Edge Constraint and Location Mapping for Liver Tumor Segmentation from Nonenhanced Images

As there is no contrast enhancement, the liver tumor area in nonenhanced MRI exists with blurred edges and low contrast, which greatly affects the speed and accuracy of liver tumor diagnosis. As a result, precise segmentation of liver tumor from nonenhanced MRI has become an urgent and challenging t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2022-03, Vol.2022, p.1248311-15
Hauptverfasser: Zhang, Jina, Luo, Shichao, Qiang, Yan, Tian, Yuling, Xiao, Xiaojiao, Li, Keqin, Li, Xingxu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 1248311
container_title Computational and mathematical methods in medicine
container_volume 2022
creator Zhang, Jina
Luo, Shichao
Qiang, Yan
Tian, Yuling
Xiao, Xiaojiao
Li, Keqin
Li, Xingxu
description As there is no contrast enhancement, the liver tumor area in nonenhanced MRI exists with blurred edges and low contrast, which greatly affects the speed and accuracy of liver tumor diagnosis. As a result, precise segmentation of liver tumor from nonenhanced MRI has become an urgent and challenging task. In this paper, we propose an edge constraint and localization mapping segmentation model (ECLMS) to accurately segment liver tumor from nonenhanced MRI. It consists of two parts: localization network and dual-branch segmentation network. We build the localization network, which generates prior coarse masks to provide position mapping for the segmentation network. This part enhances the ability of the model to localize liver tumor in nonenhanced images. We design a dual-branch segmentation network, where the main decoding branch focuses on the feature representation in the core region of the tumor and the edge decoding branch concentrates on capturing the edge information of the tumor. To improve the ability of the model for capturing detailed features, sSE blocks and dense upward connections are introduced into it. We design the bottleneck multiscale module to construct multiscale feature representations using kernels of different sizes while integrating the location mapping of tumor. The ECLMS model is evaluated on a private nonenhanced MRI dataset that comprises 215 different subjects. The model achieves the best Dice coefficient, precision, and accuracy of 90.23%, 92.25%, and 92.39%, correspondingly. The effectiveness of our model is demonstrated by experiment results, and our model reaches superior results in the segmentation task of nonenhanced liver tumor compared to existing segmentation methods.
doi_str_mv 10.1155/2022/1248311
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8926519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641506248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-fd1debdc3e43f083753965b74f550f4608b3e3e17b5ee3a1e48efe7eb5fbb5d73</originalsourceid><addsrcrecordid>eNp9kc1LAzEQxYMoflRvniVHQWuTzWazvQhS6gdUPaigp5DdTLaRblKT3Yr_vVtai148zYP58WZ4D6FjSi4o5XyQkCQZ0CTNGaVbaJ-KNO9ngubbG01e99BBjO-EcCo43UV7jDMyzFmyj97GugI88i42QVnXYOU0nvhSNdY7fK_mc-sqbHzAE7uAgJ_butNPUNXgmhVkgq_xg3fgpsqVoPFdrSqIh2jHqFmEo_XsoZfr8fPotj95vLkbXU36JROi6RtNNRS6ZJAyQ3ImOBtmvBCp4ZyYNCN5wYABFQUHYIpCmoMBAQU3RcG1YD10ufKdt0UNuuz-Cmom58HWKnxJr6z8u3F2Kiu_kPkwyTgddgana4PgP1qIjaxtLGE2Uw58G2WSpZSTbJlwD52v0DL4GAOYzRlK5LINuWxDrtvo8JPfr23gn_g74GwFTK3T6tP-b_cNsbuT7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641506248</pqid></control><display><type>article</type><title>Edge Constraint and Location Mapping for Liver Tumor Segmentation from Nonenhanced Images</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Zhang, Jina ; Luo, Shichao ; Qiang, Yan ; Tian, Yuling ; Xiao, Xiaojiao ; Li, Keqin ; Li, Xingxu</creator><contributor>Tsui, Po-Hsiang</contributor><creatorcontrib>Zhang, Jina ; Luo, Shichao ; Qiang, Yan ; Tian, Yuling ; Xiao, Xiaojiao ; Li, Keqin ; Li, Xingxu ; Tsui, Po-Hsiang</creatorcontrib><description>As there is no contrast enhancement, the liver tumor area in nonenhanced MRI exists with blurred edges and low contrast, which greatly affects the speed and accuracy of liver tumor diagnosis. As a result, precise segmentation of liver tumor from nonenhanced MRI has become an urgent and challenging task. In this paper, we propose an edge constraint and localization mapping segmentation model (ECLMS) to accurately segment liver tumor from nonenhanced MRI. It consists of two parts: localization network and dual-branch segmentation network. We build the localization network, which generates prior coarse masks to provide position mapping for the segmentation network. This part enhances the ability of the model to localize liver tumor in nonenhanced images. We design a dual-branch segmentation network, where the main decoding branch focuses on the feature representation in the core region of the tumor and the edge decoding branch concentrates on capturing the edge information of the tumor. To improve the ability of the model for capturing detailed features, sSE blocks and dense upward connections are introduced into it. We design the bottleneck multiscale module to construct multiscale feature representations using kernels of different sizes while integrating the location mapping of tumor. The ECLMS model is evaluated on a private nonenhanced MRI dataset that comprises 215 different subjects. The model achieves the best Dice coefficient, precision, and accuracy of 90.23%, 92.25%, and 92.39%, correspondingly. The effectiveness of our model is demonstrated by experiment results, and our model reaches superior results in the segmentation task of nonenhanced liver tumor compared to existing segmentation methods.</description><identifier>ISSN: 1748-670X</identifier><identifier>ISSN: 1748-6718</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2022/1248311</identifier><identifier>PMID: 35309832</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Carcinoma, Hepatocellular - diagnostic imaging ; Computational Biology ; Databases, Factual - statistics &amp; numerical data ; Hemangioma - diagnostic imaging ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - statistics &amp; numerical data ; Liver Neoplasms - diagnostic imaging ; Magnetic Resonance Imaging - statistics &amp; numerical data ; Neural Networks, Computer</subject><ispartof>Computational and mathematical methods in medicine, 2022-03, Vol.2022, p.1248311-15</ispartof><rights>Copyright © 2022 Jina Zhang et al.</rights><rights>Copyright © 2022 Jina Zhang et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c377t-fd1debdc3e43f083753965b74f550f4608b3e3e17b5ee3a1e48efe7eb5fbb5d73</cites><orcidid>0000-0001-6231-3721 ; 0000-0002-3455-5907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926519/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926519/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35309832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Tsui, Po-Hsiang</contributor><creatorcontrib>Zhang, Jina</creatorcontrib><creatorcontrib>Luo, Shichao</creatorcontrib><creatorcontrib>Qiang, Yan</creatorcontrib><creatorcontrib>Tian, Yuling</creatorcontrib><creatorcontrib>Xiao, Xiaojiao</creatorcontrib><creatorcontrib>Li, Keqin</creatorcontrib><creatorcontrib>Li, Xingxu</creatorcontrib><title>Edge Constraint and Location Mapping for Liver Tumor Segmentation from Nonenhanced Images</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>As there is no contrast enhancement, the liver tumor area in nonenhanced MRI exists with blurred edges and low contrast, which greatly affects the speed and accuracy of liver tumor diagnosis. As a result, precise segmentation of liver tumor from nonenhanced MRI has become an urgent and challenging task. In this paper, we propose an edge constraint and localization mapping segmentation model (ECLMS) to accurately segment liver tumor from nonenhanced MRI. It consists of two parts: localization network and dual-branch segmentation network. We build the localization network, which generates prior coarse masks to provide position mapping for the segmentation network. This part enhances the ability of the model to localize liver tumor in nonenhanced images. We design a dual-branch segmentation network, where the main decoding branch focuses on the feature representation in the core region of the tumor and the edge decoding branch concentrates on capturing the edge information of the tumor. To improve the ability of the model for capturing detailed features, sSE blocks and dense upward connections are introduced into it. We design the bottleneck multiscale module to construct multiscale feature representations using kernels of different sizes while integrating the location mapping of tumor. The ECLMS model is evaluated on a private nonenhanced MRI dataset that comprises 215 different subjects. The model achieves the best Dice coefficient, precision, and accuracy of 90.23%, 92.25%, and 92.39%, correspondingly. The effectiveness of our model is demonstrated by experiment results, and our model reaches superior results in the segmentation task of nonenhanced liver tumor compared to existing segmentation methods.</description><subject>Carcinoma, Hepatocellular - diagnostic imaging</subject><subject>Computational Biology</subject><subject>Databases, Factual - statistics &amp; numerical data</subject><subject>Hemangioma - diagnostic imaging</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - statistics &amp; numerical data</subject><subject>Liver Neoplasms - diagnostic imaging</subject><subject>Magnetic Resonance Imaging - statistics &amp; numerical data</subject><subject>Neural Networks, Computer</subject><issn>1748-670X</issn><issn>1748-6718</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1LAzEQxYMoflRvniVHQWuTzWazvQhS6gdUPaigp5DdTLaRblKT3Yr_vVtai148zYP58WZ4D6FjSi4o5XyQkCQZ0CTNGaVbaJ-KNO9ngubbG01e99BBjO-EcCo43UV7jDMyzFmyj97GugI88i42QVnXYOU0nvhSNdY7fK_mc-sqbHzAE7uAgJ_butNPUNXgmhVkgq_xg3fgpsqVoPFdrSqIh2jHqFmEo_XsoZfr8fPotj95vLkbXU36JROi6RtNNRS6ZJAyQ3ImOBtmvBCp4ZyYNCN5wYABFQUHYIpCmoMBAQU3RcG1YD10ufKdt0UNuuz-Cmom58HWKnxJr6z8u3F2Kiu_kPkwyTgddgana4PgP1qIjaxtLGE2Uw58G2WSpZSTbJlwD52v0DL4GAOYzRlK5LINuWxDrtvo8JPfr23gn_g74GwFTK3T6tP-b_cNsbuT7g</recordid><startdate>20220309</startdate><enddate>20220309</enddate><creator>Zhang, Jina</creator><creator>Luo, Shichao</creator><creator>Qiang, Yan</creator><creator>Tian, Yuling</creator><creator>Xiao, Xiaojiao</creator><creator>Li, Keqin</creator><creator>Li, Xingxu</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6231-3721</orcidid><orcidid>https://orcid.org/0000-0002-3455-5907</orcidid></search><sort><creationdate>20220309</creationdate><title>Edge Constraint and Location Mapping for Liver Tumor Segmentation from Nonenhanced Images</title><author>Zhang, Jina ; Luo, Shichao ; Qiang, Yan ; Tian, Yuling ; Xiao, Xiaojiao ; Li, Keqin ; Li, Xingxu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-fd1debdc3e43f083753965b74f550f4608b3e3e17b5ee3a1e48efe7eb5fbb5d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carcinoma, Hepatocellular - diagnostic imaging</topic><topic>Computational Biology</topic><topic>Databases, Factual - statistics &amp; numerical data</topic><topic>Hemangioma - diagnostic imaging</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - statistics &amp; numerical data</topic><topic>Liver Neoplasms - diagnostic imaging</topic><topic>Magnetic Resonance Imaging - statistics &amp; numerical data</topic><topic>Neural Networks, Computer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jina</creatorcontrib><creatorcontrib>Luo, Shichao</creatorcontrib><creatorcontrib>Qiang, Yan</creatorcontrib><creatorcontrib>Tian, Yuling</creatorcontrib><creatorcontrib>Xiao, Xiaojiao</creatorcontrib><creatorcontrib>Li, Keqin</creatorcontrib><creatorcontrib>Li, Xingxu</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jina</au><au>Luo, Shichao</au><au>Qiang, Yan</au><au>Tian, Yuling</au><au>Xiao, Xiaojiao</au><au>Li, Keqin</au><au>Li, Xingxu</au><au>Tsui, Po-Hsiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge Constraint and Location Mapping for Liver Tumor Segmentation from Nonenhanced Images</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2022-03-09</date><risdate>2022</risdate><volume>2022</volume><spage>1248311</spage><epage>15</epage><pages>1248311-15</pages><issn>1748-670X</issn><issn>1748-6718</issn><eissn>1748-6718</eissn><abstract>As there is no contrast enhancement, the liver tumor area in nonenhanced MRI exists with blurred edges and low contrast, which greatly affects the speed and accuracy of liver tumor diagnosis. As a result, precise segmentation of liver tumor from nonenhanced MRI has become an urgent and challenging task. In this paper, we propose an edge constraint and localization mapping segmentation model (ECLMS) to accurately segment liver tumor from nonenhanced MRI. It consists of two parts: localization network and dual-branch segmentation network. We build the localization network, which generates prior coarse masks to provide position mapping for the segmentation network. This part enhances the ability of the model to localize liver tumor in nonenhanced images. We design a dual-branch segmentation network, where the main decoding branch focuses on the feature representation in the core region of the tumor and the edge decoding branch concentrates on capturing the edge information of the tumor. To improve the ability of the model for capturing detailed features, sSE blocks and dense upward connections are introduced into it. We design the bottleneck multiscale module to construct multiscale feature representations using kernels of different sizes while integrating the location mapping of tumor. The ECLMS model is evaluated on a private nonenhanced MRI dataset that comprises 215 different subjects. The model achieves the best Dice coefficient, precision, and accuracy of 90.23%, 92.25%, and 92.39%, correspondingly. The effectiveness of our model is demonstrated by experiment results, and our model reaches superior results in the segmentation task of nonenhanced liver tumor compared to existing segmentation methods.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>35309832</pmid><doi>10.1155/2022/1248311</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6231-3721</orcidid><orcidid>https://orcid.org/0000-0002-3455-5907</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2022-03, Vol.2022, p.1248311-15
issn 1748-670X
1748-6718
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8926519
source MEDLINE; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects Carcinoma, Hepatocellular - diagnostic imaging
Computational Biology
Databases, Factual - statistics & numerical data
Hemangioma - diagnostic imaging
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - statistics & numerical data
Liver Neoplasms - diagnostic imaging
Magnetic Resonance Imaging - statistics & numerical data
Neural Networks, Computer
title Edge Constraint and Location Mapping for Liver Tumor Segmentation from Nonenhanced Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20Constraint%20and%20Location%20Mapping%20for%20Liver%20Tumor%20Segmentation%20from%20Nonenhanced%20Images&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Zhang,%20Jina&rft.date=2022-03-09&rft.volume=2022&rft.spage=1248311&rft.epage=15&rft.pages=1248311-15&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2022/1248311&rft_dat=%3Cproquest_pubme%3E2641506248%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641506248&rft_id=info:pmid/35309832&rfr_iscdi=true