Multi‐omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming

The expression of the pluripotency factors OCT4, SOX2, KLF4, and MYC (OSKM) can convert somatic differentiated cells into pluripotent stem cells in a process known as reprogramming. Notably, partial and reversible reprogramming does not change cell identity but can reverse markers of aging in cells,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aging cell 2022-03, Vol.21 (3), p.e13578-n/a
Hauptverfasser: Chondronasiou, Dafni, Gill, Diljeet, Mosteiro, Lluc, Urdinguio, Rocio G., Berenguer‐Llergo, Antonio, Aguilera, Mònica, Durand, Sylvere, Aprahamian, Fanny, Nirmalathasan, Nitharsshini, Abad, Maria, Martin‐Herranz, Daniel E., Stephan‐Otto Attolini, Camille, Prats, Neus, Kroemer, Guido, Fraga, Mario F., Reik, Wolf, Serrano, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page e13578
container_title Aging cell
container_volume 21
creator Chondronasiou, Dafni
Gill, Diljeet
Mosteiro, Lluc
Urdinguio, Rocio G.
Berenguer‐Llergo, Antonio
Aguilera, Mònica
Durand, Sylvere
Aprahamian, Fanny
Nirmalathasan, Nitharsshini
Abad, Maria
Martin‐Herranz, Daniel E.
Stephan‐Otto Attolini, Camille
Prats, Neus
Kroemer, Guido
Fraga, Mario F.
Reik, Wolf
Serrano, Manuel
description The expression of the pluripotency factors OCT4, SOX2, KLF4, and MYC (OSKM) can convert somatic differentiated cells into pluripotent stem cells in a process known as reprogramming. Notably, partial and reversible reprogramming does not change cell identity but can reverse markers of aging in cells, improve the capacity of aged mice to repair tissue injuries, and extend longevity in progeroid mice. However, little is known about the mechanisms involved. Here, we have studied changes in the DNA methylome, transcriptome, and metabolome in naturally aged mice subject to a single period of transient OSKM expression. We found that this is sufficient to reverse DNA methylation changes that occur upon aging in the pancreas, liver, spleen, and blood. Similarly, we observed reversion of transcriptional changes, especially regarding biological processes known to change during aging. Finally, some serum metabolites and biomarkers altered with aging were also restored to young levels upon transient reprogramming. These observations indicate that a single period of OSKM expression can drive epigenetic, transcriptomic, and metabolomic changes toward a younger configuration in multiple tissues and in the serum. A single cycle of transient OSKM activation in naturally aged mice is able to partially reverse age‐associated changes in several tissues. Specifically, we could capture reversion of alterations occurring with aging at the level of DNA methylation, transcription, as well as, serum metabolome. These changes were stable for a period of up to four weeks after OSKM cessation.
doi_str_mv 10.1111/acel.13578
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8920440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635473943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4488-278d345083b99d97394cfb6db321adae0a9de3c578126a016f99902e2cff7b43</originalsourceid><addsrcrecordid>eNp9kctKxDAYhYMo3jc-gBTciDCa2zTNRpDBG4y4cR_TNB0ztM2YtCOz8xF8Rp_Ev44O6sIskj_k43BODkIHBJ8SWGfa2OqUsKHI1tA24YIPpKDp-mom2RbaiXGKMRESs020xYYUcJJuo8e7rmrd--ubr51Jgp12c9vo1vkm8WUCUxd0VS0SPbFF0roYOxuTHO5JdM2ksolZGNiBbYNuorNNCyqz4CdB1zUge2ij1FW0-1_nLnq4unwY3QzG99e3o4vxwHCeZQMqsoLxIc5YLmUhBZPclHla5IwSXWiLtSwsM5CR0FRjkpZSSkwtNWUpcs520flSdtbltS0M-ADjahZcrcNCee3U75fGPamJn6tMUsw5BoHjL4HgnyFkq2oX4WMr3VjfRUVTNuS9LQbo0R906rvQQLqeyoRgmPWCJ0vKBB9jsOXKDMGq7031vanP3gA-_Gl_hX4XBQBZAi-usot_pNTF6HK8FP0A3w-liQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638773030</pqid></control><display><type>article</type><title>Multi‐omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Chondronasiou, Dafni ; Gill, Diljeet ; Mosteiro, Lluc ; Urdinguio, Rocio G. ; Berenguer‐Llergo, Antonio ; Aguilera, Mònica ; Durand, Sylvere ; Aprahamian, Fanny ; Nirmalathasan, Nitharsshini ; Abad, Maria ; Martin‐Herranz, Daniel E. ; Stephan‐Otto Attolini, Camille ; Prats, Neus ; Kroemer, Guido ; Fraga, Mario F. ; Reik, Wolf ; Serrano, Manuel</creator><creatorcontrib>Chondronasiou, Dafni ; Gill, Diljeet ; Mosteiro, Lluc ; Urdinguio, Rocio G. ; Berenguer‐Llergo, Antonio ; Aguilera, Mònica ; Durand, Sylvere ; Aprahamian, Fanny ; Nirmalathasan, Nitharsshini ; Abad, Maria ; Martin‐Herranz, Daniel E. ; Stephan‐Otto Attolini, Camille ; Prats, Neus ; Kroemer, Guido ; Fraga, Mario F. ; Reik, Wolf ; Serrano, Manuel</creatorcontrib><description>The expression of the pluripotency factors OCT4, SOX2, KLF4, and MYC (OSKM) can convert somatic differentiated cells into pluripotent stem cells in a process known as reprogramming. Notably, partial and reversible reprogramming does not change cell identity but can reverse markers of aging in cells, improve the capacity of aged mice to repair tissue injuries, and extend longevity in progeroid mice. However, little is known about the mechanisms involved. Here, we have studied changes in the DNA methylome, transcriptome, and metabolome in naturally aged mice subject to a single period of transient OSKM expression. We found that this is sufficient to reverse DNA methylation changes that occur upon aging in the pancreas, liver, spleen, and blood. Similarly, we observed reversion of transcriptional changes, especially regarding biological processes known to change during aging. Finally, some serum metabolites and biomarkers altered with aging were also restored to young levels upon transient reprogramming. These observations indicate that a single period of OSKM expression can drive epigenetic, transcriptomic, and metabolomic changes toward a younger configuration in multiple tissues and in the serum. A single cycle of transient OSKM activation in naturally aged mice is able to partially reverse age‐associated changes in several tissues. Specifically, we could capture reversion of alterations occurring with aging at the level of DNA methylation, transcription, as well as, serum metabolome. These changes were stable for a period of up to four weeks after OSKM cessation.</description><identifier>ISSN: 1474-9718</identifier><identifier>ISSN: 1474-9726</identifier><identifier>EISSN: 1474-9726</identifier><identifier>DOI: 10.1111/acel.13578</identifier><identifier>PMID: 35235716</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Age ; Aging ; Animals ; Cell Differentiation ; Cellular Reprogramming - genetics ; DNA damage ; DNA methylation ; DNA Methylation - genetics ; epigenetic clocks ; Epigenetics ; Epigenome ; Induced Pluripotent Stem Cells - metabolism ; KLF4 protein ; Metabolomics ; Mice ; Myc protein ; Oct-4 protein ; OSKM ; Pancreas ; Pluripotency ; Rejuvenation ; reprogramming ; Spleen ; Stem cell transplantation ; Stem cells ; Transcription ; Transcription factors ; Transcriptomes ; transcriptomic clocks ; Transcriptomics ; Yamanaka</subject><ispartof>Aging cell, 2022-03, Vol.21 (3), p.e13578-n/a</ispartof><rights>2022 The Authors. published by Anatomical Society and John Wiley &amp; Sons Ltd.</rights><rights>2022 The Authors. Aging Cell published by Anatomical Society and John Wiley &amp; Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4488-278d345083b99d97394cfb6db321adae0a9de3c578126a016f99902e2cff7b43</citedby><cites>FETCH-LOGICAL-c4488-278d345083b99d97394cfb6db321adae0a9de3c578126a016f99902e2cff7b43</cites><orcidid>0000-0001-8045-320X ; 0000-0003-2736-5758 ; 0000-0002-3742-8161 ; 0000-0003-0763-7947 ; 0000-0001-8450-2603 ; 0000-0001-7177-9312 ; 0000-0002-2285-3317 ; 0000-0002-1462-2498 ; 0000-0003-0216-9881 ; 0000-0003-4041-9706 ; 0000-0001-5653-7390 ; 0000-0002-5725-2466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920440/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920440/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11543,27903,27904,45553,45554,46030,46454,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35235716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chondronasiou, Dafni</creatorcontrib><creatorcontrib>Gill, Diljeet</creatorcontrib><creatorcontrib>Mosteiro, Lluc</creatorcontrib><creatorcontrib>Urdinguio, Rocio G.</creatorcontrib><creatorcontrib>Berenguer‐Llergo, Antonio</creatorcontrib><creatorcontrib>Aguilera, Mònica</creatorcontrib><creatorcontrib>Durand, Sylvere</creatorcontrib><creatorcontrib>Aprahamian, Fanny</creatorcontrib><creatorcontrib>Nirmalathasan, Nitharsshini</creatorcontrib><creatorcontrib>Abad, Maria</creatorcontrib><creatorcontrib>Martin‐Herranz, Daniel E.</creatorcontrib><creatorcontrib>Stephan‐Otto Attolini, Camille</creatorcontrib><creatorcontrib>Prats, Neus</creatorcontrib><creatorcontrib>Kroemer, Guido</creatorcontrib><creatorcontrib>Fraga, Mario F.</creatorcontrib><creatorcontrib>Reik, Wolf</creatorcontrib><creatorcontrib>Serrano, Manuel</creatorcontrib><title>Multi‐omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming</title><title>Aging cell</title><addtitle>Aging Cell</addtitle><description>The expression of the pluripotency factors OCT4, SOX2, KLF4, and MYC (OSKM) can convert somatic differentiated cells into pluripotent stem cells in a process known as reprogramming. Notably, partial and reversible reprogramming does not change cell identity but can reverse markers of aging in cells, improve the capacity of aged mice to repair tissue injuries, and extend longevity in progeroid mice. However, little is known about the mechanisms involved. Here, we have studied changes in the DNA methylome, transcriptome, and metabolome in naturally aged mice subject to a single period of transient OSKM expression. We found that this is sufficient to reverse DNA methylation changes that occur upon aging in the pancreas, liver, spleen, and blood. Similarly, we observed reversion of transcriptional changes, especially regarding biological processes known to change during aging. Finally, some serum metabolites and biomarkers altered with aging were also restored to young levels upon transient reprogramming. These observations indicate that a single period of OSKM expression can drive epigenetic, transcriptomic, and metabolomic changes toward a younger configuration in multiple tissues and in the serum. A single cycle of transient OSKM activation in naturally aged mice is able to partially reverse age‐associated changes in several tissues. Specifically, we could capture reversion of alterations occurring with aging at the level of DNA methylation, transcription, as well as, serum metabolome. These changes were stable for a period of up to four weeks after OSKM cessation.</description><subject>Age</subject><subject>Aging</subject><subject>Animals</subject><subject>Cell Differentiation</subject><subject>Cellular Reprogramming - genetics</subject><subject>DNA damage</subject><subject>DNA methylation</subject><subject>DNA Methylation - genetics</subject><subject>epigenetic clocks</subject><subject>Epigenetics</subject><subject>Epigenome</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>KLF4 protein</subject><subject>Metabolomics</subject><subject>Mice</subject><subject>Myc protein</subject><subject>Oct-4 protein</subject><subject>OSKM</subject><subject>Pancreas</subject><subject>Pluripotency</subject><subject>Rejuvenation</subject><subject>reprogramming</subject><subject>Spleen</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Transcription</subject><subject>Transcription factors</subject><subject>Transcriptomes</subject><subject>transcriptomic clocks</subject><subject>Transcriptomics</subject><subject>Yamanaka</subject><issn>1474-9718</issn><issn>1474-9726</issn><issn>1474-9726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp9kctKxDAYhYMo3jc-gBTciDCa2zTNRpDBG4y4cR_TNB0ztM2YtCOz8xF8Rp_Ev44O6sIskj_k43BODkIHBJ8SWGfa2OqUsKHI1tA24YIPpKDp-mom2RbaiXGKMRESs020xYYUcJJuo8e7rmrd--ubr51Jgp12c9vo1vkm8WUCUxd0VS0SPbFF0roYOxuTHO5JdM2ksolZGNiBbYNuorNNCyqz4CdB1zUge2ij1FW0-1_nLnq4unwY3QzG99e3o4vxwHCeZQMqsoLxIc5YLmUhBZPclHla5IwSXWiLtSwsM5CR0FRjkpZSSkwtNWUpcs520flSdtbltS0M-ADjahZcrcNCee3U75fGPamJn6tMUsw5BoHjL4HgnyFkq2oX4WMr3VjfRUVTNuS9LQbo0R906rvQQLqeyoRgmPWCJ0vKBB9jsOXKDMGq7031vanP3gA-_Gl_hX4XBQBZAi-usot_pNTF6HK8FP0A3w-liQ</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Chondronasiou, Dafni</creator><creator>Gill, Diljeet</creator><creator>Mosteiro, Lluc</creator><creator>Urdinguio, Rocio G.</creator><creator>Berenguer‐Llergo, Antonio</creator><creator>Aguilera, Mònica</creator><creator>Durand, Sylvere</creator><creator>Aprahamian, Fanny</creator><creator>Nirmalathasan, Nitharsshini</creator><creator>Abad, Maria</creator><creator>Martin‐Herranz, Daniel E.</creator><creator>Stephan‐Otto Attolini, Camille</creator><creator>Prats, Neus</creator><creator>Kroemer, Guido</creator><creator>Fraga, Mario F.</creator><creator>Reik, Wolf</creator><creator>Serrano, Manuel</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8045-320X</orcidid><orcidid>https://orcid.org/0000-0003-2736-5758</orcidid><orcidid>https://orcid.org/0000-0002-3742-8161</orcidid><orcidid>https://orcid.org/0000-0003-0763-7947</orcidid><orcidid>https://orcid.org/0000-0001-8450-2603</orcidid><orcidid>https://orcid.org/0000-0001-7177-9312</orcidid><orcidid>https://orcid.org/0000-0002-2285-3317</orcidid><orcidid>https://orcid.org/0000-0002-1462-2498</orcidid><orcidid>https://orcid.org/0000-0003-0216-9881</orcidid><orcidid>https://orcid.org/0000-0003-4041-9706</orcidid><orcidid>https://orcid.org/0000-0001-5653-7390</orcidid><orcidid>https://orcid.org/0000-0002-5725-2466</orcidid></search><sort><creationdate>202203</creationdate><title>Multi‐omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming</title><author>Chondronasiou, Dafni ; Gill, Diljeet ; Mosteiro, Lluc ; Urdinguio, Rocio G. ; Berenguer‐Llergo, Antonio ; Aguilera, Mònica ; Durand, Sylvere ; Aprahamian, Fanny ; Nirmalathasan, Nitharsshini ; Abad, Maria ; Martin‐Herranz, Daniel E. ; Stephan‐Otto Attolini, Camille ; Prats, Neus ; Kroemer, Guido ; Fraga, Mario F. ; Reik, Wolf ; Serrano, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4488-278d345083b99d97394cfb6db321adae0a9de3c578126a016f99902e2cff7b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Age</topic><topic>Aging</topic><topic>Animals</topic><topic>Cell Differentiation</topic><topic>Cellular Reprogramming - genetics</topic><topic>DNA damage</topic><topic>DNA methylation</topic><topic>DNA Methylation - genetics</topic><topic>epigenetic clocks</topic><topic>Epigenetics</topic><topic>Epigenome</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>KLF4 protein</topic><topic>Metabolomics</topic><topic>Mice</topic><topic>Myc protein</topic><topic>Oct-4 protein</topic><topic>OSKM</topic><topic>Pancreas</topic><topic>Pluripotency</topic><topic>Rejuvenation</topic><topic>reprogramming</topic><topic>Spleen</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Transcription</topic><topic>Transcription factors</topic><topic>Transcriptomes</topic><topic>transcriptomic clocks</topic><topic>Transcriptomics</topic><topic>Yamanaka</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chondronasiou, Dafni</creatorcontrib><creatorcontrib>Gill, Diljeet</creatorcontrib><creatorcontrib>Mosteiro, Lluc</creatorcontrib><creatorcontrib>Urdinguio, Rocio G.</creatorcontrib><creatorcontrib>Berenguer‐Llergo, Antonio</creatorcontrib><creatorcontrib>Aguilera, Mònica</creatorcontrib><creatorcontrib>Durand, Sylvere</creatorcontrib><creatorcontrib>Aprahamian, Fanny</creatorcontrib><creatorcontrib>Nirmalathasan, Nitharsshini</creatorcontrib><creatorcontrib>Abad, Maria</creatorcontrib><creatorcontrib>Martin‐Herranz, Daniel E.</creatorcontrib><creatorcontrib>Stephan‐Otto Attolini, Camille</creatorcontrib><creatorcontrib>Prats, Neus</creatorcontrib><creatorcontrib>Kroemer, Guido</creatorcontrib><creatorcontrib>Fraga, Mario F.</creatorcontrib><creatorcontrib>Reik, Wolf</creatorcontrib><creatorcontrib>Serrano, Manuel</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Aging cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chondronasiou, Dafni</au><au>Gill, Diljeet</au><au>Mosteiro, Lluc</au><au>Urdinguio, Rocio G.</au><au>Berenguer‐Llergo, Antonio</au><au>Aguilera, Mònica</au><au>Durand, Sylvere</au><au>Aprahamian, Fanny</au><au>Nirmalathasan, Nitharsshini</au><au>Abad, Maria</au><au>Martin‐Herranz, Daniel E.</au><au>Stephan‐Otto Attolini, Camille</au><au>Prats, Neus</au><au>Kroemer, Guido</au><au>Fraga, Mario F.</au><au>Reik, Wolf</au><au>Serrano, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming</atitle><jtitle>Aging cell</jtitle><addtitle>Aging Cell</addtitle><date>2022-03</date><risdate>2022</risdate><volume>21</volume><issue>3</issue><spage>e13578</spage><epage>n/a</epage><pages>e13578-n/a</pages><issn>1474-9718</issn><issn>1474-9726</issn><eissn>1474-9726</eissn><abstract>The expression of the pluripotency factors OCT4, SOX2, KLF4, and MYC (OSKM) can convert somatic differentiated cells into pluripotent stem cells in a process known as reprogramming. Notably, partial and reversible reprogramming does not change cell identity but can reverse markers of aging in cells, improve the capacity of aged mice to repair tissue injuries, and extend longevity in progeroid mice. However, little is known about the mechanisms involved. Here, we have studied changes in the DNA methylome, transcriptome, and metabolome in naturally aged mice subject to a single period of transient OSKM expression. We found that this is sufficient to reverse DNA methylation changes that occur upon aging in the pancreas, liver, spleen, and blood. Similarly, we observed reversion of transcriptional changes, especially regarding biological processes known to change during aging. Finally, some serum metabolites and biomarkers altered with aging were also restored to young levels upon transient reprogramming. These observations indicate that a single period of OSKM expression can drive epigenetic, transcriptomic, and metabolomic changes toward a younger configuration in multiple tissues and in the serum. A single cycle of transient OSKM activation in naturally aged mice is able to partially reverse age‐associated changes in several tissues. Specifically, we could capture reversion of alterations occurring with aging at the level of DNA methylation, transcription, as well as, serum metabolome. These changes were stable for a period of up to four weeks after OSKM cessation.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>35235716</pmid><doi>10.1111/acel.13578</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8045-320X</orcidid><orcidid>https://orcid.org/0000-0003-2736-5758</orcidid><orcidid>https://orcid.org/0000-0002-3742-8161</orcidid><orcidid>https://orcid.org/0000-0003-0763-7947</orcidid><orcidid>https://orcid.org/0000-0001-8450-2603</orcidid><orcidid>https://orcid.org/0000-0001-7177-9312</orcidid><orcidid>https://orcid.org/0000-0002-2285-3317</orcidid><orcidid>https://orcid.org/0000-0002-1462-2498</orcidid><orcidid>https://orcid.org/0000-0003-0216-9881</orcidid><orcidid>https://orcid.org/0000-0003-4041-9706</orcidid><orcidid>https://orcid.org/0000-0001-5653-7390</orcidid><orcidid>https://orcid.org/0000-0002-5725-2466</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1474-9718
ispartof Aging cell, 2022-03, Vol.21 (3), p.e13578-n/a
issn 1474-9718
1474-9726
1474-9726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8920440
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Age
Aging
Animals
Cell Differentiation
Cellular Reprogramming - genetics
DNA damage
DNA methylation
DNA Methylation - genetics
epigenetic clocks
Epigenetics
Epigenome
Induced Pluripotent Stem Cells - metabolism
KLF4 protein
Metabolomics
Mice
Myc protein
Oct-4 protein
OSKM
Pancreas
Pluripotency
Rejuvenation
reprogramming
Spleen
Stem cell transplantation
Stem cells
Transcription
Transcription factors
Transcriptomes
transcriptomic clocks
Transcriptomics
Yamanaka
title Multi‐omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A28%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90omic%20rejuvenation%20of%20naturally%20aged%20tissues%20by%20a%20single%20cycle%20of%20transient%20reprogramming&rft.jtitle=Aging%20cell&rft.au=Chondronasiou,%20Dafni&rft.date=2022-03&rft.volume=21&rft.issue=3&rft.spage=e13578&rft.epage=n/a&rft.pages=e13578-n/a&rft.issn=1474-9718&rft.eissn=1474-9726&rft_id=info:doi/10.1111/acel.13578&rft_dat=%3Cproquest_pubme%3E2635473943%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638773030&rft_id=info:pmid/35235716&rfr_iscdi=true