Optimising respiratory support for early COVID-19 pneumonia: a computational modelling study
Optimal respiratory support in early COVID-19 pneumonia is controversial and remains unclear. Using computational modelling, we examined whether lung injury might be exacerbated in early COVID-19 by assessing the impact of conventional oxygen therapy (COT), high-flow nasal oxygen therapy (HFNOT), co...
Gespeichert in:
Veröffentlicht in: | British journal of anaesthesia : BJA 2022-06, Vol.128 (6), p.1052-1058 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1058 |
---|---|
container_issue | 6 |
container_start_page | 1052 |
container_title | British journal of anaesthesia : BJA |
container_volume | 128 |
creator | Weaver, Liam Das, Anup Saffaran, Sina Yehya, Nadir Chikhani, Marc Scott, Timothy E. Laffey, John G. Hardman, Jonathan G. Camporota, Luigi Bates, Declan G. |
description | Optimal respiratory support in early COVID-19 pneumonia is controversial and remains unclear. Using computational modelling, we examined whether lung injury might be exacerbated in early COVID-19 by assessing the impact of conventional oxygen therapy (COT), high-flow nasal oxygen therapy (HFNOT), continuous positive airway pressure (CPAP), and noninvasive ventilation (NIV).
Using an established multi-compartmental cardiopulmonary simulator, we first modelled COT at a fixed FiO2 (0.6) with elevated respiratory effort for 30 min in 120 spontaneously breathing patients, before initiating HFNOT, CPAP, or NIV. Respiratory effort was then reduced progressively over 30-min intervals. Oxygenation, respiratory effort, and lung stress/strain were quantified. Lung-protective mechanical ventilation was also simulated in the same cohort.
HFNOT, CPAP, and NIV improved oxygenation compared with conventional therapy, but also initially increased total lung stress and strain. Improved oxygenation with CPAP reduced respiratory effort but lung stress/strain remained elevated for CPAP >5 cm H2O. With reduced respiratory effort, HFNOT maintained better oxygenation and reduced total lung stress, with no increase in total lung strain. Compared with 10 cm H2O PEEP, 4 cm H2O PEEP in NIV reduced total lung stress, but high total lung strain persisted even with less respiratory effort. Lung-protective mechanical ventilation improved oxygenation while minimising lung injury.
The failure of noninvasive ventilatory support to reduce respiratory effort may exacerbate pulmonary injury in patients with early COVID-19 pneumonia. HFNOT reduces lung strain and achieves similar oxygenation to CPAP/NIV. Invasive mechanical ventilation may be less injurious than noninvasive support in patients with high respiratory effort. |
doi_str_mv | 10.1016/j.bja.2022.02.037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8930396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0007091222001301</els_id><sourcerecordid>2649589219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-99918f301d381880c51eb0fb4a3bfccd1511fe52925737815f6d751bc400cfba3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7rj6A7xIH730WJV0Oh0FYRm_Fhbmop6EkE4na4buTpukF-bfm2HWRS9CQR3qrac-XkJeImwRsH1z2PYHvaVA6RZKMPGIbLARWLdC4GOyAQBRg0R6QZ6ldABAQSV_Si4YbxCEhA35sV-yn3zy820VbVp81DnEY5XWZQkxVy7Eyuo4Hqvd_vv1hxpltcx2ncLs9dtKVyZMy5p19mHWYzWFwY7jiZXyOhyfkydOj8m-uM-X5Nunj193X-qb_efr3dVNbRqOuZZSYucY4MA67DowHG0Prm80650xA3JEZzmVlAsmOuSuHQTH3jQAxvWaXZL3Z-6y9pMdjJ1z1KNaop90PKqgvfq3Mvuf6jbcqU4yYLItgNf3gBh-rTZlVV5iyil6tmFNiraN5J2kKIsUz1ITQ0rRuocxCOrkijqo4oo6uaKgBBOl59Xf-z10_LGhCN6dBbZ86c7bqJLxdjZ28NGarIbg_4P_DXfhnuk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649589219</pqid></control><display><type>article</type><title>Optimising respiratory support for early COVID-19 pneumonia: a computational modelling study</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Weaver, Liam ; Das, Anup ; Saffaran, Sina ; Yehya, Nadir ; Chikhani, Marc ; Scott, Timothy E. ; Laffey, John G. ; Hardman, Jonathan G. ; Camporota, Luigi ; Bates, Declan G.</creator><creatorcontrib>Weaver, Liam ; Das, Anup ; Saffaran, Sina ; Yehya, Nadir ; Chikhani, Marc ; Scott, Timothy E. ; Laffey, John G. ; Hardman, Jonathan G. ; Camporota, Luigi ; Bates, Declan G.</creatorcontrib><description>Optimal respiratory support in early COVID-19 pneumonia is controversial and remains unclear. Using computational modelling, we examined whether lung injury might be exacerbated in early COVID-19 by assessing the impact of conventional oxygen therapy (COT), high-flow nasal oxygen therapy (HFNOT), continuous positive airway pressure (CPAP), and noninvasive ventilation (NIV).
Using an established multi-compartmental cardiopulmonary simulator, we first modelled COT at a fixed FiO2 (0.6) with elevated respiratory effort for 30 min in 120 spontaneously breathing patients, before initiating HFNOT, CPAP, or NIV. Respiratory effort was then reduced progressively over 30-min intervals. Oxygenation, respiratory effort, and lung stress/strain were quantified. Lung-protective mechanical ventilation was also simulated in the same cohort.
HFNOT, CPAP, and NIV improved oxygenation compared with conventional therapy, but also initially increased total lung stress and strain. Improved oxygenation with CPAP reduced respiratory effort but lung stress/strain remained elevated for CPAP >5 cm H2O. With reduced respiratory effort, HFNOT maintained better oxygenation and reduced total lung stress, with no increase in total lung strain. Compared with 10 cm H2O PEEP, 4 cm H2O PEEP in NIV reduced total lung stress, but high total lung strain persisted even with less respiratory effort. Lung-protective mechanical ventilation improved oxygenation while minimising lung injury.
The failure of noninvasive ventilatory support to reduce respiratory effort may exacerbate pulmonary injury in patients with early COVID-19 pneumonia. HFNOT reduces lung strain and achieves similar oxygenation to CPAP/NIV. Invasive mechanical ventilation may be less injurious than noninvasive support in patients with high respiratory effort.</description><identifier>ISSN: 0007-0912</identifier><identifier>EISSN: 1471-6771</identifier><identifier>DOI: 10.1016/j.bja.2022.02.037</identifier><identifier>PMID: 35410790</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>acute respiratory failure ; computational modelling ; COVID-19 ; mechanical ventilation ; noninvasive respiratory support ; patient self-inflicted lung injury ; Respiration and the Airway</subject><ispartof>British journal of anaesthesia : BJA, 2022-06, Vol.128 (6), p.1052-1058</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><rights>2022 The Authors 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-99918f301d381880c51eb0fb4a3bfccd1511fe52925737815f6d751bc400cfba3</citedby><cites>FETCH-LOGICAL-c451t-99918f301d381880c51eb0fb4a3bfccd1511fe52925737815f6d751bc400cfba3</cites><orcidid>0000-0001-5600-1676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35410790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weaver, Liam</creatorcontrib><creatorcontrib>Das, Anup</creatorcontrib><creatorcontrib>Saffaran, Sina</creatorcontrib><creatorcontrib>Yehya, Nadir</creatorcontrib><creatorcontrib>Chikhani, Marc</creatorcontrib><creatorcontrib>Scott, Timothy E.</creatorcontrib><creatorcontrib>Laffey, John G.</creatorcontrib><creatorcontrib>Hardman, Jonathan G.</creatorcontrib><creatorcontrib>Camporota, Luigi</creatorcontrib><creatorcontrib>Bates, Declan G.</creatorcontrib><title>Optimising respiratory support for early COVID-19 pneumonia: a computational modelling study</title><title>British journal of anaesthesia : BJA</title><addtitle>Br J Anaesth</addtitle><description>Optimal respiratory support in early COVID-19 pneumonia is controversial and remains unclear. Using computational modelling, we examined whether lung injury might be exacerbated in early COVID-19 by assessing the impact of conventional oxygen therapy (COT), high-flow nasal oxygen therapy (HFNOT), continuous positive airway pressure (CPAP), and noninvasive ventilation (NIV).
Using an established multi-compartmental cardiopulmonary simulator, we first modelled COT at a fixed FiO2 (0.6) with elevated respiratory effort for 30 min in 120 spontaneously breathing patients, before initiating HFNOT, CPAP, or NIV. Respiratory effort was then reduced progressively over 30-min intervals. Oxygenation, respiratory effort, and lung stress/strain were quantified. Lung-protective mechanical ventilation was also simulated in the same cohort.
HFNOT, CPAP, and NIV improved oxygenation compared with conventional therapy, but also initially increased total lung stress and strain. Improved oxygenation with CPAP reduced respiratory effort but lung stress/strain remained elevated for CPAP >5 cm H2O. With reduced respiratory effort, HFNOT maintained better oxygenation and reduced total lung stress, with no increase in total lung strain. Compared with 10 cm H2O PEEP, 4 cm H2O PEEP in NIV reduced total lung stress, but high total lung strain persisted even with less respiratory effort. Lung-protective mechanical ventilation improved oxygenation while minimising lung injury.
The failure of noninvasive ventilatory support to reduce respiratory effort may exacerbate pulmonary injury in patients with early COVID-19 pneumonia. HFNOT reduces lung strain and achieves similar oxygenation to CPAP/NIV. Invasive mechanical ventilation may be less injurious than noninvasive support in patients with high respiratory effort.</description><subject>acute respiratory failure</subject><subject>computational modelling</subject><subject>COVID-19</subject><subject>mechanical ventilation</subject><subject>noninvasive respiratory support</subject><subject>patient self-inflicted lung injury</subject><subject>Respiration and the Airway</subject><issn>0007-0912</issn><issn>1471-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU2LFDEQhoMo7rj6A7xIH730WJV0Oh0FYRm_Fhbmop6EkE4na4buTpukF-bfm2HWRS9CQR3qrac-XkJeImwRsH1z2PYHvaVA6RZKMPGIbLARWLdC4GOyAQBRg0R6QZ6ldABAQSV_Si4YbxCEhA35sV-yn3zy820VbVp81DnEY5XWZQkxVy7Eyuo4Hqvd_vv1hxpltcx2ncLs9dtKVyZMy5p19mHWYzWFwY7jiZXyOhyfkydOj8m-uM-X5Nunj193X-qb_efr3dVNbRqOuZZSYucY4MA67DowHG0Prm80650xA3JEZzmVlAsmOuSuHQTH3jQAxvWaXZL3Z-6y9pMdjJ1z1KNaop90PKqgvfq3Mvuf6jbcqU4yYLItgNf3gBh-rTZlVV5iyil6tmFNiraN5J2kKIsUz1ITQ0rRuocxCOrkijqo4oo6uaKgBBOl59Xf-z10_LGhCN6dBbZ86c7bqJLxdjZ28NGarIbg_4P_DXfhnuk</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Weaver, Liam</creator><creator>Das, Anup</creator><creator>Saffaran, Sina</creator><creator>Yehya, Nadir</creator><creator>Chikhani, Marc</creator><creator>Scott, Timothy E.</creator><creator>Laffey, John G.</creator><creator>Hardman, Jonathan G.</creator><creator>Camporota, Luigi</creator><creator>Bates, Declan G.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5600-1676</orcidid></search><sort><creationdate>20220601</creationdate><title>Optimising respiratory support for early COVID-19 pneumonia: a computational modelling study</title><author>Weaver, Liam ; Das, Anup ; Saffaran, Sina ; Yehya, Nadir ; Chikhani, Marc ; Scott, Timothy E. ; Laffey, John G. ; Hardman, Jonathan G. ; Camporota, Luigi ; Bates, Declan G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-99918f301d381880c51eb0fb4a3bfccd1511fe52925737815f6d751bc400cfba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>acute respiratory failure</topic><topic>computational modelling</topic><topic>COVID-19</topic><topic>mechanical ventilation</topic><topic>noninvasive respiratory support</topic><topic>patient self-inflicted lung injury</topic><topic>Respiration and the Airway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weaver, Liam</creatorcontrib><creatorcontrib>Das, Anup</creatorcontrib><creatorcontrib>Saffaran, Sina</creatorcontrib><creatorcontrib>Yehya, Nadir</creatorcontrib><creatorcontrib>Chikhani, Marc</creatorcontrib><creatorcontrib>Scott, Timothy E.</creatorcontrib><creatorcontrib>Laffey, John G.</creatorcontrib><creatorcontrib>Hardman, Jonathan G.</creatorcontrib><creatorcontrib>Camporota, Luigi</creatorcontrib><creatorcontrib>Bates, Declan G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of anaesthesia : BJA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weaver, Liam</au><au>Das, Anup</au><au>Saffaran, Sina</au><au>Yehya, Nadir</au><au>Chikhani, Marc</au><au>Scott, Timothy E.</au><au>Laffey, John G.</au><au>Hardman, Jonathan G.</au><au>Camporota, Luigi</au><au>Bates, Declan G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimising respiratory support for early COVID-19 pneumonia: a computational modelling study</atitle><jtitle>British journal of anaesthesia : BJA</jtitle><addtitle>Br J Anaesth</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>128</volume><issue>6</issue><spage>1052</spage><epage>1058</epage><pages>1052-1058</pages><issn>0007-0912</issn><eissn>1471-6771</eissn><abstract>Optimal respiratory support in early COVID-19 pneumonia is controversial and remains unclear. Using computational modelling, we examined whether lung injury might be exacerbated in early COVID-19 by assessing the impact of conventional oxygen therapy (COT), high-flow nasal oxygen therapy (HFNOT), continuous positive airway pressure (CPAP), and noninvasive ventilation (NIV).
Using an established multi-compartmental cardiopulmonary simulator, we first modelled COT at a fixed FiO2 (0.6) with elevated respiratory effort for 30 min in 120 spontaneously breathing patients, before initiating HFNOT, CPAP, or NIV. Respiratory effort was then reduced progressively over 30-min intervals. Oxygenation, respiratory effort, and lung stress/strain were quantified. Lung-protective mechanical ventilation was also simulated in the same cohort.
HFNOT, CPAP, and NIV improved oxygenation compared with conventional therapy, but also initially increased total lung stress and strain. Improved oxygenation with CPAP reduced respiratory effort but lung stress/strain remained elevated for CPAP >5 cm H2O. With reduced respiratory effort, HFNOT maintained better oxygenation and reduced total lung stress, with no increase in total lung strain. Compared with 10 cm H2O PEEP, 4 cm H2O PEEP in NIV reduced total lung stress, but high total lung strain persisted even with less respiratory effort. Lung-protective mechanical ventilation improved oxygenation while minimising lung injury.
The failure of noninvasive ventilatory support to reduce respiratory effort may exacerbate pulmonary injury in patients with early COVID-19 pneumonia. HFNOT reduces lung strain and achieves similar oxygenation to CPAP/NIV. Invasive mechanical ventilation may be less injurious than noninvasive support in patients with high respiratory effort.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35410790</pmid><doi>10.1016/j.bja.2022.02.037</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5600-1676</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-0912 |
ispartof | British journal of anaesthesia : BJA, 2022-06, Vol.128 (6), p.1052-1058 |
issn | 0007-0912 1471-6771 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8930396 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | acute respiratory failure computational modelling COVID-19 mechanical ventilation noninvasive respiratory support patient self-inflicted lung injury Respiration and the Airway |
title | Optimising respiratory support for early COVID-19 pneumonia: a computational modelling study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimising%20respiratory%20support%20for%20early%20COVID-19%20pneumonia:%20a%20computational%20modelling%20study&rft.jtitle=British%20journal%20of%20anaesthesia%20:%20BJA&rft.au=Weaver,%20Liam&rft.date=2022-06-01&rft.volume=128&rft.issue=6&rft.spage=1052&rft.epage=1058&rft.pages=1052-1058&rft.issn=0007-0912&rft.eissn=1471-6771&rft_id=info:doi/10.1016/j.bja.2022.02.037&rft_dat=%3Cproquest_pubme%3E2649589219%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649589219&rft_id=info:pmid/35410790&rft_els_id=S0007091222001301&rfr_iscdi=true |