Blood Vessel Detection Algorithm for Tissue Engineering and Quantitative Histology

Immunohistochemistry for vascular network analysis plays a fundamental role in basic science, translational research and clinical practice. However, identifying vascularization in histological tissue images is time consuming and markedly depends on the operator’s experience. In this study, we presen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering 2022-04, Vol.50 (4), p.387-400
Hauptverfasser: Adamo, A., Bruno, A., Menallo, G., Francipane, M. G., Fazzari, M., Pirrone, R., Ardizzone, E., Wagner, W. R., D’Amore, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 400
container_issue 4
container_start_page 387
container_title Annals of biomedical engineering
container_volume 50
creator Adamo, A.
Bruno, A.
Menallo, G.
Francipane, M. G.
Fazzari, M.
Pirrone, R.
Ardizzone, E.
Wagner, W. R.
D’Amore, A.
description Immunohistochemistry for vascular network analysis plays a fundamental role in basic science, translational research and clinical practice. However, identifying vascularization in histological tissue images is time consuming and markedly depends on the operator’s experience. In this study, we present “blood vessel detection—BVD”, an automatic algorithm for quantitative analysis of blood vessels in immunohistochemical images. BVD is based on extraction and analysis of low-level image features and spatial filtering techniques, which do not require a training phase. BVD algorithm performance was comparatively evaluated on histological sections from three different in vivo experiments. Collectively, 173 independent images were analyzed, and the algorithm's results were compared to those obtained by human operators. The developed BVD algorithm proved to be a robust and versatile tool, being able to quantify number, area, and spatial distribution of blood vessels within all three considered histologic datasets. BVD is provided as an open-source application working on different operating systems. BVD is supported by a user-friendly graphical interface designed to facilitate large-scale analysis.
doi_str_mv 10.1007/s10439-022-02923-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8917109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638175068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-b2c01d2182312ffa3d08885ae42ac991f64563b29ca0cdce2316cce139a03aeb3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EokvhD3BAlrhwCYztxLEvSG0ptFIlBCpcLa8zSV1l7cV2KvXf43ZLKT1wsObgb97Mm0fIawbvGUD_ITNohW6A8_o0Fw1_Qlas60WjpZJPyQpAQyO1bPfIi5wvARhTontO9kTHeia0WJHvh3OMA_2JOeNMP2FBV3wM9GCeYvLlYkPHmOi5z3lBehwmHxCTDxO1YaDfFhuKL7b4K6QnPpc4x-n6JXk22jnjq7u6T358Pj4_OmnOvn45PTo4a1zbt6VZcwds4Exxwfg4WjGAUqqz2HLrtGajbDsp1lw7C25wWDHpHNa1LQiLa7FPPu50t8t6g5UIJdnZbJPf2HRtovXm35_gL8wUr4zS1T3oKvDuTiDFXwvmYjY-O5xnGzAu2XDJtVCt0n1F3z5CL-OSQrVXKaFY34FUleI7yqWYc8LxfhkG5iYys4vM1MjMbWSG16Y3D23ct_zJqAJiB-TtzeUx_Z39H9nfZhCivA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638175068</pqid></control><display><type>article</type><title>Blood Vessel Detection Algorithm for Tissue Engineering and Quantitative Histology</title><source>SpringerLink Journals - AutoHoldings</source><creator>Adamo, A. ; Bruno, A. ; Menallo, G. ; Francipane, M. G. ; Fazzari, M. ; Pirrone, R. ; Ardizzone, E. ; Wagner, W. R. ; D’Amore, A.</creator><creatorcontrib>Adamo, A. ; Bruno, A. ; Menallo, G. ; Francipane, M. G. ; Fazzari, M. ; Pirrone, R. ; Ardizzone, E. ; Wagner, W. R. ; D’Amore, A.</creatorcontrib><description>Immunohistochemistry for vascular network analysis plays a fundamental role in basic science, translational research and clinical practice. However, identifying vascularization in histological tissue images is time consuming and markedly depends on the operator’s experience. In this study, we present “blood vessel detection—BVD”, an automatic algorithm for quantitative analysis of blood vessels in immunohistochemical images. BVD is based on extraction and analysis of low-level image features and spatial filtering techniques, which do not require a training phase. BVD algorithm performance was comparatively evaluated on histological sections from three different in vivo experiments. Collectively, 173 independent images were analyzed, and the algorithm's results were compared to those obtained by human operators. The developed BVD algorithm proved to be a robust and versatile tool, being able to quantify number, area, and spatial distribution of blood vessels within all three considered histologic datasets. BVD is provided as an open-source application working on different operating systems. BVD is supported by a user-friendly graphical interface designed to facilitate large-scale analysis.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-022-02923-2</identifier><identifier>PMID: 35171393</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Blood vessels ; Classical Mechanics ; Feature extraction ; Histology ; Image filters ; Image processing ; Immunohistochemistry ; Network analysis ; Original ; Original Article ; Quantitative analysis ; Spatial distribution ; Spatial filtering ; Tissue engineering ; Vascularization</subject><ispartof>Annals of biomedical engineering, 2022-04, Vol.50 (4), p.387-400</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-b2c01d2182312ffa3d08885ae42ac991f64563b29ca0cdce2316cce139a03aeb3</citedby><cites>FETCH-LOGICAL-c474t-b2c01d2182312ffa3d08885ae42ac991f64563b29ca0cdce2316cce139a03aeb3</cites><orcidid>0000-0002-3151-3170 ; 0000-0002-6908-6071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-022-02923-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-022-02923-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35171393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adamo, A.</creatorcontrib><creatorcontrib>Bruno, A.</creatorcontrib><creatorcontrib>Menallo, G.</creatorcontrib><creatorcontrib>Francipane, M. G.</creatorcontrib><creatorcontrib>Fazzari, M.</creatorcontrib><creatorcontrib>Pirrone, R.</creatorcontrib><creatorcontrib>Ardizzone, E.</creatorcontrib><creatorcontrib>Wagner, W. R.</creatorcontrib><creatorcontrib>D’Amore, A.</creatorcontrib><title>Blood Vessel Detection Algorithm for Tissue Engineering and Quantitative Histology</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>Immunohistochemistry for vascular network analysis plays a fundamental role in basic science, translational research and clinical practice. However, identifying vascularization in histological tissue images is time consuming and markedly depends on the operator’s experience. In this study, we present “blood vessel detection—BVD”, an automatic algorithm for quantitative analysis of blood vessels in immunohistochemical images. BVD is based on extraction and analysis of low-level image features and spatial filtering techniques, which do not require a training phase. BVD algorithm performance was comparatively evaluated on histological sections from three different in vivo experiments. Collectively, 173 independent images were analyzed, and the algorithm's results were compared to those obtained by human operators. The developed BVD algorithm proved to be a robust and versatile tool, being able to quantify number, area, and spatial distribution of blood vessels within all three considered histologic datasets. BVD is provided as an open-source application working on different operating systems. BVD is supported by a user-friendly graphical interface designed to facilitate large-scale analysis.</description><subject>Algorithms</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Blood vessels</subject><subject>Classical Mechanics</subject><subject>Feature extraction</subject><subject>Histology</subject><subject>Image filters</subject><subject>Image processing</subject><subject>Immunohistochemistry</subject><subject>Network analysis</subject><subject>Original</subject><subject>Original Article</subject><subject>Quantitative analysis</subject><subject>Spatial distribution</subject><subject>Spatial filtering</subject><subject>Tissue engineering</subject><subject>Vascularization</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUFv1DAQhS0EokvhD3BAlrhwCYztxLEvSG0ptFIlBCpcLa8zSV1l7cV2KvXf43ZLKT1wsObgb97Mm0fIawbvGUD_ITNohW6A8_o0Fw1_Qlas60WjpZJPyQpAQyO1bPfIi5wvARhTontO9kTHeia0WJHvh3OMA_2JOeNMP2FBV3wM9GCeYvLlYkPHmOi5z3lBehwmHxCTDxO1YaDfFhuKL7b4K6QnPpc4x-n6JXk22jnjq7u6T358Pj4_OmnOvn45PTo4a1zbt6VZcwds4Exxwfg4WjGAUqqz2HLrtGajbDsp1lw7C25wWDHpHNa1LQiLa7FPPu50t8t6g5UIJdnZbJPf2HRtovXm35_gL8wUr4zS1T3oKvDuTiDFXwvmYjY-O5xnGzAu2XDJtVCt0n1F3z5CL-OSQrVXKaFY34FUleI7yqWYc8LxfhkG5iYys4vM1MjMbWSG16Y3D23ct_zJqAJiB-TtzeUx_Z39H9nfZhCivA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Adamo, A.</creator><creator>Bruno, A.</creator><creator>Menallo, G.</creator><creator>Francipane, M. G.</creator><creator>Fazzari, M.</creator><creator>Pirrone, R.</creator><creator>Ardizzone, E.</creator><creator>Wagner, W. R.</creator><creator>D’Amore, A.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3151-3170</orcidid><orcidid>https://orcid.org/0000-0002-6908-6071</orcidid></search><sort><creationdate>20220401</creationdate><title>Blood Vessel Detection Algorithm for Tissue Engineering and Quantitative Histology</title><author>Adamo, A. ; Bruno, A. ; Menallo, G. ; Francipane, M. G. ; Fazzari, M. ; Pirrone, R. ; Ardizzone, E. ; Wagner, W. R. ; D’Amore, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-b2c01d2182312ffa3d08885ae42ac991f64563b29ca0cdce2316cce139a03aeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Blood vessels</topic><topic>Classical Mechanics</topic><topic>Feature extraction</topic><topic>Histology</topic><topic>Image filters</topic><topic>Image processing</topic><topic>Immunohistochemistry</topic><topic>Network analysis</topic><topic>Original</topic><topic>Original Article</topic><topic>Quantitative analysis</topic><topic>Spatial distribution</topic><topic>Spatial filtering</topic><topic>Tissue engineering</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adamo, A.</creatorcontrib><creatorcontrib>Bruno, A.</creatorcontrib><creatorcontrib>Menallo, G.</creatorcontrib><creatorcontrib>Francipane, M. G.</creatorcontrib><creatorcontrib>Fazzari, M.</creatorcontrib><creatorcontrib>Pirrone, R.</creatorcontrib><creatorcontrib>Ardizzone, E.</creatorcontrib><creatorcontrib>Wagner, W. R.</creatorcontrib><creatorcontrib>D’Amore, A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adamo, A.</au><au>Bruno, A.</au><au>Menallo, G.</au><au>Francipane, M. G.</au><au>Fazzari, M.</au><au>Pirrone, R.</au><au>Ardizzone, E.</au><au>Wagner, W. R.</au><au>D’Amore, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blood Vessel Detection Algorithm for Tissue Engineering and Quantitative Histology</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>50</volume><issue>4</issue><spage>387</spage><epage>400</epage><pages>387-400</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>Immunohistochemistry for vascular network analysis plays a fundamental role in basic science, translational research and clinical practice. However, identifying vascularization in histological tissue images is time consuming and markedly depends on the operator’s experience. In this study, we present “blood vessel detection—BVD”, an automatic algorithm for quantitative analysis of blood vessels in immunohistochemical images. BVD is based on extraction and analysis of low-level image features and spatial filtering techniques, which do not require a training phase. BVD algorithm performance was comparatively evaluated on histological sections from three different in vivo experiments. Collectively, 173 independent images were analyzed, and the algorithm's results were compared to those obtained by human operators. The developed BVD algorithm proved to be a robust and versatile tool, being able to quantify number, area, and spatial distribution of blood vessels within all three considered histologic datasets. BVD is provided as an open-source application working on different operating systems. BVD is supported by a user-friendly graphical interface designed to facilitate large-scale analysis.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>35171393</pmid><doi>10.1007/s10439-022-02923-2</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3151-3170</orcidid><orcidid>https://orcid.org/0000-0002-6908-6071</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-6964
ispartof Annals of biomedical engineering, 2022-04, Vol.50 (4), p.387-400
issn 0090-6964
1573-9686
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8917109
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Biochemistry
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Blood vessels
Classical Mechanics
Feature extraction
Histology
Image filters
Image processing
Immunohistochemistry
Network analysis
Original
Original Article
Quantitative analysis
Spatial distribution
Spatial filtering
Tissue engineering
Vascularization
title Blood Vessel Detection Algorithm for Tissue Engineering and Quantitative Histology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A41%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blood%20Vessel%20Detection%20Algorithm%20for%20Tissue%20Engineering%20and%20Quantitative%20Histology&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Adamo,%20A.&rft.date=2022-04-01&rft.volume=50&rft.issue=4&rft.spage=387&rft.epage=400&rft.pages=387-400&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-022-02923-2&rft_dat=%3Cproquest_pubme%3E2638175068%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638175068&rft_id=info:pmid/35171393&rfr_iscdi=true