Topological defects in liquid crystals as templates for molecular self-assembly

Topological defects in liquid crystals (LCs) have been widely used to organize colloidal dispersions and template polymerization, leading to a range of assemblies, elastomers and gels. However, little is understood about molecular-level assembly processes within defects. Here, we report that nanosco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2016-01, Vol.15 (1), p.106-112
Hauptverfasser: Wang, Xiaoguang, Miller, Daniel S., Bukusoglu, Emre, de Pablo, Juan J., Abbott, Nicholas L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112
container_issue 1
container_start_page 106
container_title Nature materials
container_volume 15
creator Wang, Xiaoguang
Miller, Daniel S.
Bukusoglu, Emre
de Pablo, Juan J.
Abbott, Nicholas L.
description Topological defects in liquid crystals (LCs) have been widely used to organize colloidal dispersions and template polymerization, leading to a range of assemblies, elastomers and gels. However, little is understood about molecular-level assembly processes within defects. Here, we report that nanoscopic environments defined by LC topological defects can selectively trigger processes of molecular self-assembly. By using fluorescence microscopy, cryogenic transmission electron microscopy and super-resolution optical microscopy, we observed signatures of molecular self-assembly of amphiphilic molecules in topological defects, including cooperativity, reversibility and controlled growth. We also show that nanoscopic o-rings synthesized from Saturn-ring disclinations and other molecular assemblies templated by defects can be preserved by using photocrosslinkable amphiphiles. Our results reveal that, in analogy to other classes of macromolecular templates such as polymer–surfactant complexes, topological defects in LCs are a versatile class of three-dimensional, dynamic and reconfigurable templates that can direct processes of molecular self-assembly. Nanoscale environments created by topological defects in liquid crystals can template the self-assembly of molecular amphiphiles within the defects.
doi_str_mv 10.1038/nmat4421
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8919957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793262108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-1796ff11ce5ab273615240b3cb7bab62d46b2b735f1ed5529d36d8761f1979103</originalsourceid><addsrcrecordid>eNqNkU1rFTEUhoMotraCv0ACbuxiak4-JxtBitVCoZt2HZJMcp2SmdwmM4X77430ttauXJ3AeXjOOXkR-gDkFAjrv8yTXTin8AodAley41KS1_s3AKUH6F2tt4RQEEK-RQdUMk0Y5Yfo6jpvc8qb0duEhxCDXyoeZ5zGu3UcsC-7uthUsa14CdM22SVUHHPBU07Br8kWXEOKna01TC7tjtGb2Pjwfl-P0M359-uzn93l1Y-Ls2-XnRdMLR0oLWME8EFYRxWTICgnjnmnnHWSDlw66hQTEcIgBNUDk0OvJETQSrebj9DXB-92dVMYfJiXYpPZlnGyZWeyHc2_nXn8ZTb53vQatBaqCT7vBSXfraEuZhqrDynZOeS1mrYho5IC6f8DFYQzrhk09NML9DavZW4_0SipSK-ppn-FvuRaS4hPewMxfwI1j4E29OPzO5_AxwQbcPIA1NaaN6E8m_hS9hu0Q6m-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767089292</pqid></control><display><type>article</type><title>Topological defects in liquid crystals as templates for molecular self-assembly</title><source>MEDLINE</source><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Wang, Xiaoguang ; Miller, Daniel S. ; Bukusoglu, Emre ; de Pablo, Juan J. ; Abbott, Nicholas L.</creator><creatorcontrib>Wang, Xiaoguang ; Miller, Daniel S. ; Bukusoglu, Emre ; de Pablo, Juan J. ; Abbott, Nicholas L.</creatorcontrib><description>Topological defects in liquid crystals (LCs) have been widely used to organize colloidal dispersions and template polymerization, leading to a range of assemblies, elastomers and gels. However, little is understood about molecular-level assembly processes within defects. Here, we report that nanoscopic environments defined by LC topological defects can selectively trigger processes of molecular self-assembly. By using fluorescence microscopy, cryogenic transmission electron microscopy and super-resolution optical microscopy, we observed signatures of molecular self-assembly of amphiphilic molecules in topological defects, including cooperativity, reversibility and controlled growth. We also show that nanoscopic o-rings synthesized from Saturn-ring disclinations and other molecular assemblies templated by defects can be preserved by using photocrosslinkable amphiphiles. Our results reveal that, in analogy to other classes of macromolecular templates such as polymer–surfactant complexes, topological defects in LCs are a versatile class of three-dimensional, dynamic and reconfigurable templates that can direct processes of molecular self-assembly. Nanoscale environments created by topological defects in liquid crystals can template the self-assembly of molecular amphiphiles within the defects.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4421</identifier><identifier>PMID: 26390324</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>121/143 ; 639/301/357/341 ; 639/301/923/919 ; 639/638/541/966 ; 639/766/119/544 ; 639/925/357/341 ; Assemblies ; Biomaterials ; Boron Compounds - chemistry ; Chemical Engineering - methods ; Colloids - chemistry ; Condensed Matter Physics ; Crystal defects ; Crystals ; Elastomers ; Fluorescence microscopy ; Light microscopy ; Liquid crystal polymers ; Liquid crystals ; Liquid Crystals - chemistry ; Materials Science ; Models, Molecular ; Molecular Structure ; Molecules ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials ; Polymerization ; Polymers ; Self assembly ; Thermodynamics ; Three dimensional ; Topology</subject><ispartof>Nature materials, 2016-01, Vol.15 (1), p.106-112</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group Jan 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-1796ff11ce5ab273615240b3cb7bab62d46b2b735f1ed5529d36d8761f1979103</citedby><cites>FETCH-LOGICAL-c537t-1796ff11ce5ab273615240b3cb7bab62d46b2b735f1ed5529d36d8761f1979103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26390324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xiaoguang</creatorcontrib><creatorcontrib>Miller, Daniel S.</creatorcontrib><creatorcontrib>Bukusoglu, Emre</creatorcontrib><creatorcontrib>de Pablo, Juan J.</creatorcontrib><creatorcontrib>Abbott, Nicholas L.</creatorcontrib><title>Topological defects in liquid crystals as templates for molecular self-assembly</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Topological defects in liquid crystals (LCs) have been widely used to organize colloidal dispersions and template polymerization, leading to a range of assemblies, elastomers and gels. However, little is understood about molecular-level assembly processes within defects. Here, we report that nanoscopic environments defined by LC topological defects can selectively trigger processes of molecular self-assembly. By using fluorescence microscopy, cryogenic transmission electron microscopy and super-resolution optical microscopy, we observed signatures of molecular self-assembly of amphiphilic molecules in topological defects, including cooperativity, reversibility and controlled growth. We also show that nanoscopic o-rings synthesized from Saturn-ring disclinations and other molecular assemblies templated by defects can be preserved by using photocrosslinkable amphiphiles. Our results reveal that, in analogy to other classes of macromolecular templates such as polymer–surfactant complexes, topological defects in LCs are a versatile class of three-dimensional, dynamic and reconfigurable templates that can direct processes of molecular self-assembly. Nanoscale environments created by topological defects in liquid crystals can template the self-assembly of molecular amphiphiles within the defects.</description><subject>121/143</subject><subject>639/301/357/341</subject><subject>639/301/923/919</subject><subject>639/638/541/966</subject><subject>639/766/119/544</subject><subject>639/925/357/341</subject><subject>Assemblies</subject><subject>Biomaterials</subject><subject>Boron Compounds - chemistry</subject><subject>Chemical Engineering - methods</subject><subject>Colloids - chemistry</subject><subject>Condensed Matter Physics</subject><subject>Crystal defects</subject><subject>Crystals</subject><subject>Elastomers</subject><subject>Fluorescence microscopy</subject><subject>Light microscopy</subject><subject>Liquid crystal polymers</subject><subject>Liquid crystals</subject><subject>Liquid Crystals - chemistry</subject><subject>Materials Science</subject><subject>Models, Molecular</subject><subject>Molecular Structure</subject><subject>Molecules</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Self assembly</subject><subject>Thermodynamics</subject><subject>Three dimensional</subject><subject>Topology</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1rFTEUhoMotraCv0ACbuxiak4-JxtBitVCoZt2HZJMcp2SmdwmM4X77430ttauXJ3AeXjOOXkR-gDkFAjrv8yTXTin8AodAley41KS1_s3AKUH6F2tt4RQEEK-RQdUMk0Y5Yfo6jpvc8qb0duEhxCDXyoeZ5zGu3UcsC-7uthUsa14CdM22SVUHHPBU07Br8kWXEOKna01TC7tjtGb2Pjwfl-P0M359-uzn93l1Y-Ls2-XnRdMLR0oLWME8EFYRxWTICgnjnmnnHWSDlw66hQTEcIgBNUDk0OvJETQSrebj9DXB-92dVMYfJiXYpPZlnGyZWeyHc2_nXn8ZTb53vQatBaqCT7vBSXfraEuZhqrDynZOeS1mrYho5IC6f8DFYQzrhk09NML9DavZW4_0SipSK-ppn-FvuRaS4hPewMxfwI1j4E29OPzO5_AxwQbcPIA1NaaN6E8m_hS9hu0Q6m-</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Wang, Xiaoguang</creator><creator>Miller, Daniel S.</creator><creator>Bukusoglu, Emre</creator><creator>de Pablo, Juan J.</creator><creator>Abbott, Nicholas L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20160101</creationdate><title>Topological defects in liquid crystals as templates for molecular self-assembly</title><author>Wang, Xiaoguang ; Miller, Daniel S. ; Bukusoglu, Emre ; de Pablo, Juan J. ; Abbott, Nicholas L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-1796ff11ce5ab273615240b3cb7bab62d46b2b735f1ed5529d36d8761f1979103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>121/143</topic><topic>639/301/357/341</topic><topic>639/301/923/919</topic><topic>639/638/541/966</topic><topic>639/766/119/544</topic><topic>639/925/357/341</topic><topic>Assemblies</topic><topic>Biomaterials</topic><topic>Boron Compounds - chemistry</topic><topic>Chemical Engineering - methods</topic><topic>Colloids - chemistry</topic><topic>Condensed Matter Physics</topic><topic>Crystal defects</topic><topic>Crystals</topic><topic>Elastomers</topic><topic>Fluorescence microscopy</topic><topic>Light microscopy</topic><topic>Liquid crystal polymers</topic><topic>Liquid crystals</topic><topic>Liquid Crystals - chemistry</topic><topic>Materials Science</topic><topic>Models, Molecular</topic><topic>Molecular Structure</topic><topic>Molecules</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Self assembly</topic><topic>Thermodynamics</topic><topic>Three dimensional</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaoguang</creatorcontrib><creatorcontrib>Miller, Daniel S.</creatorcontrib><creatorcontrib>Bukusoglu, Emre</creatorcontrib><creatorcontrib>de Pablo, Juan J.</creatorcontrib><creatorcontrib>Abbott, Nicholas L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaoguang</au><au>Miller, Daniel S.</au><au>Bukusoglu, Emre</au><au>de Pablo, Juan J.</au><au>Abbott, Nicholas L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological defects in liquid crystals as templates for molecular self-assembly</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>15</volume><issue>1</issue><spage>106</spage><epage>112</epage><pages>106-112</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Topological defects in liquid crystals (LCs) have been widely used to organize colloidal dispersions and template polymerization, leading to a range of assemblies, elastomers and gels. However, little is understood about molecular-level assembly processes within defects. Here, we report that nanoscopic environments defined by LC topological defects can selectively trigger processes of molecular self-assembly. By using fluorescence microscopy, cryogenic transmission electron microscopy and super-resolution optical microscopy, we observed signatures of molecular self-assembly of amphiphilic molecules in topological defects, including cooperativity, reversibility and controlled growth. We also show that nanoscopic o-rings synthesized from Saturn-ring disclinations and other molecular assemblies templated by defects can be preserved by using photocrosslinkable amphiphiles. Our results reveal that, in analogy to other classes of macromolecular templates such as polymer–surfactant complexes, topological defects in LCs are a versatile class of three-dimensional, dynamic and reconfigurable templates that can direct processes of molecular self-assembly. Nanoscale environments created by topological defects in liquid crystals can template the self-assembly of molecular amphiphiles within the defects.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26390324</pmid><doi>10.1038/nmat4421</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2016-01, Vol.15 (1), p.106-112
issn 1476-1122
1476-4660
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8919957
source MEDLINE; Nature Journals Online; Alma/SFX Local Collection
subjects 121/143
639/301/357/341
639/301/923/919
639/638/541/966
639/766/119/544
639/925/357/341
Assemblies
Biomaterials
Boron Compounds - chemistry
Chemical Engineering - methods
Colloids - chemistry
Condensed Matter Physics
Crystal defects
Crystals
Elastomers
Fluorescence microscopy
Light microscopy
Liquid crystal polymers
Liquid crystals
Liquid Crystals - chemistry
Materials Science
Models, Molecular
Molecular Structure
Molecules
Nanostructure
Nanotechnology
Optical and Electronic Materials
Polymerization
Polymers
Self assembly
Thermodynamics
Three dimensional
Topology
title Topological defects in liquid crystals as templates for molecular self-assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20defects%20in%20liquid%20crystals%20as%20templates%20for%20molecular%20self-assembly&rft.jtitle=Nature%20materials&rft.au=Wang,%20Xiaoguang&rft.date=2016-01-01&rft.volume=15&rft.issue=1&rft.spage=106&rft.epage=112&rft.pages=106-112&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4421&rft_dat=%3Cproquest_pubme%3E1793262108%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767089292&rft_id=info:pmid/26390324&rfr_iscdi=true