in driving the development of castration-resistant PC is necessary. In the present study, we sought to identify core genes in regulating steroid hormone pathways and associating them with the disease progression of PC. The selection of steroid hormone-associated genes was identified from functional databases, including gene ontology, KEGG, and Reactome. The gene expression profiles and relevant clinical information of patients with PC were obtained from TCGA and used to examine the genes associated with steroid hormone. The machine-learning algorithm was performed for key feature selection and signature construction. With the integrative bioinformatics analysis, an eight-gene signature, including
,
,
,
,
,
,
, and
was established. Patients with higher expression of this gene signature had worse progression-free interval in both univariate and multivariate cox models adjusted for clinical variables. The expression of the gene signatures also showed the aggressiveness consistently in two external cohorts, PCS and PAM50. Our findings demonstrated a validated eight-gene signature could successfully predict PC prognosis and regulate the steroid hormone pathway.</description><subject>Algorithms</subject><subject>Androgens</subject><subject>Bioinformatics</subject><subject>Carcinogenesis</subject><subject>Castration</subject><subject>Datasets</subject><subject>Estrone sulfotransferase</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Medical prognosis</subject><subject>Metastasis</subject><subject>Mutation</subject><subject>Otology</subject><subject>Patients</subject><subject>Prognosis</subject><subject>Prostate cancer</subject><subject>Steroids</subject><subject>Survival analysis</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkU1LHTEUhkNRqljX3ZWAGzdT8zWZyUa4vbR6QaigrkMmc2ZuZG5ik4zgP_HnNtdrxZpNcshz3vPxIvSVku-cK3JmjbcQExVE0lrWn9AhIw2rpFRi7937AB2ndE_K4Zw2svmMDnjNmWwYP0TPqx58doOzJrvgcRiwwTcZYnA9vgxxEzxUi5SCdSZDjy_AA75xozd5joCvI_TOZudHnNfbMIw-JJe2OiVIuSTh5UufBYhhHtfYeLzyGcZYKj4C_uGC80OpVEKb8MKb6akofEH7g5kSHL_eR-ju18_b5WV19ftitVxcVVYwmqvWWFqDIrwjQBolySAbCnLgQ89UZ6lkyigJhrZE1k1HjehY36iWKwDZt8CP0PlO92HuNtDbso1oJv0Q3cbEJx2M0___eLfWY3jUrRKSCVIETl8FYvgzQ8p645KFaTIewpw0k0IQRnfoyQf0PsyxDPxCMV6L4lehznaULQtMEYa3ZijRW-P1B-NLxrf3M7zx_2zmfwGGlK4T</recordid><startdate>20220319</startdate><enddate>20220319</enddate><creator>Lai, Yo-Liang</creator><creator>Liu, Chia-Hsin</creator><creator>Wang, Shu-Chi</creator><creator>Huang, Shu-Pin</creator><creator>Cho, Yi-Chun</creator><creator>Bao, Bo-Ying</creator><creator>Su, Chia-Cheng</creator><creator>Yeh, Hsin-Chih</creator><creator>Lee, Cheng-Hsueh</creator><creator>Teng, Pai-Chi</creator><creator>Chuu, Chih-Pin</creator><creator>Chen, Deng-Neng</creator><creator>Li, Chia-Yang</creator><creator>Cheng, Wei-Chung</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2968-6125</orcidid><orcidid>https://orcid.org/0000-0002-2880-8365</orcidid><orcidid>https://orcid.org/0000-0002-1229-4857</orcidid><orcidid>https://orcid.org/0000-0001-5689-9850</orcidid><orcidid>https://orcid.org/0000-0001-9691-7507</orcidid><orcidid>https://orcid.org/0000-0002-1872-466X</orcidid><orcidid>https://orcid.org/0000-0003-4113-629X</orcidid><orcidid>https://orcid.org/0000-0001-8445-6264</orcidid><orcidid>https://orcid.org/0000-0001-5510-6513</orcidid></search><sort><creationdate>20220319</creationdate><title>Identification of a Steroid Hormone-Associated Gene Signature Predicting the Prognosis of Prostate Cancer through an Integrative Bioinformatics Analysis</title><author>Lai, Yo-Liang ; Liu, Chia-Hsin ; Wang, Shu-Chi ; Huang, Shu-Pin ; Cho, Yi-Chun ; Bao, Bo-Ying ; Su, Chia-Cheng ; Yeh, Hsin-Chih ; Lee, Cheng-Hsueh ; Teng, Pai-Chi ; Chuu, Chih-Pin ; Chen, Deng-Neng ; Li, Chia-Yang ; Cheng, Wei-Chung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-8ac15e903b0e07960f671e6f3fd29bc1629a96ea180657b1a4b2d79839ee6d8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Androgens</topic><topic>Bioinformatics</topic><topic>Carcinogenesis</topic><topic>Castration</topic><topic>Datasets</topic><topic>Estrone sulfotransferase</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Medical prognosis</topic><topic>Metastasis</topic><topic>Mutation</topic><topic>Otology</topic><topic>Patients</topic><topic>Prognosis</topic><topic>Prostate cancer</topic><topic>Steroids</topic><topic>Survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Yo-Liang</creatorcontrib><creatorcontrib>Liu, Chia-Hsin</creatorcontrib><creatorcontrib>Wang, Shu-Chi</creatorcontrib><creatorcontrib>Huang, Shu-Pin</creatorcontrib><creatorcontrib>Cho, Yi-Chun</creatorcontrib><creatorcontrib>Bao, Bo-Ying</creatorcontrib><creatorcontrib>Su, Chia-Cheng</creatorcontrib><creatorcontrib>Yeh, Hsin-Chih</creatorcontrib><creatorcontrib>Lee, Cheng-Hsueh</creatorcontrib><creatorcontrib>Teng, Pai-Chi</creatorcontrib><creatorcontrib>Chuu, Chih-Pin</creatorcontrib><creatorcontrib>Chen, Deng-Neng</creatorcontrib><creatorcontrib>Li, Chia-Yang</creatorcontrib><creatorcontrib>Cheng, Wei-Chung</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Yo-Liang</au><au>Liu, Chia-Hsin</au><au>Wang, Shu-Chi</au><au>Huang, Shu-Pin</au><au>Cho, Yi-Chun</au><au>Bao, Bo-Ying</au><au>Su, Chia-Cheng</au><au>Yeh, Hsin-Chih</au><au>Lee, Cheng-Hsueh</au><au>Teng, Pai-Chi</au><au>Chuu, Chih-Pin</au><au>Chen, Deng-Neng</au><au>Li, Chia-Yang</au><au>Cheng, Wei-Chung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a Steroid Hormone-Associated Gene Signature Predicting the Prognosis of Prostate Cancer through an Integrative Bioinformatics Analysis</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2022-03-19</date><risdate>2022</risdate><volume>14</volume><issue>6</issue><spage>1565</spage><pages>1565-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>The importance of anti-androgen therapy for prostate cancer (PC) has been well recognized. However, the mechanisms underlying prostate cancer resistance to anti-androgens are not completely understood. Therefore, identifying pharmacological targets in driving the development of castration-resistant PC is necessary. In the present study, we sought to identify core genes in regulating steroid hormone pathways and associating them with the disease progression of PC. The selection of steroid hormone-associated genes was identified from functional databases, including gene ontology, KEGG, and Reactome. The gene expression profiles and relevant clinical information of patients with PC were obtained from TCGA and used to examine the genes associated with steroid hormone. The machine-learning algorithm was performed for key feature selection and signature construction. With the integrative bioinformatics analysis, an eight-gene signature, including
,
,
,
,
,
,
, and
was established. Patients with higher expression of this gene signature had worse progression-free interval in both univariate and multivariate cox models adjusted for clinical variables. The expression of the gene signatures also showed the aggressiveness consistently in two external cohorts, PCS and PAM50. Our findings demonstrated a validated eight-gene signature could successfully predict PC prognosis and regulate the steroid hormone pathway.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35326723</pmid><doi>10.3390/cancers14061565</doi><orcidid>https://orcid.org/0000-0003-2968-6125</orcidid><orcidid>https://orcid.org/0000-0002-2880-8365</orcidid><orcidid>https://orcid.org/0000-0002-1229-4857</orcidid><orcidid>https://orcid.org/0000-0001-5689-9850</orcidid><orcidid>https://orcid.org/0000-0001-9691-7507</orcidid><orcidid>https://orcid.org/0000-0002-1872-466X</orcidid><orcidid>https://orcid.org/0000-0003-4113-629X</orcidid><orcidid>https://orcid.org/0000-0001-8445-6264</orcidid><orcidid>https://orcid.org/0000-0001-5510-6513</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6694 |
ispartof | Cancers, 2022-03, Vol.14 (6), p.1565 |
issn | 2072-6694 2072-6694 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8946240 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access |
subjects | Algorithms Androgens Bioinformatics Carcinogenesis Castration Datasets Estrone sulfotransferase Gene expression Genomes Genomics Medical prognosis Metastasis Mutation Otology Patients Prognosis Prostate cancer Steroids Survival analysis |
title | Identification of a Steroid Hormone-Associated Gene Signature Predicting the Prognosis of Prostate Cancer through an Integrative Bioinformatics Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20Steroid%20Hormone-Associated%20Gene%20Signature%20Predicting%20the%20Prognosis%20of%20Prostate%20Cancer%20through%20an%20Integrative%20Bioinformatics%20Analysis&rft.jtitle=Cancers&rft.au=Lai,%20Yo-Liang&rft.date=2022-03-19&rft.volume=14&rft.issue=6&rft.spage=1565&rft.pages=1565-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers14061565&rft_dat=%3Cproquest_pubme%3E2644021240%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642354669&rft_id=info:pmid/35326723&rfr_iscdi=true |