Blood Vessel Detection Algorithm for Tissue Engineering and Quantitative Histology
Immunohistochemistry for vascular network analysis plays a fundamental role in basic science, translational research and clinical practice. However, identifying vascularization in histological tissue images is time consuming and markedly depends on the operator’s experience. In this study, we presen...
Gespeichert in:
Veröffentlicht in: | Annals of biomedical engineering 2022-04, Vol.50 (4), p.387-400 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 400 |
---|---|
container_issue | 4 |
container_start_page | 387 |
container_title | Annals of biomedical engineering |
container_volume | 50 |
creator | Adamo, A. Bruno, A. Menallo, G. Francipane, M. G. Fazzari, M. Pirrone, R. Ardizzone, E. Wagner, W. R. D’Amore, A. |
description | Immunohistochemistry for vascular network analysis plays a fundamental role in basic science, translational research and clinical practice. However, identifying vascularization in histological tissue images is time consuming and markedly depends on the operator’s experience. In this study, we present “blood vessel detection—BVD”, an automatic algorithm for quantitative analysis of blood vessels in immunohistochemical images. BVD is based on extraction and analysis of low-level image features and spatial filtering techniques, which do not require a training phase. BVD algorithm performance was comparatively evaluated on histological sections from three different
in vivo
experiments. Collectively, 173 independent images were analyzed, and the algorithm's results were compared to those obtained by human operators. The developed BVD algorithm proved to be a robust and versatile tool, being able to quantify number, area, and spatial distribution of blood vessels within all three considered histologic datasets. BVD is provided as an open-source application working on different operating systems. BVD is supported by a user-friendly graphical interface designed to facilitate large-scale analysis. |
doi_str_mv | 10.1007/s10439-022-02923-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8917109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638175068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-b2c01d2182312ffa3d08885ae42ac991f64563b29ca0cdce2316cce139a03aeb3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EokvhD3BAlrhwCYztxLEvSG0ptFIlBCpcLa8zSV1l7cV2KvXf43ZLKT1wsObgb97Mm0fIawbvGUD_ITNohW6A8_o0Fw1_Qlas60WjpZJPyQpAQyO1bPfIi5wvARhTontO9kTHeia0WJHvh3OMA_2JOeNMP2FBV3wM9GCeYvLlYkPHmOi5z3lBehwmHxCTDxO1YaDfFhuKL7b4K6QnPpc4x-n6JXk22jnjq7u6T358Pj4_OmnOvn45PTo4a1zbt6VZcwds4Exxwfg4WjGAUqqz2HLrtGajbDsp1lw7C25wWDHpHNa1LQiLa7FPPu50t8t6g5UIJdnZbJPf2HRtovXm35_gL8wUr4zS1T3oKvDuTiDFXwvmYjY-O5xnGzAu2XDJtVCt0n1F3z5CL-OSQrVXKaFY34FUleI7yqWYc8LxfhkG5iYys4vM1MjMbWSG16Y3D23ct_zJqAJiB-TtzeUx_Z39H9nfZhCivA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638175068</pqid></control><display><type>article</type><title>Blood Vessel Detection Algorithm for Tissue Engineering and Quantitative Histology</title><source>SpringerLink Journals - AutoHoldings</source><creator>Adamo, A. ; Bruno, A. ; Menallo, G. ; Francipane, M. G. ; Fazzari, M. ; Pirrone, R. ; Ardizzone, E. ; Wagner, W. R. ; D’Amore, A.</creator><creatorcontrib>Adamo, A. ; Bruno, A. ; Menallo, G. ; Francipane, M. G. ; Fazzari, M. ; Pirrone, R. ; Ardizzone, E. ; Wagner, W. R. ; D’Amore, A.</creatorcontrib><description>Immunohistochemistry for vascular network analysis plays a fundamental role in basic science, translational research and clinical practice. However, identifying vascularization in histological tissue images is time consuming and markedly depends on the operator’s experience. In this study, we present “blood vessel detection—BVD”, an automatic algorithm for quantitative analysis of blood vessels in immunohistochemical images. BVD is based on extraction and analysis of low-level image features and spatial filtering techniques, which do not require a training phase. BVD algorithm performance was comparatively evaluated on histological sections from three different
in vivo
experiments. Collectively, 173 independent images were analyzed, and the algorithm's results were compared to those obtained by human operators. The developed BVD algorithm proved to be a robust and versatile tool, being able to quantify number, area, and spatial distribution of blood vessels within all three considered histologic datasets. BVD is provided as an open-source application working on different operating systems. BVD is supported by a user-friendly graphical interface designed to facilitate large-scale analysis.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-022-02923-2</identifier><identifier>PMID: 35171393</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Blood vessels ; Classical Mechanics ; Feature extraction ; Histology ; Image filters ; Image processing ; Immunohistochemistry ; Network analysis ; Original ; Original Article ; Quantitative analysis ; Spatial distribution ; Spatial filtering ; Tissue engineering ; Vascularization</subject><ispartof>Annals of biomedical engineering, 2022-04, Vol.50 (4), p.387-400</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-b2c01d2182312ffa3d08885ae42ac991f64563b29ca0cdce2316cce139a03aeb3</citedby><cites>FETCH-LOGICAL-c474t-b2c01d2182312ffa3d08885ae42ac991f64563b29ca0cdce2316cce139a03aeb3</cites><orcidid>0000-0002-3151-3170 ; 0000-0002-6908-6071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-022-02923-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-022-02923-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35171393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adamo, A.</creatorcontrib><creatorcontrib>Bruno, A.</creatorcontrib><creatorcontrib>Menallo, G.</creatorcontrib><creatorcontrib>Francipane, M. G.</creatorcontrib><creatorcontrib>Fazzari, M.</creatorcontrib><creatorcontrib>Pirrone, R.</creatorcontrib><creatorcontrib>Ardizzone, E.</creatorcontrib><creatorcontrib>Wagner, W. R.</creatorcontrib><creatorcontrib>D’Amore, A.</creatorcontrib><title>Blood Vessel Detection Algorithm for Tissue Engineering and Quantitative Histology</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>Immunohistochemistry for vascular network analysis plays a fundamental role in basic science, translational research and clinical practice. However, identifying vascularization in histological tissue images is time consuming and markedly depends on the operator’s experience. In this study, we present “blood vessel detection—BVD”, an automatic algorithm for quantitative analysis of blood vessels in immunohistochemical images. BVD is based on extraction and analysis of low-level image features and spatial filtering techniques, which do not require a training phase. BVD algorithm performance was comparatively evaluated on histological sections from three different
in vivo
experiments. Collectively, 173 independent images were analyzed, and the algorithm's results were compared to those obtained by human operators. The developed BVD algorithm proved to be a robust and versatile tool, being able to quantify number, area, and spatial distribution of blood vessels within all three considered histologic datasets. BVD is provided as an open-source application working on different operating systems. BVD is supported by a user-friendly graphical interface designed to facilitate large-scale analysis.</description><subject>Algorithms</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Blood vessels</subject><subject>Classical Mechanics</subject><subject>Feature extraction</subject><subject>Histology</subject><subject>Image filters</subject><subject>Image processing</subject><subject>Immunohistochemistry</subject><subject>Network analysis</subject><subject>Original</subject><subject>Original Article</subject><subject>Quantitative analysis</subject><subject>Spatial distribution</subject><subject>Spatial filtering</subject><subject>Tissue engineering</subject><subject>Vascularization</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUFv1DAQhS0EokvhD3BAlrhwCYztxLEvSG0ptFIlBCpcLa8zSV1l7cV2KvXf43ZLKT1wsObgb97Mm0fIawbvGUD_ITNohW6A8_o0Fw1_Qlas60WjpZJPyQpAQyO1bPfIi5wvARhTontO9kTHeia0WJHvh3OMA_2JOeNMP2FBV3wM9GCeYvLlYkPHmOi5z3lBehwmHxCTDxO1YaDfFhuKL7b4K6QnPpc4x-n6JXk22jnjq7u6T358Pj4_OmnOvn45PTo4a1zbt6VZcwds4Exxwfg4WjGAUqqz2HLrtGajbDsp1lw7C25wWDHpHNa1LQiLa7FPPu50t8t6g5UIJdnZbJPf2HRtovXm35_gL8wUr4zS1T3oKvDuTiDFXwvmYjY-O5xnGzAu2XDJtVCt0n1F3z5CL-OSQrVXKaFY34FUleI7yqWYc8LxfhkG5iYys4vM1MjMbWSG16Y3D23ct_zJqAJiB-TtzeUx_Z39H9nfZhCivA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Adamo, A.</creator><creator>Bruno, A.</creator><creator>Menallo, G.</creator><creator>Francipane, M. G.</creator><creator>Fazzari, M.</creator><creator>Pirrone, R.</creator><creator>Ardizzone, E.</creator><creator>Wagner, W. R.</creator><creator>D’Amore, A.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3151-3170</orcidid><orcidid>https://orcid.org/0000-0002-6908-6071</orcidid></search><sort><creationdate>20220401</creationdate><title>Blood Vessel Detection Algorithm for Tissue Engineering and Quantitative Histology</title><author>Adamo, A. ; Bruno, A. ; Menallo, G. ; Francipane, M. G. ; Fazzari, M. ; Pirrone, R. ; Ardizzone, E. ; Wagner, W. R. ; D’Amore, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-b2c01d2182312ffa3d08885ae42ac991f64563b29ca0cdce2316cce139a03aeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Blood vessels</topic><topic>Classical Mechanics</topic><topic>Feature extraction</topic><topic>Histology</topic><topic>Image filters</topic><topic>Image processing</topic><topic>Immunohistochemistry</topic><topic>Network analysis</topic><topic>Original</topic><topic>Original Article</topic><topic>Quantitative analysis</topic><topic>Spatial distribution</topic><topic>Spatial filtering</topic><topic>Tissue engineering</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adamo, A.</creatorcontrib><creatorcontrib>Bruno, A.</creatorcontrib><creatorcontrib>Menallo, G.</creatorcontrib><creatorcontrib>Francipane, M. G.</creatorcontrib><creatorcontrib>Fazzari, M.</creatorcontrib><creatorcontrib>Pirrone, R.</creatorcontrib><creatorcontrib>Ardizzone, E.</creatorcontrib><creatorcontrib>Wagner, W. R.</creatorcontrib><creatorcontrib>D’Amore, A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adamo, A.</au><au>Bruno, A.</au><au>Menallo, G.</au><au>Francipane, M. G.</au><au>Fazzari, M.</au><au>Pirrone, R.</au><au>Ardizzone, E.</au><au>Wagner, W. R.</au><au>D’Amore, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blood Vessel Detection Algorithm for Tissue Engineering and Quantitative Histology</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>50</volume><issue>4</issue><spage>387</spage><epage>400</epage><pages>387-400</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>Immunohistochemistry for vascular network analysis plays a fundamental role in basic science, translational research and clinical practice. However, identifying vascularization in histological tissue images is time consuming and markedly depends on the operator’s experience. In this study, we present “blood vessel detection—BVD”, an automatic algorithm for quantitative analysis of blood vessels in immunohistochemical images. BVD is based on extraction and analysis of low-level image features and spatial filtering techniques, which do not require a training phase. BVD algorithm performance was comparatively evaluated on histological sections from three different
in vivo
experiments. Collectively, 173 independent images were analyzed, and the algorithm's results were compared to those obtained by human operators. The developed BVD algorithm proved to be a robust and versatile tool, being able to quantify number, area, and spatial distribution of blood vessels within all three considered histologic datasets. BVD is provided as an open-source application working on different operating systems. BVD is supported by a user-friendly graphical interface designed to facilitate large-scale analysis.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>35171393</pmid><doi>10.1007/s10439-022-02923-2</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3151-3170</orcidid><orcidid>https://orcid.org/0000-0002-6908-6071</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6964 |
ispartof | Annals of biomedical engineering, 2022-04, Vol.50 (4), p.387-400 |
issn | 0090-6964 1573-9686 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8917109 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Biochemistry Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Blood vessels Classical Mechanics Feature extraction Histology Image filters Image processing Immunohistochemistry Network analysis Original Original Article Quantitative analysis Spatial distribution Spatial filtering Tissue engineering Vascularization |
title | Blood Vessel Detection Algorithm for Tissue Engineering and Quantitative Histology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A41%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blood%20Vessel%20Detection%20Algorithm%20for%20Tissue%20Engineering%20and%20Quantitative%20Histology&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Adamo,%20A.&rft.date=2022-04-01&rft.volume=50&rft.issue=4&rft.spage=387&rft.epage=400&rft.pages=387-400&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-022-02923-2&rft_dat=%3Cproquest_pubme%3E2638175068%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638175068&rft_id=info:pmid/35171393&rfr_iscdi=true |