The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years

The latitudinal temperature gradient is a fundamental state parameter of the climate system tied to the dynamics of heat transport and radiative transfer. Thus, it is a primary target for temperature proxy reconstructions and global climate models. However, reconstructing the latitudinal temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2022-03, Vol.119 (11), p.1-e2111332119
Hauptverfasser: Gaskell, Daniel E, Huber, Matthew, O'Brien, Charlotte L, Inglis, Gordon N, Acosta, R Paul, Poulsen, Christopher J, Hull, Pincelli M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2111332119
container_issue 11
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 119
creator Gaskell, Daniel E
Huber, Matthew
O'Brien, Charlotte L
Inglis, Gordon N
Acosta, R Paul
Poulsen, Christopher J
Hull, Pincelli M
description The latitudinal temperature gradient is a fundamental state parameter of the climate system tied to the dynamics of heat transport and radiative transfer. Thus, it is a primary target for temperature proxy reconstructions and global climate models. However, reconstructing the latitudinal temperature gradient in past climates remains challenging due to the scarcity of appropriate proxy records and large proxy–model disagreements. Here, we develop methods leveraging an extensive compilation of planktonic foraminifera δ18O to reconstruct a continuous record of the latitudinal sea-surface temperature (SST) gradient over the last 95 million years (My). We find that latitudinal SST gradients ranged from 26.5 to 15.3 °C over a mean global SST range of 15.3 to 32.5 °C, with the highest gradients during the coldest intervals of time. From this relationship, we calculate a polar amplification factor (PAF; the ratio of change in >60° S SST to change in global mean SST) of 1.44 ± 0.15. Our results are closer to model predictions than previous proxy-based estimates, primarily because δ18O-based high-latitude SST estimates more closely track benthic temperatures, yielding higher gradients. The consistent covariance of δ18O values in low- and high-latitude planktonic foraminifera and in benthic foraminifera, across numerous climate states, suggests a fundamental constraint on multiple aspects of the climate system, linking deep-sea temperatures, the latitudinal SST gradient, and global mean SSTs across large changes in atmospheric CO2, continental configuration, oceanic gateways, and the extent of continental ice sheets. This implies an important underlying, internally driven predictability of the climate system in vastly different background states.
doi_str_mv 10.1073/pnas.2111332119
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8931236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641054901</sourcerecordid><originalsourceid>FETCH-LOGICAL-j2239-75e9cb87b821ef42c08ec887feaf05a0d8eb1403c52f15fa0470eeb9eb78d30d3</originalsourceid><addsrcrecordid>eNpdkM1q3TAQhUVJaG5-1t0KusnG6UiyrqVNIYS0KQTu5mZtZGuU6GJLriQHsu4r9Tn6TFVoNulmBmY-zsw5hHxicMWgE1-WYPIVZ4wJUav-QDYMNGu2rYYjsgHgXaNa3p6Q05wPAKClgo_kREguK7LdkF_7J6STKb6s1gcz0YLzgsmUNSF9TMZ6DIWaYKkvmY6Tn01BanHBYDGMSE2mPjhMCS11Kc7UxWRmH3ydVbk_v5na0fiMiZZ6aTG5UC3p7KfJx0Bf0KR8To6dmTJevPUz8vDtdn9z19zvvv-4ub5vDpwL3XQS9TioblCcoWv5CApHpTqHxoE0YBUOrAUxSu6YdAbaDhAHjUOnrAArzsjXf7rLOsxox-qsvtgvqZpKL300vn-_Cf6pf4zPvdKCcbGtApdvAin-XDGXfvZ5xGkyAeOae74VnWBaSVHRz_-hh7imGvAr1TJ4jZ-JvyqBjCs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641054901</pqid></control><display><type>article</type><title>The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gaskell, Daniel E ; Huber, Matthew ; O'Brien, Charlotte L ; Inglis, Gordon N ; Acosta, R Paul ; Poulsen, Christopher J ; Hull, Pincelli M</creator><creatorcontrib>Gaskell, Daniel E ; Huber, Matthew ; O'Brien, Charlotte L ; Inglis, Gordon N ; Acosta, R Paul ; Poulsen, Christopher J ; Hull, Pincelli M</creatorcontrib><description>The latitudinal temperature gradient is a fundamental state parameter of the climate system tied to the dynamics of heat transport and radiative transfer. Thus, it is a primary target for temperature proxy reconstructions and global climate models. However, reconstructing the latitudinal temperature gradient in past climates remains challenging due to the scarcity of appropriate proxy records and large proxy–model disagreements. Here, we develop methods leveraging an extensive compilation of planktonic foraminifera δ18O to reconstruct a continuous record of the latitudinal sea-surface temperature (SST) gradient over the last 95 million years (My). We find that latitudinal SST gradients ranged from 26.5 to 15.3 °C over a mean global SST range of 15.3 to 32.5 °C, with the highest gradients during the coldest intervals of time. From this relationship, we calculate a polar amplification factor (PAF; the ratio of change in &gt;60° S SST to change in global mean SST) of 1.44 ± 0.15. Our results are closer to model predictions than previous proxy-based estimates, primarily because δ18O-based high-latitude SST estimates more closely track benthic temperatures, yielding higher gradients. The consistent covariance of δ18O values in low- and high-latitude planktonic foraminifera and in benthic foraminifera, across numerous climate states, suggests a fundamental constraint on multiple aspects of the climate system, linking deep-sea temperatures, the latitudinal SST gradient, and global mean SSTs across large changes in atmospheric CO2, continental configuration, oceanic gateways, and the extent of continental ice sheets. This implies an important underlying, internally driven predictability of the climate system in vastly different background states.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2111332119</identifier><identifier>PMID: 35254906</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Atmospheric models ; Carbon dioxide ; Climate ; Climate prediction ; Deep sea ; Estimates ; Global climate models ; Heat transport ; Ice sheets ; Latitude ; Physical Sciences ; Radiative transfer ; Sea surface temperature ; Temperature ; Temperature gradients</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-03, Vol.119 (11), p.1-e2111332119</ispartof><rights>Copyright National Academy of Sciences Mar 15, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8931236/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8931236/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Gaskell, Daniel E</creatorcontrib><creatorcontrib>Huber, Matthew</creatorcontrib><creatorcontrib>O'Brien, Charlotte L</creatorcontrib><creatorcontrib>Inglis, Gordon N</creatorcontrib><creatorcontrib>Acosta, R Paul</creatorcontrib><creatorcontrib>Poulsen, Christopher J</creatorcontrib><creatorcontrib>Hull, Pincelli M</creatorcontrib><title>The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>The latitudinal temperature gradient is a fundamental state parameter of the climate system tied to the dynamics of heat transport and radiative transfer. Thus, it is a primary target for temperature proxy reconstructions and global climate models. However, reconstructing the latitudinal temperature gradient in past climates remains challenging due to the scarcity of appropriate proxy records and large proxy–model disagreements. Here, we develop methods leveraging an extensive compilation of planktonic foraminifera δ18O to reconstruct a continuous record of the latitudinal sea-surface temperature (SST) gradient over the last 95 million years (My). We find that latitudinal SST gradients ranged from 26.5 to 15.3 °C over a mean global SST range of 15.3 to 32.5 °C, with the highest gradients during the coldest intervals of time. From this relationship, we calculate a polar amplification factor (PAF; the ratio of change in &gt;60° S SST to change in global mean SST) of 1.44 ± 0.15. Our results are closer to model predictions than previous proxy-based estimates, primarily because δ18O-based high-latitude SST estimates more closely track benthic temperatures, yielding higher gradients. The consistent covariance of δ18O values in low- and high-latitude planktonic foraminifera and in benthic foraminifera, across numerous climate states, suggests a fundamental constraint on multiple aspects of the climate system, linking deep-sea temperatures, the latitudinal SST gradient, and global mean SSTs across large changes in atmospheric CO2, continental configuration, oceanic gateways, and the extent of continental ice sheets. This implies an important underlying, internally driven predictability of the climate system in vastly different background states.</description><subject>Atmospheric models</subject><subject>Carbon dioxide</subject><subject>Climate</subject><subject>Climate prediction</subject><subject>Deep sea</subject><subject>Estimates</subject><subject>Global climate models</subject><subject>Heat transport</subject><subject>Ice sheets</subject><subject>Latitude</subject><subject>Physical Sciences</subject><subject>Radiative transfer</subject><subject>Sea surface temperature</subject><subject>Temperature</subject><subject>Temperature gradients</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkM1q3TAQhUVJaG5-1t0KusnG6UiyrqVNIYS0KQTu5mZtZGuU6GJLriQHsu4r9Tn6TFVoNulmBmY-zsw5hHxicMWgE1-WYPIVZ4wJUav-QDYMNGu2rYYjsgHgXaNa3p6Q05wPAKClgo_kREguK7LdkF_7J6STKb6s1gcz0YLzgsmUNSF9TMZ6DIWaYKkvmY6Tn01BanHBYDGMSE2mPjhMCS11Kc7UxWRmH3ydVbk_v5na0fiMiZZ6aTG5UC3p7KfJx0Bf0KR8To6dmTJevPUz8vDtdn9z19zvvv-4ub5vDpwL3XQS9TioblCcoWv5CApHpTqHxoE0YBUOrAUxSu6YdAbaDhAHjUOnrAArzsjXf7rLOsxox-qsvtgvqZpKL300vn-_Cf6pf4zPvdKCcbGtApdvAin-XDGXfvZ5xGkyAeOae74VnWBaSVHRz_-hh7imGvAr1TJ4jZ-JvyqBjCs</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Gaskell, Daniel E</creator><creator>Huber, Matthew</creator><creator>O'Brien, Charlotte L</creator><creator>Inglis, Gordon N</creator><creator>Acosta, R Paul</creator><creator>Poulsen, Christopher J</creator><creator>Hull, Pincelli M</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220315</creationdate><title>The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years</title><author>Gaskell, Daniel E ; Huber, Matthew ; O'Brien, Charlotte L ; Inglis, Gordon N ; Acosta, R Paul ; Poulsen, Christopher J ; Hull, Pincelli M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j2239-75e9cb87b821ef42c08ec887feaf05a0d8eb1403c52f15fa0470eeb9eb78d30d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atmospheric models</topic><topic>Carbon dioxide</topic><topic>Climate</topic><topic>Climate prediction</topic><topic>Deep sea</topic><topic>Estimates</topic><topic>Global climate models</topic><topic>Heat transport</topic><topic>Ice sheets</topic><topic>Latitude</topic><topic>Physical Sciences</topic><topic>Radiative transfer</topic><topic>Sea surface temperature</topic><topic>Temperature</topic><topic>Temperature gradients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaskell, Daniel E</creatorcontrib><creatorcontrib>Huber, Matthew</creatorcontrib><creatorcontrib>O'Brien, Charlotte L</creatorcontrib><creatorcontrib>Inglis, Gordon N</creatorcontrib><creatorcontrib>Acosta, R Paul</creatorcontrib><creatorcontrib>Poulsen, Christopher J</creatorcontrib><creatorcontrib>Hull, Pincelli M</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaskell, Daniel E</au><au>Huber, Matthew</au><au>O'Brien, Charlotte L</au><au>Inglis, Gordon N</au><au>Acosta, R Paul</au><au>Poulsen, Christopher J</au><au>Hull, Pincelli M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2022-03-15</date><risdate>2022</risdate><volume>119</volume><issue>11</issue><spage>1</spage><epage>e2111332119</epage><pages>1-e2111332119</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The latitudinal temperature gradient is a fundamental state parameter of the climate system tied to the dynamics of heat transport and radiative transfer. Thus, it is a primary target for temperature proxy reconstructions and global climate models. However, reconstructing the latitudinal temperature gradient in past climates remains challenging due to the scarcity of appropriate proxy records and large proxy–model disagreements. Here, we develop methods leveraging an extensive compilation of planktonic foraminifera δ18O to reconstruct a continuous record of the latitudinal sea-surface temperature (SST) gradient over the last 95 million years (My). We find that latitudinal SST gradients ranged from 26.5 to 15.3 °C over a mean global SST range of 15.3 to 32.5 °C, with the highest gradients during the coldest intervals of time. From this relationship, we calculate a polar amplification factor (PAF; the ratio of change in &gt;60° S SST to change in global mean SST) of 1.44 ± 0.15. Our results are closer to model predictions than previous proxy-based estimates, primarily because δ18O-based high-latitude SST estimates more closely track benthic temperatures, yielding higher gradients. The consistent covariance of δ18O values in low- and high-latitude planktonic foraminifera and in benthic foraminifera, across numerous climate states, suggests a fundamental constraint on multiple aspects of the climate system, linking deep-sea temperatures, the latitudinal SST gradient, and global mean SSTs across large changes in atmospheric CO2, continental configuration, oceanic gateways, and the extent of continental ice sheets. This implies an important underlying, internally driven predictability of the climate system in vastly different background states.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>35254906</pmid><doi>10.1073/pnas.2111332119</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2022-03, Vol.119 (11), p.1-e2111332119
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8931236
source PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Atmospheric models
Carbon dioxide
Climate
Climate prediction
Deep sea
Estimates
Global climate models
Heat transport
Ice sheets
Latitude
Physical Sciences
Radiative transfer
Sea surface temperature
Temperature
Temperature gradients
title The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A14%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20latitudinal%20temperature%20gradient%20and%20its%20climate%20dependence%20as%20inferred%20from%20foraminiferal%20%CE%B418O%20over%20the%20past%2095%20million%20years&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Gaskell,%20Daniel%20E&rft.date=2022-03-15&rft.volume=119&rft.issue=11&rft.spage=1&rft.epage=e2111332119&rft.pages=1-e2111332119&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2111332119&rft_dat=%3Cproquest_pubme%3E2641054901%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641054901&rft_id=info:pmid/35254906&rfr_iscdi=true