Global profiling of phosphorylation-dependent changes in cysteine reactivity
Proteomics has revealed that the ~20,000 human genes engender a far greater number of proteins, or proteoforms, that are diversified in large part by post-translational modifications (PTMs). How such PTMs affect protein structure and function is an active area of research but remains technically cha...
Gespeichert in:
Veröffentlicht in: | Nature methods 2022-03, Vol.19 (3), p.341-352 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 352 |
---|---|
container_issue | 3 |
container_start_page | 341 |
container_title | Nature methods |
container_volume | 19 |
creator | Kemper, Esther K. Zhang, Yuanjin Dix, Melissa M. Cravatt, Benjamin F. |
description | Proteomics has revealed that the ~20,000 human genes engender a far greater number of proteins, or proteoforms, that are diversified in large part by post-translational modifications (PTMs). How such PTMs affect protein structure and function is an active area of research but remains technically challenging to assess on a proteome-wide scale. Here, we describe a chemical proteomic method to quantitatively relate serine/threonine phosphorylation to changes in the reactivity of cysteine residues, a parameter that can affect the potential for cysteines to be post-translationally modified or engaged by covalent drugs. Leveraging the extensive high-stoichiometry phosphorylation occurring in mitotic cells, we discover numerous cysteines that exhibit phosphorylation-dependent changes in reactivity on diverse proteins enriched in cell cycle regulatory pathways. The discovery of bidirectional changes in cysteine reactivity often occurring in proximity to serine/threonine phosphorylation events points to the broad impact of phosphorylation on the chemical reactivity of proteins and the future potential to create small-molecule probes that differentially target proteoforms with PTMs.
This article describes a chemical proteomic approach to quantitatively relate serine/threonine phosphorylation to changes in the reactivity of cysteine residues, thereby affecting their potential to be post-translationally modified and/or targeted by electrophilic small molecules. |
doi_str_mv | 10.1038/s41592-022-01398-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8920781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634847055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-b2b7ba3b2301210dfaad4a69673265da47d6004a3d6da0b17281c95d30c05533</originalsourceid><addsrcrecordid>eNp9kU1rGzEQhkVJiV03f6CHsJBLL9uMvlbaSyGENC0YcsldaCWtLbOWttLa4H8fuc5Hm0MPIwnmmXdm9CL0BcM3DFReZ4Z5S2ogJTBtZU0-oDnmTNYCAz97eUOLZ-hTzhsAShnh52hGOSFSEDFHy_shdnqoxhR7P_iwqmJfjeuYS6TDoCcfQ23d6IJ1YarMWoeVy5UPlTnkyfngquS0mfzeT4fP6GOvh-wunu8Fevxx93j7s14-3P-6vVnWhjOY6o50otO0IxQwwWB7rS3TTdsIShpuNRO2AWCa2sZq6LAgEpuWWwoGOKd0gb6fZMddt3XWlMGSHtSY_Fang4raq38zwa_VKu6VbAkIiYvA12eBFH_vXJ7U1mfjhkEHF3dZkYYyycSx2QJdvUM3cZdC2e5ISSyOR6HIiTIp5pxc_zoMBnX0Sp28UsUr9ccrRUrR5d9rvJa8mFMAegJySZVvT2-9_yP7BOvZoFE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638176381</pqid></control><display><type>article</type><title>Global profiling of phosphorylation-dependent changes in cysteine reactivity</title><source>MEDLINE</source><source>Springer Online Journals Complete</source><source>Nature Journals Online</source><creator>Kemper, Esther K. ; Zhang, Yuanjin ; Dix, Melissa M. ; Cravatt, Benjamin F.</creator><creatorcontrib>Kemper, Esther K. ; Zhang, Yuanjin ; Dix, Melissa M. ; Cravatt, Benjamin F.</creatorcontrib><description>Proteomics has revealed that the ~20,000 human genes engender a far greater number of proteins, or proteoforms, that are diversified in large part by post-translational modifications (PTMs). How such PTMs affect protein structure and function is an active area of research but remains technically challenging to assess on a proteome-wide scale. Here, we describe a chemical proteomic method to quantitatively relate serine/threonine phosphorylation to changes in the reactivity of cysteine residues, a parameter that can affect the potential for cysteines to be post-translationally modified or engaged by covalent drugs. Leveraging the extensive high-stoichiometry phosphorylation occurring in mitotic cells, we discover numerous cysteines that exhibit phosphorylation-dependent changes in reactivity on diverse proteins enriched in cell cycle regulatory pathways. The discovery of bidirectional changes in cysteine reactivity often occurring in proximity to serine/threonine phosphorylation events points to the broad impact of phosphorylation on the chemical reactivity of proteins and the future potential to create small-molecule probes that differentially target proteoforms with PTMs.
This article describes a chemical proteomic approach to quantitatively relate serine/threonine phosphorylation to changes in the reactivity of cysteine residues, thereby affecting their potential to be post-translationally modified and/or targeted by electrophilic small molecules.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-022-01398-2</identifier><identifier>PMID: 35228727</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/2067 ; 631/337/458 ; 631/80/458/1733 ; 631/92/475 ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Cell cycle ; Chemical reactions ; Cysteine ; Cysteine - chemistry ; Humans ; Life Sciences ; Parameter modification ; Phosphorylation ; Post-translation ; Protein Processing, Post-Translational ; Protein structure ; Proteins ; Proteome - metabolism ; Proteomes ; Proteomics ; Proteomics - methods ; Reactivity ; Residues ; Serine ; Stoichiometry ; Structure-function relationships ; Threonine ; Threonine - metabolism</subject><ispartof>Nature methods, 2022-03, Vol.19 (3), p.341-352</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-b2b7ba3b2301210dfaad4a69673265da47d6004a3d6da0b17281c95d30c05533</citedby><cites>FETCH-LOGICAL-c540t-b2b7ba3b2301210dfaad4a69673265da47d6004a3d6da0b17281c95d30c05533</cites><orcidid>0000-0003-4379-6187 ; 0000-0001-5330-3492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-022-01398-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-022-01398-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35228727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kemper, Esther K.</creatorcontrib><creatorcontrib>Zhang, Yuanjin</creatorcontrib><creatorcontrib>Dix, Melissa M.</creatorcontrib><creatorcontrib>Cravatt, Benjamin F.</creatorcontrib><title>Global profiling of phosphorylation-dependent changes in cysteine reactivity</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Proteomics has revealed that the ~20,000 human genes engender a far greater number of proteins, or proteoforms, that are diversified in large part by post-translational modifications (PTMs). How such PTMs affect protein structure and function is an active area of research but remains technically challenging to assess on a proteome-wide scale. Here, we describe a chemical proteomic method to quantitatively relate serine/threonine phosphorylation to changes in the reactivity of cysteine residues, a parameter that can affect the potential for cysteines to be post-translationally modified or engaged by covalent drugs. Leveraging the extensive high-stoichiometry phosphorylation occurring in mitotic cells, we discover numerous cysteines that exhibit phosphorylation-dependent changes in reactivity on diverse proteins enriched in cell cycle regulatory pathways. The discovery of bidirectional changes in cysteine reactivity often occurring in proximity to serine/threonine phosphorylation events points to the broad impact of phosphorylation on the chemical reactivity of proteins and the future potential to create small-molecule probes that differentially target proteoforms with PTMs.
This article describes a chemical proteomic approach to quantitatively relate serine/threonine phosphorylation to changes in the reactivity of cysteine residues, thereby affecting their potential to be post-translationally modified and/or targeted by electrophilic small molecules.</description><subject>631/1647/2067</subject><subject>631/337/458</subject><subject>631/80/458/1733</subject><subject>631/92/475</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Cell cycle</subject><subject>Chemical reactions</subject><subject>Cysteine</subject><subject>Cysteine - chemistry</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Parameter modification</subject><subject>Phosphorylation</subject><subject>Post-translation</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Proteome - metabolism</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Reactivity</subject><subject>Residues</subject><subject>Serine</subject><subject>Stoichiometry</subject><subject>Structure-function relationships</subject><subject>Threonine</subject><subject>Threonine - metabolism</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1rGzEQhkVJiV03f6CHsJBLL9uMvlbaSyGENC0YcsldaCWtLbOWttLa4H8fuc5Hm0MPIwnmmXdm9CL0BcM3DFReZ4Z5S2ogJTBtZU0-oDnmTNYCAz97eUOLZ-hTzhsAShnh52hGOSFSEDFHy_shdnqoxhR7P_iwqmJfjeuYS6TDoCcfQ23d6IJ1YarMWoeVy5UPlTnkyfngquS0mfzeT4fP6GOvh-wunu8Fevxx93j7s14-3P-6vVnWhjOY6o50otO0IxQwwWB7rS3TTdsIShpuNRO2AWCa2sZq6LAgEpuWWwoGOKd0gb6fZMddt3XWlMGSHtSY_Fang4raq38zwa_VKu6VbAkIiYvA12eBFH_vXJ7U1mfjhkEHF3dZkYYyycSx2QJdvUM3cZdC2e5ISSyOR6HIiTIp5pxc_zoMBnX0Sp28UsUr9ccrRUrR5d9rvJa8mFMAegJySZVvT2-9_yP7BOvZoFE</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Kemper, Esther K.</creator><creator>Zhang, Yuanjin</creator><creator>Dix, Melissa M.</creator><creator>Cravatt, Benjamin F.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4379-6187</orcidid><orcidid>https://orcid.org/0000-0001-5330-3492</orcidid></search><sort><creationdate>20220301</creationdate><title>Global profiling of phosphorylation-dependent changes in cysteine reactivity</title><author>Kemper, Esther K. ; Zhang, Yuanjin ; Dix, Melissa M. ; Cravatt, Benjamin F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-b2b7ba3b2301210dfaad4a69673265da47d6004a3d6da0b17281c95d30c05533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/1647/2067</topic><topic>631/337/458</topic><topic>631/80/458/1733</topic><topic>631/92/475</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Cell cycle</topic><topic>Chemical reactions</topic><topic>Cysteine</topic><topic>Cysteine - chemistry</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Parameter modification</topic><topic>Phosphorylation</topic><topic>Post-translation</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Proteome - metabolism</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Reactivity</topic><topic>Residues</topic><topic>Serine</topic><topic>Stoichiometry</topic><topic>Structure-function relationships</topic><topic>Threonine</topic><topic>Threonine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kemper, Esther K.</creatorcontrib><creatorcontrib>Zhang, Yuanjin</creatorcontrib><creatorcontrib>Dix, Melissa M.</creatorcontrib><creatorcontrib>Cravatt, Benjamin F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kemper, Esther K.</au><au>Zhang, Yuanjin</au><au>Dix, Melissa M.</au><au>Cravatt, Benjamin F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global profiling of phosphorylation-dependent changes in cysteine reactivity</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>19</volume><issue>3</issue><spage>341</spage><epage>352</epage><pages>341-352</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Proteomics has revealed that the ~20,000 human genes engender a far greater number of proteins, or proteoforms, that are diversified in large part by post-translational modifications (PTMs). How such PTMs affect protein structure and function is an active area of research but remains technically challenging to assess on a proteome-wide scale. Here, we describe a chemical proteomic method to quantitatively relate serine/threonine phosphorylation to changes in the reactivity of cysteine residues, a parameter that can affect the potential for cysteines to be post-translationally modified or engaged by covalent drugs. Leveraging the extensive high-stoichiometry phosphorylation occurring in mitotic cells, we discover numerous cysteines that exhibit phosphorylation-dependent changes in reactivity on diverse proteins enriched in cell cycle regulatory pathways. The discovery of bidirectional changes in cysteine reactivity often occurring in proximity to serine/threonine phosphorylation events points to the broad impact of phosphorylation on the chemical reactivity of proteins and the future potential to create small-molecule probes that differentially target proteoforms with PTMs.
This article describes a chemical proteomic approach to quantitatively relate serine/threonine phosphorylation to changes in the reactivity of cysteine residues, thereby affecting their potential to be post-translationally modified and/or targeted by electrophilic small molecules.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>35228727</pmid><doi>10.1038/s41592-022-01398-2</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4379-6187</orcidid><orcidid>https://orcid.org/0000-0001-5330-3492</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2022-03, Vol.19 (3), p.341-352 |
issn | 1548-7091 1548-7105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8920781 |
source | MEDLINE; Springer Online Journals Complete; Nature Journals Online |
subjects | 631/1647/2067 631/337/458 631/80/458/1733 631/92/475 Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Cell cycle Chemical reactions Cysteine Cysteine - chemistry Humans Life Sciences Parameter modification Phosphorylation Post-translation Protein Processing, Post-Translational Protein structure Proteins Proteome - metabolism Proteomes Proteomics Proteomics - methods Reactivity Residues Serine Stoichiometry Structure-function relationships Threonine Threonine - metabolism |
title | Global profiling of phosphorylation-dependent changes in cysteine reactivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20profiling%20of%20phosphorylation-dependent%20changes%20in%20cysteine%20reactivity&rft.jtitle=Nature%20methods&rft.au=Kemper,%20Esther%20K.&rft.date=2022-03-01&rft.volume=19&rft.issue=3&rft.spage=341&rft.epage=352&rft.pages=341-352&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-022-01398-2&rft_dat=%3Cproquest_pubme%3E2634847055%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638176381&rft_id=info:pmid/35228727&rfr_iscdi=true |