Mechanically reinforced biotubes for arterial replacement and arteriovenous grafting inspired by architectural engineering

There is a lack in clinically-suitable vascular grafts. Biotubes, prepared using in vivo tissue engineering, show potential for vascular regeneration. However, their mechanical strength is typically poor. Inspired by architectural design of steel fiber reinforcement of concrete for tunnel constructi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2022-03, Vol.8 (11), p.eabl3888-eabl3888
Hauptverfasser: Zhi, Dengke, Cheng, Quhan, Midgley, Adam C, Zhang, Qiuying, Wei, Tingting, Li, Yi, Wang, Ting, Ma, Tengzhi, Rafique, Muhammad, Xia, Shuang, Cao, Yuejuan, Li, Yangchun, Li, Jing, Che, Yongzhe, Zhu, Meifeng, Wang, Kai, Kong, Deling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eabl3888
container_issue 11
container_start_page eabl3888
container_title Science advances
container_volume 8
creator Zhi, Dengke
Cheng, Quhan
Midgley, Adam C
Zhang, Qiuying
Wei, Tingting
Li, Yi
Wang, Ting
Ma, Tengzhi
Rafique, Muhammad
Xia, Shuang
Cao, Yuejuan
Li, Yangchun
Li, Jing
Che, Yongzhe
Zhu, Meifeng
Wang, Kai
Kong, Deling
description There is a lack in clinically-suitable vascular grafts. Biotubes, prepared using in vivo tissue engineering, show potential for vascular regeneration. However, their mechanical strength is typically poor. Inspired by architectural design of steel fiber reinforcement of concrete for tunnel construction, poly(ε-caprolactone) (PCL) fiber skeletons (PSs) were fabricated by melt-spinning and heat treatment. The PSs were subcutaneously embedded to induce the assembly of host cells and extracellular matrix to obtain PS-reinforced biotubes (PBs). Heat-treated medium-fiber-angle PB (hMPB) demonstrated superior performance when evaluated by in vitro mechanical testing and following implantation in rat abdominal artery replacement models. hMPBs were further evaluated in canine peripheral arterial replacement and sheep arteriovenous graft models. Overall, hMPB demonstrated appropriate mechanics, puncture resistance, rapid hemostasis, vascular regeneration, and long-term patency, without incidence of luminal expansion or intimal hyperplasia. These optimized hMPB properties show promise as an alternatives to autologous vessels in clinical applications.
doi_str_mv 10.1126/sciadv.abl3888
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8926343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640321430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-1197808a178fee31b504b6fbbc17b8a271f1ed4b1c9c91d0fa8ebc233d7c79fc3</originalsourceid><addsrcrecordid>eNpVkc1P4zAQxS0Egqpw5bjKkUuLv5I4l5VQxS5IoL0sZ8uejFOvUqdrJ5W6fz1GLah78ljzmzdv9Ai5ZXTJGK_uE3jT7pbG9kIpdUZmXNTlgpdSnZ_UV-QmpT-UUiarqmTNJbkSJW8kl9WM_HtFWJvgwfT9vojogxsiYFtYP4yTxVTkf2HiiNGbPgPb3gBuMIyFCe2xMewwDFMqumjc6ENX-JC2Pn6o7DMCaz8ijFPMAhg6HzDPhO6aXDjTJ7w5vnPy9uPx9-pp8fLr5_Pq4WUBoqHjgrGmVlQZViuHKJgtqbSVsxZYbZXhNXMMW2kZNNCwljqj0AIXoq2hbhyIOfl-0N1OdoMtZO_Zid5GvzFxrwfj9f-d4Ne6G3ZaNbwSUmSBu6NAHP5OmEa98Qmw703AfLbmlaSCMyloRpcHFOKQUkT3tYZR_ZGZPmSmj5nlgW-n5r7wz4TEO2ddmhk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640321430</pqid></control><display><type>article</type><title>Mechanically reinforced biotubes for arterial replacement and arteriovenous grafting inspired by architectural engineering</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhi, Dengke ; Cheng, Quhan ; Midgley, Adam C ; Zhang, Qiuying ; Wei, Tingting ; Li, Yi ; Wang, Ting ; Ma, Tengzhi ; Rafique, Muhammad ; Xia, Shuang ; Cao, Yuejuan ; Li, Yangchun ; Li, Jing ; Che, Yongzhe ; Zhu, Meifeng ; Wang, Kai ; Kong, Deling</creator><creatorcontrib>Zhi, Dengke ; Cheng, Quhan ; Midgley, Adam C ; Zhang, Qiuying ; Wei, Tingting ; Li, Yi ; Wang, Ting ; Ma, Tengzhi ; Rafique, Muhammad ; Xia, Shuang ; Cao, Yuejuan ; Li, Yangchun ; Li, Jing ; Che, Yongzhe ; Zhu, Meifeng ; Wang, Kai ; Kong, Deling</creatorcontrib><description>There is a lack in clinically-suitable vascular grafts. Biotubes, prepared using in vivo tissue engineering, show potential for vascular regeneration. However, their mechanical strength is typically poor. Inspired by architectural design of steel fiber reinforcement of concrete for tunnel construction, poly(ε-caprolactone) (PCL) fiber skeletons (PSs) were fabricated by melt-spinning and heat treatment. The PSs were subcutaneously embedded to induce the assembly of host cells and extracellular matrix to obtain PS-reinforced biotubes (PBs). Heat-treated medium-fiber-angle PB (hMPB) demonstrated superior performance when evaluated by in vitro mechanical testing and following implantation in rat abdominal artery replacement models. hMPBs were further evaluated in canine peripheral arterial replacement and sheep arteriovenous graft models. Overall, hMPB demonstrated appropriate mechanics, puncture resistance, rapid hemostasis, vascular regeneration, and long-term patency, without incidence of luminal expansion or intimal hyperplasia. These optimized hMPB properties show promise as an alternatives to autologous vessels in clinical applications.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abl3888</identifier><identifier>PMID: 35294246</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Applied Sciences and Engineering ; Bioengineering ; Biomedicine and Life Sciences ; Materials Science ; SciAdv r-articles</subject><ispartof>Science advances, 2022-03, Vol.8 (11), p.eabl3888-eabl3888</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-1197808a178fee31b504b6fbbc17b8a271f1ed4b1c9c91d0fa8ebc233d7c79fc3</citedby><cites>FETCH-LOGICAL-c390t-1197808a178fee31b504b6fbbc17b8a271f1ed4b1c9c91d0fa8ebc233d7c79fc3</cites><orcidid>0000-0003-3317-3509 ; 0000-0003-4502-2775 ; 0000-0002-7622-0275 ; 0000-0001-6532-1110 ; 0000-0002-4193-1018 ; 0000-0002-2961-9267 ; 0000-0002-9539-238X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926343/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926343/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35294246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhi, Dengke</creatorcontrib><creatorcontrib>Cheng, Quhan</creatorcontrib><creatorcontrib>Midgley, Adam C</creatorcontrib><creatorcontrib>Zhang, Qiuying</creatorcontrib><creatorcontrib>Wei, Tingting</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Wang, Ting</creatorcontrib><creatorcontrib>Ma, Tengzhi</creatorcontrib><creatorcontrib>Rafique, Muhammad</creatorcontrib><creatorcontrib>Xia, Shuang</creatorcontrib><creatorcontrib>Cao, Yuejuan</creatorcontrib><creatorcontrib>Li, Yangchun</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Che, Yongzhe</creatorcontrib><creatorcontrib>Zhu, Meifeng</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Kong, Deling</creatorcontrib><title>Mechanically reinforced biotubes for arterial replacement and arteriovenous grafting inspired by architectural engineering</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>There is a lack in clinically-suitable vascular grafts. Biotubes, prepared using in vivo tissue engineering, show potential for vascular regeneration. However, their mechanical strength is typically poor. Inspired by architectural design of steel fiber reinforcement of concrete for tunnel construction, poly(ε-caprolactone) (PCL) fiber skeletons (PSs) were fabricated by melt-spinning and heat treatment. The PSs were subcutaneously embedded to induce the assembly of host cells and extracellular matrix to obtain PS-reinforced biotubes (PBs). Heat-treated medium-fiber-angle PB (hMPB) demonstrated superior performance when evaluated by in vitro mechanical testing and following implantation in rat abdominal artery replacement models. hMPBs were further evaluated in canine peripheral arterial replacement and sheep arteriovenous graft models. Overall, hMPB demonstrated appropriate mechanics, puncture resistance, rapid hemostasis, vascular regeneration, and long-term patency, without incidence of luminal expansion or intimal hyperplasia. These optimized hMPB properties show promise as an alternatives to autologous vessels in clinical applications.</description><subject>Applied Sciences and Engineering</subject><subject>Bioengineering</subject><subject>Biomedicine and Life Sciences</subject><subject>Materials Science</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkc1P4zAQxS0Egqpw5bjKkUuLv5I4l5VQxS5IoL0sZ8uejFOvUqdrJ5W6fz1GLah78ljzmzdv9Ai5ZXTJGK_uE3jT7pbG9kIpdUZmXNTlgpdSnZ_UV-QmpT-UUiarqmTNJbkSJW8kl9WM_HtFWJvgwfT9vojogxsiYFtYP4yTxVTkf2HiiNGbPgPb3gBuMIyFCe2xMewwDFMqumjc6ENX-JC2Pn6o7DMCaz8ijFPMAhg6HzDPhO6aXDjTJ7w5vnPy9uPx9-pp8fLr5_Pq4WUBoqHjgrGmVlQZViuHKJgtqbSVsxZYbZXhNXMMW2kZNNCwljqj0AIXoq2hbhyIOfl-0N1OdoMtZO_Zid5GvzFxrwfj9f-d4Ne6G3ZaNbwSUmSBu6NAHP5OmEa98Qmw703AfLbmlaSCMyloRpcHFOKQUkT3tYZR_ZGZPmSmj5nlgW-n5r7wz4TEO2ddmhk</recordid><startdate>20220318</startdate><enddate>20220318</enddate><creator>Zhi, Dengke</creator><creator>Cheng, Quhan</creator><creator>Midgley, Adam C</creator><creator>Zhang, Qiuying</creator><creator>Wei, Tingting</creator><creator>Li, Yi</creator><creator>Wang, Ting</creator><creator>Ma, Tengzhi</creator><creator>Rafique, Muhammad</creator><creator>Xia, Shuang</creator><creator>Cao, Yuejuan</creator><creator>Li, Yangchun</creator><creator>Li, Jing</creator><creator>Che, Yongzhe</creator><creator>Zhu, Meifeng</creator><creator>Wang, Kai</creator><creator>Kong, Deling</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3317-3509</orcidid><orcidid>https://orcid.org/0000-0003-4502-2775</orcidid><orcidid>https://orcid.org/0000-0002-7622-0275</orcidid><orcidid>https://orcid.org/0000-0001-6532-1110</orcidid><orcidid>https://orcid.org/0000-0002-4193-1018</orcidid><orcidid>https://orcid.org/0000-0002-2961-9267</orcidid><orcidid>https://orcid.org/0000-0002-9539-238X</orcidid></search><sort><creationdate>20220318</creationdate><title>Mechanically reinforced biotubes for arterial replacement and arteriovenous grafting inspired by architectural engineering</title><author>Zhi, Dengke ; Cheng, Quhan ; Midgley, Adam C ; Zhang, Qiuying ; Wei, Tingting ; Li, Yi ; Wang, Ting ; Ma, Tengzhi ; Rafique, Muhammad ; Xia, Shuang ; Cao, Yuejuan ; Li, Yangchun ; Li, Jing ; Che, Yongzhe ; Zhu, Meifeng ; Wang, Kai ; Kong, Deling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-1197808a178fee31b504b6fbbc17b8a271f1ed4b1c9c91d0fa8ebc233d7c79fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied Sciences and Engineering</topic><topic>Bioengineering</topic><topic>Biomedicine and Life Sciences</topic><topic>Materials Science</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhi, Dengke</creatorcontrib><creatorcontrib>Cheng, Quhan</creatorcontrib><creatorcontrib>Midgley, Adam C</creatorcontrib><creatorcontrib>Zhang, Qiuying</creatorcontrib><creatorcontrib>Wei, Tingting</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Wang, Ting</creatorcontrib><creatorcontrib>Ma, Tengzhi</creatorcontrib><creatorcontrib>Rafique, Muhammad</creatorcontrib><creatorcontrib>Xia, Shuang</creatorcontrib><creatorcontrib>Cao, Yuejuan</creatorcontrib><creatorcontrib>Li, Yangchun</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Che, Yongzhe</creatorcontrib><creatorcontrib>Zhu, Meifeng</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Kong, Deling</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhi, Dengke</au><au>Cheng, Quhan</au><au>Midgley, Adam C</au><au>Zhang, Qiuying</au><au>Wei, Tingting</au><au>Li, Yi</au><au>Wang, Ting</au><au>Ma, Tengzhi</au><au>Rafique, Muhammad</au><au>Xia, Shuang</au><au>Cao, Yuejuan</au><au>Li, Yangchun</au><au>Li, Jing</au><au>Che, Yongzhe</au><au>Zhu, Meifeng</au><au>Wang, Kai</au><au>Kong, Deling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanically reinforced biotubes for arterial replacement and arteriovenous grafting inspired by architectural engineering</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2022-03-18</date><risdate>2022</risdate><volume>8</volume><issue>11</issue><spage>eabl3888</spage><epage>eabl3888</epage><pages>eabl3888-eabl3888</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>There is a lack in clinically-suitable vascular grafts. Biotubes, prepared using in vivo tissue engineering, show potential for vascular regeneration. However, their mechanical strength is typically poor. Inspired by architectural design of steel fiber reinforcement of concrete for tunnel construction, poly(ε-caprolactone) (PCL) fiber skeletons (PSs) were fabricated by melt-spinning and heat treatment. The PSs were subcutaneously embedded to induce the assembly of host cells and extracellular matrix to obtain PS-reinforced biotubes (PBs). Heat-treated medium-fiber-angle PB (hMPB) demonstrated superior performance when evaluated by in vitro mechanical testing and following implantation in rat abdominal artery replacement models. hMPBs were further evaluated in canine peripheral arterial replacement and sheep arteriovenous graft models. Overall, hMPB demonstrated appropriate mechanics, puncture resistance, rapid hemostasis, vascular regeneration, and long-term patency, without incidence of luminal expansion or intimal hyperplasia. These optimized hMPB properties show promise as an alternatives to autologous vessels in clinical applications.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>35294246</pmid><doi>10.1126/sciadv.abl3888</doi><orcidid>https://orcid.org/0000-0003-3317-3509</orcidid><orcidid>https://orcid.org/0000-0003-4502-2775</orcidid><orcidid>https://orcid.org/0000-0002-7622-0275</orcidid><orcidid>https://orcid.org/0000-0001-6532-1110</orcidid><orcidid>https://orcid.org/0000-0002-4193-1018</orcidid><orcidid>https://orcid.org/0000-0002-2961-9267</orcidid><orcidid>https://orcid.org/0000-0002-9539-238X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2022-03, Vol.8 (11), p.eabl3888-eabl3888
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8926343
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Applied Sciences and Engineering
Bioengineering
Biomedicine and Life Sciences
Materials Science
SciAdv r-articles
title Mechanically reinforced biotubes for arterial replacement and arteriovenous grafting inspired by architectural engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A51%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanically%20reinforced%20biotubes%20for%20arterial%20replacement%20and%20arteriovenous%20grafting%20inspired%20by%20architectural%20engineering&rft.jtitle=Science%20advances&rft.au=Zhi,%20Dengke&rft.date=2022-03-18&rft.volume=8&rft.issue=11&rft.spage=eabl3888&rft.epage=eabl3888&rft.pages=eabl3888-eabl3888&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abl3888&rft_dat=%3Cproquest_pubme%3E2640321430%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640321430&rft_id=info:pmid/35294246&rfr_iscdi=true