Optimization of Thermal and Mechanical Properties of Polypropylene-Wollastonite Composite Drawn Fibers Based on Surface Response Analysis
The thermal and mechanical properties of polypropylene-wollastonite composite drawn fibers were optimized via experiments selected with the Box-Behnken approach. The drawing ratio, the filler and the compatibilizer content were chosen as design variables, while the tensile strength, the melting enth...
Gespeichert in:
Veröffentlicht in: | Polymers 2022-02, Vol.14 (5), p.924 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 924 |
container_title | Polymers |
container_volume | 14 |
creator | Leontiadis, Konstantinos Tsioptsias, Costas Messaritakis, Stavros Terzaki, Aikaterini Xidas, Panagiotis Mystikos, Kyriakos Tzimpilis, Evangelos Tsivintzelis, Ioannis |
description | The thermal and mechanical properties of polypropylene-wollastonite composite drawn fibers were optimized via experiments selected with the Box-Behnken approach. The drawing ratio, the filler and the compatibilizer content were chosen as design variables, while the tensile strength, the melting enthalpy and the onset decomposition temperature were set as response variables. Drawn fibers with tensile strength up to 535 MPa were obtained. Results revealed that the drawing ratio is the most important factor for the enhancement of tensile strength, followed by the filler content. All the design variables slightly affected the melting temperature and the crystallinity of the matrix. Also, it was found that the addition of polypropylene grafted with maleic anhydride as compatibilizer has a multiple effect on the final properties, i.e., it induces the dispersion of both the antioxidant and the filler, tending to increase thermal stability and tensile strength, while, on the same time, deteriorates mechanical and thermal properties due to its lower molecular weight and thermal stability. Such behavior does not allow for simultaneous maximization of thermal stability and tensile strength. Optimization based on a compromise, i.e., targeting maximization of tensile strength and onset decomposition temperature higher than 300 °C, yields high desirability values and predictions in excellent agreement with verification experiments. |
doi_str_mv | 10.3390/polym14050924 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8912407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638724879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-44a59458b8c2e88df4265878466f7ca66862a37b06f9ed8c126841790a3ead033</originalsourceid><addsrcrecordid>eNpdkctu1DAUhi0EotXQJVtkiQ2bgG-xnQ1SGSggFbWCIpbRGeeEcZXYqZ2AhjfgrfHQUrV4cy7-dG4_IU85eyllw15NcdiNXLGaNUI9IIeCGVkpqdnDO_4BOcr5kpWnaq25eUwOZC20Mao5JL_PptmP_hfMPgYae3qxxTTCQCF09BO6LQTvSnie4oRp9pj30HnpO5XMbsCA1bc4DJDnGPyMdB3HKea99zbBz0BP_AZTpm8gY0dLiy9L6sEh_Yx5iiEjPQ4w7LLPT8ijHoaMRzd2Rb6evLtYf6hOz95_XB-fVk7xeq6UgrpRtd1YJ9DarldC19ZYpXVvHGhttQBpNkz3DXbWcaGt4qZhIBE6JuWKvL6uOy2bETuHYU4wtFPyI6RdG8G393-C37bf44_WNlyoctQVeXFTIMWrBfPcjj47LDcIGJfcCi2tEcqapqDP_0Mv45LKwn8pU6Y2ghequqZcijkn7G-H4azd69ze07nwz-5ucEv_U1X-AQjypqk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637784721</pqid></control><display><type>article</type><title>Optimization of Thermal and Mechanical Properties of Polypropylene-Wollastonite Composite Drawn Fibers Based on Surface Response Analysis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Leontiadis, Konstantinos ; Tsioptsias, Costas ; Messaritakis, Stavros ; Terzaki, Aikaterini ; Xidas, Panagiotis ; Mystikos, Kyriakos ; Tzimpilis, Evangelos ; Tsivintzelis, Ioannis</creator><creatorcontrib>Leontiadis, Konstantinos ; Tsioptsias, Costas ; Messaritakis, Stavros ; Terzaki, Aikaterini ; Xidas, Panagiotis ; Mystikos, Kyriakos ; Tzimpilis, Evangelos ; Tsivintzelis, Ioannis</creatorcontrib><description>The thermal and mechanical properties of polypropylene-wollastonite composite drawn fibers were optimized via experiments selected with the Box-Behnken approach. The drawing ratio, the filler and the compatibilizer content were chosen as design variables, while the tensile strength, the melting enthalpy and the onset decomposition temperature were set as response variables. Drawn fibers with tensile strength up to 535 MPa were obtained. Results revealed that the drawing ratio is the most important factor for the enhancement of tensile strength, followed by the filler content. All the design variables slightly affected the melting temperature and the crystallinity of the matrix. Also, it was found that the addition of polypropylene grafted with maleic anhydride as compatibilizer has a multiple effect on the final properties, i.e., it induces the dispersion of both the antioxidant and the filler, tending to increase thermal stability and tensile strength, while, on the same time, deteriorates mechanical and thermal properties due to its lower molecular weight and thermal stability. Such behavior does not allow for simultaneous maximization of thermal stability and tensile strength. Optimization based on a compromise, i.e., targeting maximization of tensile strength and onset decomposition temperature higher than 300 °C, yields high desirability values and predictions in excellent agreement with verification experiments.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14050924</identifier><identifier>PMID: 35267749</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Additives ; Antioxidants ; Carbon ; Composite materials ; Decomposition ; Design of experiments ; Enthalpy ; Fibers ; Fillers ; Laboratories ; Maleic anhydride ; Maximization ; Mechanical properties ; Melt temperature ; Molecular weight ; Nanoparticles ; Optimization ; Polymer melts ; Polypropylene ; Tensile strength ; Thermal stability ; Thermodynamic properties ; Variables ; Wollastonite</subject><ispartof>Polymers, 2022-02, Vol.14 (5), p.924</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-44a59458b8c2e88df4265878466f7ca66862a37b06f9ed8c126841790a3ead033</citedby><cites>FETCH-LOGICAL-c415t-44a59458b8c2e88df4265878466f7ca66862a37b06f9ed8c126841790a3ead033</cites><orcidid>0000-0002-5509-752X ; 0000-0002-4907-4794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912407/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912407/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35267749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leontiadis, Konstantinos</creatorcontrib><creatorcontrib>Tsioptsias, Costas</creatorcontrib><creatorcontrib>Messaritakis, Stavros</creatorcontrib><creatorcontrib>Terzaki, Aikaterini</creatorcontrib><creatorcontrib>Xidas, Panagiotis</creatorcontrib><creatorcontrib>Mystikos, Kyriakos</creatorcontrib><creatorcontrib>Tzimpilis, Evangelos</creatorcontrib><creatorcontrib>Tsivintzelis, Ioannis</creatorcontrib><title>Optimization of Thermal and Mechanical Properties of Polypropylene-Wollastonite Composite Drawn Fibers Based on Surface Response Analysis</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>The thermal and mechanical properties of polypropylene-wollastonite composite drawn fibers were optimized via experiments selected with the Box-Behnken approach. The drawing ratio, the filler and the compatibilizer content were chosen as design variables, while the tensile strength, the melting enthalpy and the onset decomposition temperature were set as response variables. Drawn fibers with tensile strength up to 535 MPa were obtained. Results revealed that the drawing ratio is the most important factor for the enhancement of tensile strength, followed by the filler content. All the design variables slightly affected the melting temperature and the crystallinity of the matrix. Also, it was found that the addition of polypropylene grafted with maleic anhydride as compatibilizer has a multiple effect on the final properties, i.e., it induces the dispersion of both the antioxidant and the filler, tending to increase thermal stability and tensile strength, while, on the same time, deteriorates mechanical and thermal properties due to its lower molecular weight and thermal stability. Such behavior does not allow for simultaneous maximization of thermal stability and tensile strength. Optimization based on a compromise, i.e., targeting maximization of tensile strength and onset decomposition temperature higher than 300 °C, yields high desirability values and predictions in excellent agreement with verification experiments.</description><subject>Additives</subject><subject>Antioxidants</subject><subject>Carbon</subject><subject>Composite materials</subject><subject>Decomposition</subject><subject>Design of experiments</subject><subject>Enthalpy</subject><subject>Fibers</subject><subject>Fillers</subject><subject>Laboratories</subject><subject>Maleic anhydride</subject><subject>Maximization</subject><subject>Mechanical properties</subject><subject>Melt temperature</subject><subject>Molecular weight</subject><subject>Nanoparticles</subject><subject>Optimization</subject><subject>Polymer melts</subject><subject>Polypropylene</subject><subject>Tensile strength</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><subject>Variables</subject><subject>Wollastonite</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkctu1DAUhi0EotXQJVtkiQ2bgG-xnQ1SGSggFbWCIpbRGeeEcZXYqZ2AhjfgrfHQUrV4cy7-dG4_IU85eyllw15NcdiNXLGaNUI9IIeCGVkpqdnDO_4BOcr5kpWnaq25eUwOZC20Mao5JL_PptmP_hfMPgYae3qxxTTCQCF09BO6LQTvSnie4oRp9pj30HnpO5XMbsCA1bc4DJDnGPyMdB3HKea99zbBz0BP_AZTpm8gY0dLiy9L6sEh_Yx5iiEjPQ4w7LLPT8ijHoaMRzd2Rb6evLtYf6hOz95_XB-fVk7xeq6UgrpRtd1YJ9DarldC19ZYpXVvHGhttQBpNkz3DXbWcaGt4qZhIBE6JuWKvL6uOy2bETuHYU4wtFPyI6RdG8G393-C37bf44_WNlyoctQVeXFTIMWrBfPcjj47LDcIGJfcCi2tEcqapqDP_0Mv45LKwn8pU6Y2ghequqZcijkn7G-H4azd69ze07nwz-5ucEv_U1X-AQjypqk</recordid><startdate>20220225</startdate><enddate>20220225</enddate><creator>Leontiadis, Konstantinos</creator><creator>Tsioptsias, Costas</creator><creator>Messaritakis, Stavros</creator><creator>Terzaki, Aikaterini</creator><creator>Xidas, Panagiotis</creator><creator>Mystikos, Kyriakos</creator><creator>Tzimpilis, Evangelos</creator><creator>Tsivintzelis, Ioannis</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5509-752X</orcidid><orcidid>https://orcid.org/0000-0002-4907-4794</orcidid></search><sort><creationdate>20220225</creationdate><title>Optimization of Thermal and Mechanical Properties of Polypropylene-Wollastonite Composite Drawn Fibers Based on Surface Response Analysis</title><author>Leontiadis, Konstantinos ; Tsioptsias, Costas ; Messaritakis, Stavros ; Terzaki, Aikaterini ; Xidas, Panagiotis ; Mystikos, Kyriakos ; Tzimpilis, Evangelos ; Tsivintzelis, Ioannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-44a59458b8c2e88df4265878466f7ca66862a37b06f9ed8c126841790a3ead033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additives</topic><topic>Antioxidants</topic><topic>Carbon</topic><topic>Composite materials</topic><topic>Decomposition</topic><topic>Design of experiments</topic><topic>Enthalpy</topic><topic>Fibers</topic><topic>Fillers</topic><topic>Laboratories</topic><topic>Maleic anhydride</topic><topic>Maximization</topic><topic>Mechanical properties</topic><topic>Melt temperature</topic><topic>Molecular weight</topic><topic>Nanoparticles</topic><topic>Optimization</topic><topic>Polymer melts</topic><topic>Polypropylene</topic><topic>Tensile strength</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><topic>Variables</topic><topic>Wollastonite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leontiadis, Konstantinos</creatorcontrib><creatorcontrib>Tsioptsias, Costas</creatorcontrib><creatorcontrib>Messaritakis, Stavros</creatorcontrib><creatorcontrib>Terzaki, Aikaterini</creatorcontrib><creatorcontrib>Xidas, Panagiotis</creatorcontrib><creatorcontrib>Mystikos, Kyriakos</creatorcontrib><creatorcontrib>Tzimpilis, Evangelos</creatorcontrib><creatorcontrib>Tsivintzelis, Ioannis</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leontiadis, Konstantinos</au><au>Tsioptsias, Costas</au><au>Messaritakis, Stavros</au><au>Terzaki, Aikaterini</au><au>Xidas, Panagiotis</au><au>Mystikos, Kyriakos</au><au>Tzimpilis, Evangelos</au><au>Tsivintzelis, Ioannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Thermal and Mechanical Properties of Polypropylene-Wollastonite Composite Drawn Fibers Based on Surface Response Analysis</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2022-02-25</date><risdate>2022</risdate><volume>14</volume><issue>5</issue><spage>924</spage><pages>924-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>The thermal and mechanical properties of polypropylene-wollastonite composite drawn fibers were optimized via experiments selected with the Box-Behnken approach. The drawing ratio, the filler and the compatibilizer content were chosen as design variables, while the tensile strength, the melting enthalpy and the onset decomposition temperature were set as response variables. Drawn fibers with tensile strength up to 535 MPa were obtained. Results revealed that the drawing ratio is the most important factor for the enhancement of tensile strength, followed by the filler content. All the design variables slightly affected the melting temperature and the crystallinity of the matrix. Also, it was found that the addition of polypropylene grafted with maleic anhydride as compatibilizer has a multiple effect on the final properties, i.e., it induces the dispersion of both the antioxidant and the filler, tending to increase thermal stability and tensile strength, while, on the same time, deteriorates mechanical and thermal properties due to its lower molecular weight and thermal stability. Such behavior does not allow for simultaneous maximization of thermal stability and tensile strength. Optimization based on a compromise, i.e., targeting maximization of tensile strength and onset decomposition temperature higher than 300 °C, yields high desirability values and predictions in excellent agreement with verification experiments.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35267749</pmid><doi>10.3390/polym14050924</doi><orcidid>https://orcid.org/0000-0002-5509-752X</orcidid><orcidid>https://orcid.org/0000-0002-4907-4794</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2022-02, Vol.14 (5), p.924 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8912407 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Additives Antioxidants Carbon Composite materials Decomposition Design of experiments Enthalpy Fibers Fillers Laboratories Maleic anhydride Maximization Mechanical properties Melt temperature Molecular weight Nanoparticles Optimization Polymer melts Polypropylene Tensile strength Thermal stability Thermodynamic properties Variables Wollastonite |
title | Optimization of Thermal and Mechanical Properties of Polypropylene-Wollastonite Composite Drawn Fibers Based on Surface Response Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Thermal%20and%20Mechanical%20Properties%20of%20Polypropylene-Wollastonite%20Composite%20Drawn%20Fibers%20Based%20on%20Surface%20Response%20Analysis&rft.jtitle=Polymers&rft.au=Leontiadis,%20Konstantinos&rft.date=2022-02-25&rft.volume=14&rft.issue=5&rft.spage=924&rft.pages=924-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14050924&rft_dat=%3Cproquest_pubme%3E2638724879%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637784721&rft_id=info:pmid/35267749&rfr_iscdi=true |