Edge Constraint and Location Mapping for Liver Tumor Segmentation from Nonenhanced Images
As there is no contrast enhancement, the liver tumor area in nonenhanced MRI exists with blurred edges and low contrast, which greatly affects the speed and accuracy of liver tumor diagnosis. As a result, precise segmentation of liver tumor from nonenhanced MRI has become an urgent and challenging t...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2022-03, Vol.2022, p.1248311-15 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | |
container_start_page | 1248311 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2022 |
creator | Zhang, Jina Luo, Shichao Qiang, Yan Tian, Yuling Xiao, Xiaojiao Li, Keqin Li, Xingxu |
description | As there is no contrast enhancement, the liver tumor area in nonenhanced MRI exists with blurred edges and low contrast, which greatly affects the speed and accuracy of liver tumor diagnosis. As a result, precise segmentation of liver tumor from nonenhanced MRI has become an urgent and challenging task. In this paper, we propose an edge constraint and localization mapping segmentation model (ECLMS) to accurately segment liver tumor from nonenhanced MRI. It consists of two parts: localization network and dual-branch segmentation network. We build the localization network, which generates prior coarse masks to provide position mapping for the segmentation network. This part enhances the ability of the model to localize liver tumor in nonenhanced images. We design a dual-branch segmentation network, where the main decoding branch focuses on the feature representation in the core region of the tumor and the edge decoding branch concentrates on capturing the edge information of the tumor. To improve the ability of the model for capturing detailed features, sSE blocks and dense upward connections are introduced into it. We design the bottleneck multiscale module to construct multiscale feature representations using kernels of different sizes while integrating the location mapping of tumor. The ECLMS model is evaluated on a private nonenhanced MRI dataset that comprises 215 different subjects. The model achieves the best Dice coefficient, precision, and accuracy of 90.23%, 92.25%, and 92.39%, correspondingly. The effectiveness of our model is demonstrated by experiment results, and our model reaches superior results in the segmentation task of nonenhanced liver tumor compared to existing segmentation methods. |
doi_str_mv | 10.1155/2022/1248311 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8926519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641506248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-fd1debdc3e43f083753965b74f550f4608b3e3e17b5ee3a1e48efe7eb5fbb5d73</originalsourceid><addsrcrecordid>eNp9kc1LAzEQxYMoflRvniVHQWuTzWazvQhS6gdUPaigp5DdTLaRblKT3Yr_vVtai148zYP58WZ4D6FjSi4o5XyQkCQZ0CTNGaVbaJ-KNO9ngubbG01e99BBjO-EcCo43UV7jDMyzFmyj97GugI88i42QVnXYOU0nvhSNdY7fK_mc-sqbHzAE7uAgJ_butNPUNXgmhVkgq_xg3fgpsqVoPFdrSqIh2jHqFmEo_XsoZfr8fPotj95vLkbXU36JROi6RtNNRS6ZJAyQ3ImOBtmvBCp4ZyYNCN5wYABFQUHYIpCmoMBAQU3RcG1YD10ufKdt0UNuuz-Cmom58HWKnxJr6z8u3F2Kiu_kPkwyTgddgana4PgP1qIjaxtLGE2Uw58G2WSpZSTbJlwD52v0DL4GAOYzRlK5LINuWxDrtvo8JPfr23gn_g74GwFTK3T6tP-b_cNsbuT7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641506248</pqid></control><display><type>article</type><title>Edge Constraint and Location Mapping for Liver Tumor Segmentation from Nonenhanced Images</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Zhang, Jina ; Luo, Shichao ; Qiang, Yan ; Tian, Yuling ; Xiao, Xiaojiao ; Li, Keqin ; Li, Xingxu</creator><contributor>Tsui, Po-Hsiang</contributor><creatorcontrib>Zhang, Jina ; Luo, Shichao ; Qiang, Yan ; Tian, Yuling ; Xiao, Xiaojiao ; Li, Keqin ; Li, Xingxu ; Tsui, Po-Hsiang</creatorcontrib><description>As there is no contrast enhancement, the liver tumor area in nonenhanced MRI exists with blurred edges and low contrast, which greatly affects the speed and accuracy of liver tumor diagnosis. As a result, precise segmentation of liver tumor from nonenhanced MRI has become an urgent and challenging task. In this paper, we propose an edge constraint and localization mapping segmentation model (ECLMS) to accurately segment liver tumor from nonenhanced MRI. It consists of two parts: localization network and dual-branch segmentation network. We build the localization network, which generates prior coarse masks to provide position mapping for the segmentation network. This part enhances the ability of the model to localize liver tumor in nonenhanced images. We design a dual-branch segmentation network, where the main decoding branch focuses on the feature representation in the core region of the tumor and the edge decoding branch concentrates on capturing the edge information of the tumor. To improve the ability of the model for capturing detailed features, sSE blocks and dense upward connections are introduced into it. We design the bottleneck multiscale module to construct multiscale feature representations using kernels of different sizes while integrating the location mapping of tumor. The ECLMS model is evaluated on a private nonenhanced MRI dataset that comprises 215 different subjects. The model achieves the best Dice coefficient, precision, and accuracy of 90.23%, 92.25%, and 92.39%, correspondingly. The effectiveness of our model is demonstrated by experiment results, and our model reaches superior results in the segmentation task of nonenhanced liver tumor compared to existing segmentation methods.</description><identifier>ISSN: 1748-670X</identifier><identifier>ISSN: 1748-6718</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2022/1248311</identifier><identifier>PMID: 35309832</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Carcinoma, Hepatocellular - diagnostic imaging ; Computational Biology ; Databases, Factual - statistics & numerical data ; Hemangioma - diagnostic imaging ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - statistics & numerical data ; Liver Neoplasms - diagnostic imaging ; Magnetic Resonance Imaging - statistics & numerical data ; Neural Networks, Computer</subject><ispartof>Computational and mathematical methods in medicine, 2022-03, Vol.2022, p.1248311-15</ispartof><rights>Copyright © 2022 Jina Zhang et al.</rights><rights>Copyright © 2022 Jina Zhang et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c377t-fd1debdc3e43f083753965b74f550f4608b3e3e17b5ee3a1e48efe7eb5fbb5d73</cites><orcidid>0000-0001-6231-3721 ; 0000-0002-3455-5907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926519/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926519/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35309832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Tsui, Po-Hsiang</contributor><creatorcontrib>Zhang, Jina</creatorcontrib><creatorcontrib>Luo, Shichao</creatorcontrib><creatorcontrib>Qiang, Yan</creatorcontrib><creatorcontrib>Tian, Yuling</creatorcontrib><creatorcontrib>Xiao, Xiaojiao</creatorcontrib><creatorcontrib>Li, Keqin</creatorcontrib><creatorcontrib>Li, Xingxu</creatorcontrib><title>Edge Constraint and Location Mapping for Liver Tumor Segmentation from Nonenhanced Images</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>As there is no contrast enhancement, the liver tumor area in nonenhanced MRI exists with blurred edges and low contrast, which greatly affects the speed and accuracy of liver tumor diagnosis. As a result, precise segmentation of liver tumor from nonenhanced MRI has become an urgent and challenging task. In this paper, we propose an edge constraint and localization mapping segmentation model (ECLMS) to accurately segment liver tumor from nonenhanced MRI. It consists of two parts: localization network and dual-branch segmentation network. We build the localization network, which generates prior coarse masks to provide position mapping for the segmentation network. This part enhances the ability of the model to localize liver tumor in nonenhanced images. We design a dual-branch segmentation network, where the main decoding branch focuses on the feature representation in the core region of the tumor and the edge decoding branch concentrates on capturing the edge information of the tumor. To improve the ability of the model for capturing detailed features, sSE blocks and dense upward connections are introduced into it. We design the bottleneck multiscale module to construct multiscale feature representations using kernels of different sizes while integrating the location mapping of tumor. The ECLMS model is evaluated on a private nonenhanced MRI dataset that comprises 215 different subjects. The model achieves the best Dice coefficient, precision, and accuracy of 90.23%, 92.25%, and 92.39%, correspondingly. The effectiveness of our model is demonstrated by experiment results, and our model reaches superior results in the segmentation task of nonenhanced liver tumor compared to existing segmentation methods.</description><subject>Carcinoma, Hepatocellular - diagnostic imaging</subject><subject>Computational Biology</subject><subject>Databases, Factual - statistics & numerical data</subject><subject>Hemangioma - diagnostic imaging</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - statistics & numerical data</subject><subject>Liver Neoplasms - diagnostic imaging</subject><subject>Magnetic Resonance Imaging - statistics & numerical data</subject><subject>Neural Networks, Computer</subject><issn>1748-670X</issn><issn>1748-6718</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1LAzEQxYMoflRvniVHQWuTzWazvQhS6gdUPaigp5DdTLaRblKT3Yr_vVtai148zYP58WZ4D6FjSi4o5XyQkCQZ0CTNGaVbaJ-KNO9ngubbG01e99BBjO-EcCo43UV7jDMyzFmyj97GugI88i42QVnXYOU0nvhSNdY7fK_mc-sqbHzAE7uAgJ_butNPUNXgmhVkgq_xg3fgpsqVoPFdrSqIh2jHqFmEo_XsoZfr8fPotj95vLkbXU36JROi6RtNNRS6ZJAyQ3ImOBtmvBCp4ZyYNCN5wYABFQUHYIpCmoMBAQU3RcG1YD10ufKdt0UNuuz-Cmom58HWKnxJr6z8u3F2Kiu_kPkwyTgddgana4PgP1qIjaxtLGE2Uw58G2WSpZSTbJlwD52v0DL4GAOYzRlK5LINuWxDrtvo8JPfr23gn_g74GwFTK3T6tP-b_cNsbuT7g</recordid><startdate>20220309</startdate><enddate>20220309</enddate><creator>Zhang, Jina</creator><creator>Luo, Shichao</creator><creator>Qiang, Yan</creator><creator>Tian, Yuling</creator><creator>Xiao, Xiaojiao</creator><creator>Li, Keqin</creator><creator>Li, Xingxu</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6231-3721</orcidid><orcidid>https://orcid.org/0000-0002-3455-5907</orcidid></search><sort><creationdate>20220309</creationdate><title>Edge Constraint and Location Mapping for Liver Tumor Segmentation from Nonenhanced Images</title><author>Zhang, Jina ; Luo, Shichao ; Qiang, Yan ; Tian, Yuling ; Xiao, Xiaojiao ; Li, Keqin ; Li, Xingxu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-fd1debdc3e43f083753965b74f550f4608b3e3e17b5ee3a1e48efe7eb5fbb5d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carcinoma, Hepatocellular - diagnostic imaging</topic><topic>Computational Biology</topic><topic>Databases, Factual - statistics & numerical data</topic><topic>Hemangioma - diagnostic imaging</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - statistics & numerical data</topic><topic>Liver Neoplasms - diagnostic imaging</topic><topic>Magnetic Resonance Imaging - statistics & numerical data</topic><topic>Neural Networks, Computer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jina</creatorcontrib><creatorcontrib>Luo, Shichao</creatorcontrib><creatorcontrib>Qiang, Yan</creatorcontrib><creatorcontrib>Tian, Yuling</creatorcontrib><creatorcontrib>Xiao, Xiaojiao</creatorcontrib><creatorcontrib>Li, Keqin</creatorcontrib><creatorcontrib>Li, Xingxu</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jina</au><au>Luo, Shichao</au><au>Qiang, Yan</au><au>Tian, Yuling</au><au>Xiao, Xiaojiao</au><au>Li, Keqin</au><au>Li, Xingxu</au><au>Tsui, Po-Hsiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge Constraint and Location Mapping for Liver Tumor Segmentation from Nonenhanced Images</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2022-03-09</date><risdate>2022</risdate><volume>2022</volume><spage>1248311</spage><epage>15</epage><pages>1248311-15</pages><issn>1748-670X</issn><issn>1748-6718</issn><eissn>1748-6718</eissn><abstract>As there is no contrast enhancement, the liver tumor area in nonenhanced MRI exists with blurred edges and low contrast, which greatly affects the speed and accuracy of liver tumor diagnosis. As a result, precise segmentation of liver tumor from nonenhanced MRI has become an urgent and challenging task. In this paper, we propose an edge constraint and localization mapping segmentation model (ECLMS) to accurately segment liver tumor from nonenhanced MRI. It consists of two parts: localization network and dual-branch segmentation network. We build the localization network, which generates prior coarse masks to provide position mapping for the segmentation network. This part enhances the ability of the model to localize liver tumor in nonenhanced images. We design a dual-branch segmentation network, where the main decoding branch focuses on the feature representation in the core region of the tumor and the edge decoding branch concentrates on capturing the edge information of the tumor. To improve the ability of the model for capturing detailed features, sSE blocks and dense upward connections are introduced into it. We design the bottleneck multiscale module to construct multiscale feature representations using kernels of different sizes while integrating the location mapping of tumor. The ECLMS model is evaluated on a private nonenhanced MRI dataset that comprises 215 different subjects. The model achieves the best Dice coefficient, precision, and accuracy of 90.23%, 92.25%, and 92.39%, correspondingly. The effectiveness of our model is demonstrated by experiment results, and our model reaches superior results in the segmentation task of nonenhanced liver tumor compared to existing segmentation methods.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>35309832</pmid><doi>10.1155/2022/1248311</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6231-3721</orcidid><orcidid>https://orcid.org/0000-0002-3455-5907</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2022-03, Vol.2022, p.1248311-15 |
issn | 1748-670X 1748-6718 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8926519 |
source | MEDLINE; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Carcinoma, Hepatocellular - diagnostic imaging Computational Biology Databases, Factual - statistics & numerical data Hemangioma - diagnostic imaging Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - statistics & numerical data Liver Neoplasms - diagnostic imaging Magnetic Resonance Imaging - statistics & numerical data Neural Networks, Computer |
title | Edge Constraint and Location Mapping for Liver Tumor Segmentation from Nonenhanced Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20Constraint%20and%20Location%20Mapping%20for%20Liver%20Tumor%20Segmentation%20from%20Nonenhanced%20Images&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Zhang,%20Jina&rft.date=2022-03-09&rft.volume=2022&rft.spage=1248311&rft.epage=15&rft.pages=1248311-15&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2022/1248311&rft_dat=%3Cproquest_pubme%3E2641506248%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641506248&rft_id=info:pmid/35309832&rfr_iscdi=true |