Quantitative susceptibility mapping reveals alterations of dentate nuclei in common types of degenerative cerebellar ataxias

Abstract The cerebellar nuclei are a brain region with high iron content. Surprisingly, little is known about iron content in the cerebellar nuclei and its possible contribution to pathology in cerebellar ataxias, with the only exception of Friedreich’s ataxia. In the present exploratory cross-secti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain communications 2022, Vol.4 (1), p.fcab306-fcab306
Hauptverfasser: Deistung, Andreas, Jäschke, Dominik, Draganova, Rossitza, Pfaffenrot, Viktor, Hulst, Thomas, Steiner, Katharina M., Thieme, Andreas, Giordano, Ilaria A., Klockgether, Thomas, Tunc, Sinem, Münchau, Alexander, Minnerop, Martina, Göricke, Sophia L., Reichenbach, Jürgen R., Timmann, Dagmar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The cerebellar nuclei are a brain region with high iron content. Surprisingly, little is known about iron content in the cerebellar nuclei and its possible contribution to pathology in cerebellar ataxias, with the only exception of Friedreich’s ataxia. In the present exploratory cross-sectional study, quantitative susceptibility mapping was used to investigate volume, iron concentration and total iron content of the dentate nuclei in common types of hereditary and non-hereditary degenerative ataxias. Seventy-nine patients with spinocerebellar ataxias of types 1, 2, 3 and 6; 15 patients with Friedreich’s ataxia; 18 patients with multiple system atrophy, cerebellar type and 111 healthy controls were also included. All underwent 3 T MRI and clinical assessments. For each specific ataxia subtype, voxel-based and volumes-of-interest-based group analyses were performed in comparison with a corresponding age- and sex-matched control group, both for volume, magnetic susceptiblity (indicating iron concentration) and susceptibility mass (indicating total iron content) of the dentate nuclei. Spinocerebellar ataxia of type 1 and multiple system atrophy, cerebellar type patients showed higher susceptibilities in large parts of the dentate nucleus but unaltered susceptibility masses compared with controls. Friedreich’s ataxia patients and, only on a trend level, spinocerebellar ataxia of type 2 patients showed higher susceptibilities in more circumscribed parts of the dentate. In contrast, spinocerebellar ataxia of type 6 patients revealed lower susceptibilities and susceptibility masses compared with controls throughout the dentate nucleus. Spinocerebellar ataxia of type 3 patients showed no significant changes in susceptibility and susceptibility mass. Lower volume of the dentate nuclei was found to varying degrees in all ataxia types. It was most pronounced in spinocerebellar ataxia of type 6 patients and least prominent in spinocerebellar ataxia of type 3 patients. The findings show that alterations in susceptibility revealed by quantitative susceptibility mapping are common in the dentate nuclei in different types of cerebellar ataxias. The most striking changes in susceptibility were found in spinocerebellar ataxia of type 1, multiple system atrophy, cerebellar type and spinocerebellar ataxia of type 6. Because iron content is known to be high in glial cells but not in neurons of the cerebellar nuclei, the higher susceptibility in spinocerebellar ataxia o
ISSN:2632-1297
2632-1297
DOI:10.1093/braincomms/fcab306