Modelling mobile-based technology adoption among people with dementia
The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a better understanding of technology adoption. The current work is based on the analysis and fusion of two datasets that provide detailed informa...
Gespeichert in:
Veröffentlicht in: | Personal and ubiquitous computing 2022-04, Vol.26 (2), p.365-384 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 384 |
---|---|
container_issue | 2 |
container_start_page | 365 |
container_title | Personal and ubiquitous computing |
container_volume | 26 |
creator | Chaurasia, Priyanka McClean, Sally Nugent, Chris D. Cleland, Ian Zhang, Shuai Donnelly, Mark P. Scotney, Bryan W. Sanders, Chelsea Smith, Ken Norton, Maria C. Tschanz, JoAnn |
description | The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a better understanding of technology adoption. The current work is based on the analysis and fusion of two datasets that provide detailed information on background, psychosocial, and medical history of the subjects. In the process of modelling adoption, feature selection is carried out followed by empirical analysis to identify the best classification models. With a more detailed set of features including psychosocial and medical history information, the developed adoption model, using
k
NN algorithm, achieved a prediction accuracy of 99.41% when tested on 173 participants. The second-best algorithm built, using NN, achieved 94.08% accuracy. Both these results have improved accuracy in comparison to the best accuracy achieved (92.48%) in our previous work, based on psychosocial and self-reported health data for the same cohort. It has been found that psychosocial data is better than medical data for predicting technology adoption. However, for the best results, we should use a combination of psychosocial and medical data where it is preferable that the latter is provided from reliable medical sources, rather than self-reported. |
doi_str_mv | 10.1007/s00779-021-01572-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8933362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646941348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4251-45324932c8b5bef0638d1bc4e1c793e51c73cdf8aacccc1cacc50e794224aae23</originalsourceid><addsrcrecordid>eNp9kclOwzAQhi0EoqXwAhxQJC5cAt6yXZBQVRapiAucLceZpK6SOMQptG-PQ0pZDvjgsTTf_OOZH6FTgi8JxtGVdVeU-JgSH5Mgov56D41JSCKfJyTa371xMkJH1i4xJlHIw0M0YgELY0bCMZo9mgzKUteFV5lUl-Cn0kLmdaAWtSlNsfFkZppOm9qTlXFYA6YpwXvX3cLLoIK60_IYHeSytHCyjRP0cjt7nt7786e7h-nN3FecBsTnAaM8YVTFaZBCjkMWZyRVHIiKEgaBC0xleSylcocoFwIMUcIp5VICZRN0Peg2q7SCTLnmrSxF0-pKththpBa_M7VeiMK8iThhjIW9wMVWoDWvK7CdqLRVbgGyBrOygrr9JJwwHjv0_A-6NKu2duP1FA5CN0wvSAdKtcbaFvLdZwgWvUticEk4l8SnS2Ltis5-jrEr-bLFAWwArEvVBbTfvf-R_QBIg587</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640565322</pqid></control><display><type>article</type><title>Modelling mobile-based technology adoption among people with dementia</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chaurasia, Priyanka ; McClean, Sally ; Nugent, Chris D. ; Cleland, Ian ; Zhang, Shuai ; Donnelly, Mark P. ; Scotney, Bryan W. ; Sanders, Chelsea ; Smith, Ken ; Norton, Maria C. ; Tschanz, JoAnn</creator><creatorcontrib>Chaurasia, Priyanka ; McClean, Sally ; Nugent, Chris D. ; Cleland, Ian ; Zhang, Shuai ; Donnelly, Mark P. ; Scotney, Bryan W. ; Sanders, Chelsea ; Smith, Ken ; Norton, Maria C. ; Tschanz, JoAnn</creatorcontrib><description>The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a better understanding of technology adoption. The current work is based on the analysis and fusion of two datasets that provide detailed information on background, psychosocial, and medical history of the subjects. In the process of modelling adoption, feature selection is carried out followed by empirical analysis to identify the best classification models. With a more detailed set of features including psychosocial and medical history information, the developed adoption model, using
k
NN algorithm, achieved a prediction accuracy of 99.41% when tested on 173 participants. The second-best algorithm built, using NN, achieved 94.08% accuracy. Both these results have improved accuracy in comparison to the best accuracy achieved (92.48%) in our previous work, based on psychosocial and self-reported health data for the same cohort. It has been found that psychosocial data is better than medical data for predicting technology adoption. However, for the best results, we should use a combination of psychosocial and medical data where it is preferable that the latter is provided from reliable medical sources, rather than self-reported.</description><identifier>ISSN: 1617-4909</identifier><identifier>EISSN: 1617-4917</identifier><identifier>DOI: 10.1007/s00779-021-01572-x</identifier><identifier>PMID: 35368316</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Accuracy ; Algorithms ; Computer Science ; Dementia ; Empirical analysis ; Mobile Computing ; Modelling ; Original ; Original Article ; Personal Computing ; Technology adoption ; Technology utilization ; User Interfaces and Human Computer Interaction</subject><ispartof>Personal and ubiquitous computing, 2022-04, Vol.26 (2), p.365-384</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021.</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4251-45324932c8b5bef0638d1bc4e1c793e51c73cdf8aacccc1cacc50e794224aae23</citedby><cites>FETCH-LOGICAL-c4251-45324932c8b5bef0638d1bc4e1c793e51c73cdf8aacccc1cacc50e794224aae23</cites><orcidid>0000-0003-4249-3678</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00779-021-01572-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00779-021-01572-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35368316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaurasia, Priyanka</creatorcontrib><creatorcontrib>McClean, Sally</creatorcontrib><creatorcontrib>Nugent, Chris D.</creatorcontrib><creatorcontrib>Cleland, Ian</creatorcontrib><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Donnelly, Mark P.</creatorcontrib><creatorcontrib>Scotney, Bryan W.</creatorcontrib><creatorcontrib>Sanders, Chelsea</creatorcontrib><creatorcontrib>Smith, Ken</creatorcontrib><creatorcontrib>Norton, Maria C.</creatorcontrib><creatorcontrib>Tschanz, JoAnn</creatorcontrib><title>Modelling mobile-based technology adoption among people with dementia</title><title>Personal and ubiquitous computing</title><addtitle>Pers Ubiquit Comput</addtitle><addtitle>Pers Ubiquitous Comput</addtitle><description>The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a better understanding of technology adoption. The current work is based on the analysis and fusion of two datasets that provide detailed information on background, psychosocial, and medical history of the subjects. In the process of modelling adoption, feature selection is carried out followed by empirical analysis to identify the best classification models. With a more detailed set of features including psychosocial and medical history information, the developed adoption model, using
k
NN algorithm, achieved a prediction accuracy of 99.41% when tested on 173 participants. The second-best algorithm built, using NN, achieved 94.08% accuracy. Both these results have improved accuracy in comparison to the best accuracy achieved (92.48%) in our previous work, based on psychosocial and self-reported health data for the same cohort. It has been found that psychosocial data is better than medical data for predicting technology adoption. However, for the best results, we should use a combination of psychosocial and medical data where it is preferable that the latter is provided from reliable medical sources, rather than self-reported.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Dementia</subject><subject>Empirical analysis</subject><subject>Mobile Computing</subject><subject>Modelling</subject><subject>Original</subject><subject>Original Article</subject><subject>Personal Computing</subject><subject>Technology adoption</subject><subject>Technology utilization</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>1617-4909</issn><issn>1617-4917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kclOwzAQhi0EoqXwAhxQJC5cAt6yXZBQVRapiAucLceZpK6SOMQptG-PQ0pZDvjgsTTf_OOZH6FTgi8JxtGVdVeU-JgSH5Mgov56D41JSCKfJyTa371xMkJH1i4xJlHIw0M0YgELY0bCMZo9mgzKUteFV5lUl-Cn0kLmdaAWtSlNsfFkZppOm9qTlXFYA6YpwXvX3cLLoIK60_IYHeSytHCyjRP0cjt7nt7786e7h-nN3FecBsTnAaM8YVTFaZBCjkMWZyRVHIiKEgaBC0xleSylcocoFwIMUcIp5VICZRN0Peg2q7SCTLnmrSxF0-pKththpBa_M7VeiMK8iThhjIW9wMVWoDWvK7CdqLRVbgGyBrOygrr9JJwwHjv0_A-6NKu2duP1FA5CN0wvSAdKtcbaFvLdZwgWvUticEk4l8SnS2Ltis5-jrEr-bLFAWwArEvVBbTfvf-R_QBIg587</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Chaurasia, Priyanka</creator><creator>McClean, Sally</creator><creator>Nugent, Chris D.</creator><creator>Cleland, Ian</creator><creator>Zhang, Shuai</creator><creator>Donnelly, Mark P.</creator><creator>Scotney, Bryan W.</creator><creator>Sanders, Chelsea</creator><creator>Smith, Ken</creator><creator>Norton, Maria C.</creator><creator>Tschanz, JoAnn</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4249-3678</orcidid></search><sort><creationdate>20220401</creationdate><title>Modelling mobile-based technology adoption among people with dementia</title><author>Chaurasia, Priyanka ; McClean, Sally ; Nugent, Chris D. ; Cleland, Ian ; Zhang, Shuai ; Donnelly, Mark P. ; Scotney, Bryan W. ; Sanders, Chelsea ; Smith, Ken ; Norton, Maria C. ; Tschanz, JoAnn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4251-45324932c8b5bef0638d1bc4e1c793e51c73cdf8aacccc1cacc50e794224aae23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Dementia</topic><topic>Empirical analysis</topic><topic>Mobile Computing</topic><topic>Modelling</topic><topic>Original</topic><topic>Original Article</topic><topic>Personal Computing</topic><topic>Technology adoption</topic><topic>Technology utilization</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaurasia, Priyanka</creatorcontrib><creatorcontrib>McClean, Sally</creatorcontrib><creatorcontrib>Nugent, Chris D.</creatorcontrib><creatorcontrib>Cleland, Ian</creatorcontrib><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Donnelly, Mark P.</creatorcontrib><creatorcontrib>Scotney, Bryan W.</creatorcontrib><creatorcontrib>Sanders, Chelsea</creatorcontrib><creatorcontrib>Smith, Ken</creatorcontrib><creatorcontrib>Norton, Maria C.</creatorcontrib><creatorcontrib>Tschanz, JoAnn</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Personal and ubiquitous computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaurasia, Priyanka</au><au>McClean, Sally</au><au>Nugent, Chris D.</au><au>Cleland, Ian</au><au>Zhang, Shuai</au><au>Donnelly, Mark P.</au><au>Scotney, Bryan W.</au><au>Sanders, Chelsea</au><au>Smith, Ken</au><au>Norton, Maria C.</au><au>Tschanz, JoAnn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling mobile-based technology adoption among people with dementia</atitle><jtitle>Personal and ubiquitous computing</jtitle><stitle>Pers Ubiquit Comput</stitle><addtitle>Pers Ubiquitous Comput</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>26</volume><issue>2</issue><spage>365</spage><epage>384</epage><pages>365-384</pages><issn>1617-4909</issn><eissn>1617-4917</eissn><abstract>The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a better understanding of technology adoption. The current work is based on the analysis and fusion of two datasets that provide detailed information on background, psychosocial, and medical history of the subjects. In the process of modelling adoption, feature selection is carried out followed by empirical analysis to identify the best classification models. With a more detailed set of features including psychosocial and medical history information, the developed adoption model, using
k
NN algorithm, achieved a prediction accuracy of 99.41% when tested on 173 participants. The second-best algorithm built, using NN, achieved 94.08% accuracy. Both these results have improved accuracy in comparison to the best accuracy achieved (92.48%) in our previous work, based on psychosocial and self-reported health data for the same cohort. It has been found that psychosocial data is better than medical data for predicting technology adoption. However, for the best results, we should use a combination of psychosocial and medical data where it is preferable that the latter is provided from reliable medical sources, rather than self-reported.</abstract><cop>London</cop><pub>Springer London</pub><pmid>35368316</pmid><doi>10.1007/s00779-021-01572-x</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-4249-3678</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-4909 |
ispartof | Personal and ubiquitous computing, 2022-04, Vol.26 (2), p.365-384 |
issn | 1617-4909 1617-4917 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8933362 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Accuracy Algorithms Computer Science Dementia Empirical analysis Mobile Computing Modelling Original Original Article Personal Computing Technology adoption Technology utilization User Interfaces and Human Computer Interaction |
title | Modelling mobile-based technology adoption among people with dementia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20mobile-based%20technology%20adoption%20among%20people%20with%20dementia&rft.jtitle=Personal%20and%20ubiquitous%20computing&rft.au=Chaurasia,%20Priyanka&rft.date=2022-04-01&rft.volume=26&rft.issue=2&rft.spage=365&rft.epage=384&rft.pages=365-384&rft.issn=1617-4909&rft.eissn=1617-4917&rft_id=info:doi/10.1007/s00779-021-01572-x&rft_dat=%3Cproquest_pubme%3E2646941348%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640565322&rft_id=info:pmid/35368316&rfr_iscdi=true |