Optimising respiratory support for early COVID-19 pneumonia: a computational modelling study

Optimal respiratory support in early COVID-19 pneumonia is controversial and remains unclear. Using computational modelling, we examined whether lung injury might be exacerbated in early COVID-19 by assessing the impact of conventional oxygen therapy (COT), high-flow nasal oxygen therapy (HFNOT), co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of anaesthesia : BJA 2022-06, Vol.128 (6), p.1052-1058
Hauptverfasser: Weaver, Liam, Das, Anup, Saffaran, Sina, Yehya, Nadir, Chikhani, Marc, Scott, Timothy E., Laffey, John G., Hardman, Jonathan G., Camporota, Luigi, Bates, Declan G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1058
container_issue 6
container_start_page 1052
container_title British journal of anaesthesia : BJA
container_volume 128
creator Weaver, Liam
Das, Anup
Saffaran, Sina
Yehya, Nadir
Chikhani, Marc
Scott, Timothy E.
Laffey, John G.
Hardman, Jonathan G.
Camporota, Luigi
Bates, Declan G.
description Optimal respiratory support in early COVID-19 pneumonia is controversial and remains unclear. Using computational modelling, we examined whether lung injury might be exacerbated in early COVID-19 by assessing the impact of conventional oxygen therapy (COT), high-flow nasal oxygen therapy (HFNOT), continuous positive airway pressure (CPAP), and noninvasive ventilation (NIV). Using an established multi-compartmental cardiopulmonary simulator, we first modelled COT at a fixed FiO2 (0.6) with elevated respiratory effort for 30 min in 120 spontaneously breathing patients, before initiating HFNOT, CPAP, or NIV. Respiratory effort was then reduced progressively over 30-min intervals. Oxygenation, respiratory effort, and lung stress/strain were quantified. Lung-protective mechanical ventilation was also simulated in the same cohort. HFNOT, CPAP, and NIV improved oxygenation compared with conventional therapy, but also initially increased total lung stress and strain. Improved oxygenation with CPAP reduced respiratory effort but lung stress/strain remained elevated for CPAP >5 cm H2O. With reduced respiratory effort, HFNOT maintained better oxygenation and reduced total lung stress, with no increase in total lung strain. Compared with 10 cm H2O PEEP, 4 cm H2O PEEP in NIV reduced total lung stress, but high total lung strain persisted even with less respiratory effort. Lung-protective mechanical ventilation improved oxygenation while minimising lung injury. The failure of noninvasive ventilatory support to reduce respiratory effort may exacerbate pulmonary injury in patients with early COVID-19 pneumonia. HFNOT reduces lung strain and achieves similar oxygenation to CPAP/NIV. Invasive mechanical ventilation may be less injurious than noninvasive support in patients with high respiratory effort.
doi_str_mv 10.1016/j.bja.2022.02.037
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8930396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0007091222001301</els_id><sourcerecordid>2649589219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-99918f301d381880c51eb0fb4a3bfccd1511fe52925737815f6d751bc400cfba3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7rj6A7xIH730WJV0Oh0FYRm_Fhbmop6EkE4na4buTpukF-bfm2HWRS9CQR3qrac-XkJeImwRsH1z2PYHvaVA6RZKMPGIbLARWLdC4GOyAQBRg0R6QZ6ldABAQSV_Si4YbxCEhA35sV-yn3zy820VbVp81DnEY5XWZQkxVy7Eyuo4Hqvd_vv1hxpltcx2ncLs9dtKVyZMy5p19mHWYzWFwY7jiZXyOhyfkydOj8m-uM-X5Nunj193X-qb_efr3dVNbRqOuZZSYucY4MA67DowHG0Prm80650xA3JEZzmVlAsmOuSuHQTH3jQAxvWaXZL3Z-6y9pMdjJ1z1KNaop90PKqgvfq3Mvuf6jbcqU4yYLItgNf3gBh-rTZlVV5iyil6tmFNiraN5J2kKIsUz1ITQ0rRuocxCOrkijqo4oo6uaKgBBOl59Xf-z10_LGhCN6dBbZ86c7bqJLxdjZ28NGarIbg_4P_DXfhnuk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649589219</pqid></control><display><type>article</type><title>Optimising respiratory support for early COVID-19 pneumonia: a computational modelling study</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Weaver, Liam ; Das, Anup ; Saffaran, Sina ; Yehya, Nadir ; Chikhani, Marc ; Scott, Timothy E. ; Laffey, John G. ; Hardman, Jonathan G. ; Camporota, Luigi ; Bates, Declan G.</creator><creatorcontrib>Weaver, Liam ; Das, Anup ; Saffaran, Sina ; Yehya, Nadir ; Chikhani, Marc ; Scott, Timothy E. ; Laffey, John G. ; Hardman, Jonathan G. ; Camporota, Luigi ; Bates, Declan G.</creatorcontrib><description>Optimal respiratory support in early COVID-19 pneumonia is controversial and remains unclear. Using computational modelling, we examined whether lung injury might be exacerbated in early COVID-19 by assessing the impact of conventional oxygen therapy (COT), high-flow nasal oxygen therapy (HFNOT), continuous positive airway pressure (CPAP), and noninvasive ventilation (NIV). Using an established multi-compartmental cardiopulmonary simulator, we first modelled COT at a fixed FiO2 (0.6) with elevated respiratory effort for 30 min in 120 spontaneously breathing patients, before initiating HFNOT, CPAP, or NIV. Respiratory effort was then reduced progressively over 30-min intervals. Oxygenation, respiratory effort, and lung stress/strain were quantified. Lung-protective mechanical ventilation was also simulated in the same cohort. HFNOT, CPAP, and NIV improved oxygenation compared with conventional therapy, but also initially increased total lung stress and strain. Improved oxygenation with CPAP reduced respiratory effort but lung stress/strain remained elevated for CPAP &gt;5 cm H2O. With reduced respiratory effort, HFNOT maintained better oxygenation and reduced total lung stress, with no increase in total lung strain. Compared with 10 cm H2O PEEP, 4 cm H2O PEEP in NIV reduced total lung stress, but high total lung strain persisted even with less respiratory effort. Lung-protective mechanical ventilation improved oxygenation while minimising lung injury. The failure of noninvasive ventilatory support to reduce respiratory effort may exacerbate pulmonary injury in patients with early COVID-19 pneumonia. HFNOT reduces lung strain and achieves similar oxygenation to CPAP/NIV. Invasive mechanical ventilation may be less injurious than noninvasive support in patients with high respiratory effort.</description><identifier>ISSN: 0007-0912</identifier><identifier>EISSN: 1471-6771</identifier><identifier>DOI: 10.1016/j.bja.2022.02.037</identifier><identifier>PMID: 35410790</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>acute respiratory failure ; computational modelling ; COVID-19 ; mechanical ventilation ; noninvasive respiratory support ; patient self-inflicted lung injury ; Respiration and the Airway</subject><ispartof>British journal of anaesthesia : BJA, 2022-06, Vol.128 (6), p.1052-1058</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><rights>2022 The Authors 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-99918f301d381880c51eb0fb4a3bfccd1511fe52925737815f6d751bc400cfba3</citedby><cites>FETCH-LOGICAL-c451t-99918f301d381880c51eb0fb4a3bfccd1511fe52925737815f6d751bc400cfba3</cites><orcidid>0000-0001-5600-1676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35410790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weaver, Liam</creatorcontrib><creatorcontrib>Das, Anup</creatorcontrib><creatorcontrib>Saffaran, Sina</creatorcontrib><creatorcontrib>Yehya, Nadir</creatorcontrib><creatorcontrib>Chikhani, Marc</creatorcontrib><creatorcontrib>Scott, Timothy E.</creatorcontrib><creatorcontrib>Laffey, John G.</creatorcontrib><creatorcontrib>Hardman, Jonathan G.</creatorcontrib><creatorcontrib>Camporota, Luigi</creatorcontrib><creatorcontrib>Bates, Declan G.</creatorcontrib><title>Optimising respiratory support for early COVID-19 pneumonia: a computational modelling study</title><title>British journal of anaesthesia : BJA</title><addtitle>Br J Anaesth</addtitle><description>Optimal respiratory support in early COVID-19 pneumonia is controversial and remains unclear. Using computational modelling, we examined whether lung injury might be exacerbated in early COVID-19 by assessing the impact of conventional oxygen therapy (COT), high-flow nasal oxygen therapy (HFNOT), continuous positive airway pressure (CPAP), and noninvasive ventilation (NIV). Using an established multi-compartmental cardiopulmonary simulator, we first modelled COT at a fixed FiO2 (0.6) with elevated respiratory effort for 30 min in 120 spontaneously breathing patients, before initiating HFNOT, CPAP, or NIV. Respiratory effort was then reduced progressively over 30-min intervals. Oxygenation, respiratory effort, and lung stress/strain were quantified. Lung-protective mechanical ventilation was also simulated in the same cohort. HFNOT, CPAP, and NIV improved oxygenation compared with conventional therapy, but also initially increased total lung stress and strain. Improved oxygenation with CPAP reduced respiratory effort but lung stress/strain remained elevated for CPAP &gt;5 cm H2O. With reduced respiratory effort, HFNOT maintained better oxygenation and reduced total lung stress, with no increase in total lung strain. Compared with 10 cm H2O PEEP, 4 cm H2O PEEP in NIV reduced total lung stress, but high total lung strain persisted even with less respiratory effort. Lung-protective mechanical ventilation improved oxygenation while minimising lung injury. The failure of noninvasive ventilatory support to reduce respiratory effort may exacerbate pulmonary injury in patients with early COVID-19 pneumonia. HFNOT reduces lung strain and achieves similar oxygenation to CPAP/NIV. Invasive mechanical ventilation may be less injurious than noninvasive support in patients with high respiratory effort.</description><subject>acute respiratory failure</subject><subject>computational modelling</subject><subject>COVID-19</subject><subject>mechanical ventilation</subject><subject>noninvasive respiratory support</subject><subject>patient self-inflicted lung injury</subject><subject>Respiration and the Airway</subject><issn>0007-0912</issn><issn>1471-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU2LFDEQhoMo7rj6A7xIH730WJV0Oh0FYRm_Fhbmop6EkE4na4buTpukF-bfm2HWRS9CQR3qrac-XkJeImwRsH1z2PYHvaVA6RZKMPGIbLARWLdC4GOyAQBRg0R6QZ6ldABAQSV_Si4YbxCEhA35sV-yn3zy820VbVp81DnEY5XWZQkxVy7Eyuo4Hqvd_vv1hxpltcx2ncLs9dtKVyZMy5p19mHWYzWFwY7jiZXyOhyfkydOj8m-uM-X5Nunj193X-qb_efr3dVNbRqOuZZSYucY4MA67DowHG0Prm80650xA3JEZzmVlAsmOuSuHQTH3jQAxvWaXZL3Z-6y9pMdjJ1z1KNaop90PKqgvfq3Mvuf6jbcqU4yYLItgNf3gBh-rTZlVV5iyil6tmFNiraN5J2kKIsUz1ITQ0rRuocxCOrkijqo4oo6uaKgBBOl59Xf-z10_LGhCN6dBbZ86c7bqJLxdjZ28NGarIbg_4P_DXfhnuk</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Weaver, Liam</creator><creator>Das, Anup</creator><creator>Saffaran, Sina</creator><creator>Yehya, Nadir</creator><creator>Chikhani, Marc</creator><creator>Scott, Timothy E.</creator><creator>Laffey, John G.</creator><creator>Hardman, Jonathan G.</creator><creator>Camporota, Luigi</creator><creator>Bates, Declan G.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5600-1676</orcidid></search><sort><creationdate>20220601</creationdate><title>Optimising respiratory support for early COVID-19 pneumonia: a computational modelling study</title><author>Weaver, Liam ; Das, Anup ; Saffaran, Sina ; Yehya, Nadir ; Chikhani, Marc ; Scott, Timothy E. ; Laffey, John G. ; Hardman, Jonathan G. ; Camporota, Luigi ; Bates, Declan G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-99918f301d381880c51eb0fb4a3bfccd1511fe52925737815f6d751bc400cfba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>acute respiratory failure</topic><topic>computational modelling</topic><topic>COVID-19</topic><topic>mechanical ventilation</topic><topic>noninvasive respiratory support</topic><topic>patient self-inflicted lung injury</topic><topic>Respiration and the Airway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weaver, Liam</creatorcontrib><creatorcontrib>Das, Anup</creatorcontrib><creatorcontrib>Saffaran, Sina</creatorcontrib><creatorcontrib>Yehya, Nadir</creatorcontrib><creatorcontrib>Chikhani, Marc</creatorcontrib><creatorcontrib>Scott, Timothy E.</creatorcontrib><creatorcontrib>Laffey, John G.</creatorcontrib><creatorcontrib>Hardman, Jonathan G.</creatorcontrib><creatorcontrib>Camporota, Luigi</creatorcontrib><creatorcontrib>Bates, Declan G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of anaesthesia : BJA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weaver, Liam</au><au>Das, Anup</au><au>Saffaran, Sina</au><au>Yehya, Nadir</au><au>Chikhani, Marc</au><au>Scott, Timothy E.</au><au>Laffey, John G.</au><au>Hardman, Jonathan G.</au><au>Camporota, Luigi</au><au>Bates, Declan G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimising respiratory support for early COVID-19 pneumonia: a computational modelling study</atitle><jtitle>British journal of anaesthesia : BJA</jtitle><addtitle>Br J Anaesth</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>128</volume><issue>6</issue><spage>1052</spage><epage>1058</epage><pages>1052-1058</pages><issn>0007-0912</issn><eissn>1471-6771</eissn><abstract>Optimal respiratory support in early COVID-19 pneumonia is controversial and remains unclear. Using computational modelling, we examined whether lung injury might be exacerbated in early COVID-19 by assessing the impact of conventional oxygen therapy (COT), high-flow nasal oxygen therapy (HFNOT), continuous positive airway pressure (CPAP), and noninvasive ventilation (NIV). Using an established multi-compartmental cardiopulmonary simulator, we first modelled COT at a fixed FiO2 (0.6) with elevated respiratory effort for 30 min in 120 spontaneously breathing patients, before initiating HFNOT, CPAP, or NIV. Respiratory effort was then reduced progressively over 30-min intervals. Oxygenation, respiratory effort, and lung stress/strain were quantified. Lung-protective mechanical ventilation was also simulated in the same cohort. HFNOT, CPAP, and NIV improved oxygenation compared with conventional therapy, but also initially increased total lung stress and strain. Improved oxygenation with CPAP reduced respiratory effort but lung stress/strain remained elevated for CPAP &gt;5 cm H2O. With reduced respiratory effort, HFNOT maintained better oxygenation and reduced total lung stress, with no increase in total lung strain. Compared with 10 cm H2O PEEP, 4 cm H2O PEEP in NIV reduced total lung stress, but high total lung strain persisted even with less respiratory effort. Lung-protective mechanical ventilation improved oxygenation while minimising lung injury. The failure of noninvasive ventilatory support to reduce respiratory effort may exacerbate pulmonary injury in patients with early COVID-19 pneumonia. HFNOT reduces lung strain and achieves similar oxygenation to CPAP/NIV. Invasive mechanical ventilation may be less injurious than noninvasive support in patients with high respiratory effort.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35410790</pmid><doi>10.1016/j.bja.2022.02.037</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5600-1676</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-0912
ispartof British journal of anaesthesia : BJA, 2022-06, Vol.128 (6), p.1052-1058
issn 0007-0912
1471-6771
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8930396
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects acute respiratory failure
computational modelling
COVID-19
mechanical ventilation
noninvasive respiratory support
patient self-inflicted lung injury
Respiration and the Airway
title Optimising respiratory support for early COVID-19 pneumonia: a computational modelling study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimising%20respiratory%20support%20for%20early%20COVID-19%20pneumonia:%20a%20computational%20modelling%20study&rft.jtitle=British%20journal%20of%20anaesthesia%20:%20BJA&rft.au=Weaver,%20Liam&rft.date=2022-06-01&rft.volume=128&rft.issue=6&rft.spage=1052&rft.epage=1058&rft.pages=1052-1058&rft.issn=0007-0912&rft.eissn=1471-6771&rft_id=info:doi/10.1016/j.bja.2022.02.037&rft_dat=%3Cproquest_pubme%3E2649589219%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649589219&rft_id=info:pmid/35410790&rft_els_id=S0007091222001301&rfr_iscdi=true