Optimization of Thermal and Mechanical Properties of Polypropylene-Wollastonite Composite Drawn Fibers Based on Surface Response Analysis

The thermal and mechanical properties of polypropylene-wollastonite composite drawn fibers were optimized via experiments selected with the Box-Behnken approach. The drawing ratio, the filler and the compatibilizer content were chosen as design variables, while the tensile strength, the melting enth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2022-02, Vol.14 (5), p.924
Hauptverfasser: Leontiadis, Konstantinos, Tsioptsias, Costas, Messaritakis, Stavros, Terzaki, Aikaterini, Xidas, Panagiotis, Mystikos, Kyriakos, Tzimpilis, Evangelos, Tsivintzelis, Ioannis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 924
container_title Polymers
container_volume 14
creator Leontiadis, Konstantinos
Tsioptsias, Costas
Messaritakis, Stavros
Terzaki, Aikaterini
Xidas, Panagiotis
Mystikos, Kyriakos
Tzimpilis, Evangelos
Tsivintzelis, Ioannis
description The thermal and mechanical properties of polypropylene-wollastonite composite drawn fibers were optimized via experiments selected with the Box-Behnken approach. The drawing ratio, the filler and the compatibilizer content were chosen as design variables, while the tensile strength, the melting enthalpy and the onset decomposition temperature were set as response variables. Drawn fibers with tensile strength up to 535 MPa were obtained. Results revealed that the drawing ratio is the most important factor for the enhancement of tensile strength, followed by the filler content. All the design variables slightly affected the melting temperature and the crystallinity of the matrix. Also, it was found that the addition of polypropylene grafted with maleic anhydride as compatibilizer has a multiple effect on the final properties, i.e., it induces the dispersion of both the antioxidant and the filler, tending to increase thermal stability and tensile strength, while, on the same time, deteriorates mechanical and thermal properties due to its lower molecular weight and thermal stability. Such behavior does not allow for simultaneous maximization of thermal stability and tensile strength. Optimization based on a compromise, i.e., targeting maximization of tensile strength and onset decomposition temperature higher than 300 °C, yields high desirability values and predictions in excellent agreement with verification experiments.
doi_str_mv 10.3390/polym14050924
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8912407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638724879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-44a59458b8c2e88df4265878466f7ca66862a37b06f9ed8c126841790a3ead033</originalsourceid><addsrcrecordid>eNpdkctu1DAUhi0EotXQJVtkiQ2bgG-xnQ1SGSggFbWCIpbRGeeEcZXYqZ2AhjfgrfHQUrV4cy7-dG4_IU85eyllw15NcdiNXLGaNUI9IIeCGVkpqdnDO_4BOcr5kpWnaq25eUwOZC20Mao5JL_PptmP_hfMPgYae3qxxTTCQCF09BO6LQTvSnie4oRp9pj30HnpO5XMbsCA1bc4DJDnGPyMdB3HKea99zbBz0BP_AZTpm8gY0dLiy9L6sEh_Yx5iiEjPQ4w7LLPT8ijHoaMRzd2Rb6evLtYf6hOz95_XB-fVk7xeq6UgrpRtd1YJ9DarldC19ZYpXVvHGhttQBpNkz3DXbWcaGt4qZhIBE6JuWKvL6uOy2bETuHYU4wtFPyI6RdG8G393-C37bf44_WNlyoctQVeXFTIMWrBfPcjj47LDcIGJfcCi2tEcqapqDP_0Mv45LKwn8pU6Y2ghequqZcijkn7G-H4azd69ze07nwz-5ucEv_U1X-AQjypqk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637784721</pqid></control><display><type>article</type><title>Optimization of Thermal and Mechanical Properties of Polypropylene-Wollastonite Composite Drawn Fibers Based on Surface Response Analysis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Leontiadis, Konstantinos ; Tsioptsias, Costas ; Messaritakis, Stavros ; Terzaki, Aikaterini ; Xidas, Panagiotis ; Mystikos, Kyriakos ; Tzimpilis, Evangelos ; Tsivintzelis, Ioannis</creator><creatorcontrib>Leontiadis, Konstantinos ; Tsioptsias, Costas ; Messaritakis, Stavros ; Terzaki, Aikaterini ; Xidas, Panagiotis ; Mystikos, Kyriakos ; Tzimpilis, Evangelos ; Tsivintzelis, Ioannis</creatorcontrib><description>The thermal and mechanical properties of polypropylene-wollastonite composite drawn fibers were optimized via experiments selected with the Box-Behnken approach. The drawing ratio, the filler and the compatibilizer content were chosen as design variables, while the tensile strength, the melting enthalpy and the onset decomposition temperature were set as response variables. Drawn fibers with tensile strength up to 535 MPa were obtained. Results revealed that the drawing ratio is the most important factor for the enhancement of tensile strength, followed by the filler content. All the design variables slightly affected the melting temperature and the crystallinity of the matrix. Also, it was found that the addition of polypropylene grafted with maleic anhydride as compatibilizer has a multiple effect on the final properties, i.e., it induces the dispersion of both the antioxidant and the filler, tending to increase thermal stability and tensile strength, while, on the same time, deteriorates mechanical and thermal properties due to its lower molecular weight and thermal stability. Such behavior does not allow for simultaneous maximization of thermal stability and tensile strength. Optimization based on a compromise, i.e., targeting maximization of tensile strength and onset decomposition temperature higher than 300 °C, yields high desirability values and predictions in excellent agreement with verification experiments.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14050924</identifier><identifier>PMID: 35267749</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Additives ; Antioxidants ; Carbon ; Composite materials ; Decomposition ; Design of experiments ; Enthalpy ; Fibers ; Fillers ; Laboratories ; Maleic anhydride ; Maximization ; Mechanical properties ; Melt temperature ; Molecular weight ; Nanoparticles ; Optimization ; Polymer melts ; Polypropylene ; Tensile strength ; Thermal stability ; Thermodynamic properties ; Variables ; Wollastonite</subject><ispartof>Polymers, 2022-02, Vol.14 (5), p.924</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-44a59458b8c2e88df4265878466f7ca66862a37b06f9ed8c126841790a3ead033</citedby><cites>FETCH-LOGICAL-c415t-44a59458b8c2e88df4265878466f7ca66862a37b06f9ed8c126841790a3ead033</cites><orcidid>0000-0002-5509-752X ; 0000-0002-4907-4794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912407/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912407/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35267749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leontiadis, Konstantinos</creatorcontrib><creatorcontrib>Tsioptsias, Costas</creatorcontrib><creatorcontrib>Messaritakis, Stavros</creatorcontrib><creatorcontrib>Terzaki, Aikaterini</creatorcontrib><creatorcontrib>Xidas, Panagiotis</creatorcontrib><creatorcontrib>Mystikos, Kyriakos</creatorcontrib><creatorcontrib>Tzimpilis, Evangelos</creatorcontrib><creatorcontrib>Tsivintzelis, Ioannis</creatorcontrib><title>Optimization of Thermal and Mechanical Properties of Polypropylene-Wollastonite Composite Drawn Fibers Based on Surface Response Analysis</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>The thermal and mechanical properties of polypropylene-wollastonite composite drawn fibers were optimized via experiments selected with the Box-Behnken approach. The drawing ratio, the filler and the compatibilizer content were chosen as design variables, while the tensile strength, the melting enthalpy and the onset decomposition temperature were set as response variables. Drawn fibers with tensile strength up to 535 MPa were obtained. Results revealed that the drawing ratio is the most important factor for the enhancement of tensile strength, followed by the filler content. All the design variables slightly affected the melting temperature and the crystallinity of the matrix. Also, it was found that the addition of polypropylene grafted with maleic anhydride as compatibilizer has a multiple effect on the final properties, i.e., it induces the dispersion of both the antioxidant and the filler, tending to increase thermal stability and tensile strength, while, on the same time, deteriorates mechanical and thermal properties due to its lower molecular weight and thermal stability. Such behavior does not allow for simultaneous maximization of thermal stability and tensile strength. Optimization based on a compromise, i.e., targeting maximization of tensile strength and onset decomposition temperature higher than 300 °C, yields high desirability values and predictions in excellent agreement with verification experiments.</description><subject>Additives</subject><subject>Antioxidants</subject><subject>Carbon</subject><subject>Composite materials</subject><subject>Decomposition</subject><subject>Design of experiments</subject><subject>Enthalpy</subject><subject>Fibers</subject><subject>Fillers</subject><subject>Laboratories</subject><subject>Maleic anhydride</subject><subject>Maximization</subject><subject>Mechanical properties</subject><subject>Melt temperature</subject><subject>Molecular weight</subject><subject>Nanoparticles</subject><subject>Optimization</subject><subject>Polymer melts</subject><subject>Polypropylene</subject><subject>Tensile strength</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><subject>Variables</subject><subject>Wollastonite</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkctu1DAUhi0EotXQJVtkiQ2bgG-xnQ1SGSggFbWCIpbRGeeEcZXYqZ2AhjfgrfHQUrV4cy7-dG4_IU85eyllw15NcdiNXLGaNUI9IIeCGVkpqdnDO_4BOcr5kpWnaq25eUwOZC20Mao5JL_PptmP_hfMPgYae3qxxTTCQCF09BO6LQTvSnie4oRp9pj30HnpO5XMbsCA1bc4DJDnGPyMdB3HKea99zbBz0BP_AZTpm8gY0dLiy9L6sEh_Yx5iiEjPQ4w7LLPT8ijHoaMRzd2Rb6evLtYf6hOz95_XB-fVk7xeq6UgrpRtd1YJ9DarldC19ZYpXVvHGhttQBpNkz3DXbWcaGt4qZhIBE6JuWKvL6uOy2bETuHYU4wtFPyI6RdG8G393-C37bf44_WNlyoctQVeXFTIMWrBfPcjj47LDcIGJfcCi2tEcqapqDP_0Mv45LKwn8pU6Y2ghequqZcijkn7G-H4azd69ze07nwz-5ucEv_U1X-AQjypqk</recordid><startdate>20220225</startdate><enddate>20220225</enddate><creator>Leontiadis, Konstantinos</creator><creator>Tsioptsias, Costas</creator><creator>Messaritakis, Stavros</creator><creator>Terzaki, Aikaterini</creator><creator>Xidas, Panagiotis</creator><creator>Mystikos, Kyriakos</creator><creator>Tzimpilis, Evangelos</creator><creator>Tsivintzelis, Ioannis</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5509-752X</orcidid><orcidid>https://orcid.org/0000-0002-4907-4794</orcidid></search><sort><creationdate>20220225</creationdate><title>Optimization of Thermal and Mechanical Properties of Polypropylene-Wollastonite Composite Drawn Fibers Based on Surface Response Analysis</title><author>Leontiadis, Konstantinos ; Tsioptsias, Costas ; Messaritakis, Stavros ; Terzaki, Aikaterini ; Xidas, Panagiotis ; Mystikos, Kyriakos ; Tzimpilis, Evangelos ; Tsivintzelis, Ioannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-44a59458b8c2e88df4265878466f7ca66862a37b06f9ed8c126841790a3ead033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additives</topic><topic>Antioxidants</topic><topic>Carbon</topic><topic>Composite materials</topic><topic>Decomposition</topic><topic>Design of experiments</topic><topic>Enthalpy</topic><topic>Fibers</topic><topic>Fillers</topic><topic>Laboratories</topic><topic>Maleic anhydride</topic><topic>Maximization</topic><topic>Mechanical properties</topic><topic>Melt temperature</topic><topic>Molecular weight</topic><topic>Nanoparticles</topic><topic>Optimization</topic><topic>Polymer melts</topic><topic>Polypropylene</topic><topic>Tensile strength</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><topic>Variables</topic><topic>Wollastonite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leontiadis, Konstantinos</creatorcontrib><creatorcontrib>Tsioptsias, Costas</creatorcontrib><creatorcontrib>Messaritakis, Stavros</creatorcontrib><creatorcontrib>Terzaki, Aikaterini</creatorcontrib><creatorcontrib>Xidas, Panagiotis</creatorcontrib><creatorcontrib>Mystikos, Kyriakos</creatorcontrib><creatorcontrib>Tzimpilis, Evangelos</creatorcontrib><creatorcontrib>Tsivintzelis, Ioannis</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leontiadis, Konstantinos</au><au>Tsioptsias, Costas</au><au>Messaritakis, Stavros</au><au>Terzaki, Aikaterini</au><au>Xidas, Panagiotis</au><au>Mystikos, Kyriakos</au><au>Tzimpilis, Evangelos</au><au>Tsivintzelis, Ioannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Thermal and Mechanical Properties of Polypropylene-Wollastonite Composite Drawn Fibers Based on Surface Response Analysis</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2022-02-25</date><risdate>2022</risdate><volume>14</volume><issue>5</issue><spage>924</spage><pages>924-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>The thermal and mechanical properties of polypropylene-wollastonite composite drawn fibers were optimized via experiments selected with the Box-Behnken approach. The drawing ratio, the filler and the compatibilizer content were chosen as design variables, while the tensile strength, the melting enthalpy and the onset decomposition temperature were set as response variables. Drawn fibers with tensile strength up to 535 MPa were obtained. Results revealed that the drawing ratio is the most important factor for the enhancement of tensile strength, followed by the filler content. All the design variables slightly affected the melting temperature and the crystallinity of the matrix. Also, it was found that the addition of polypropylene grafted with maleic anhydride as compatibilizer has a multiple effect on the final properties, i.e., it induces the dispersion of both the antioxidant and the filler, tending to increase thermal stability and tensile strength, while, on the same time, deteriorates mechanical and thermal properties due to its lower molecular weight and thermal stability. Such behavior does not allow for simultaneous maximization of thermal stability and tensile strength. Optimization based on a compromise, i.e., targeting maximization of tensile strength and onset decomposition temperature higher than 300 °C, yields high desirability values and predictions in excellent agreement with verification experiments.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35267749</pmid><doi>10.3390/polym14050924</doi><orcidid>https://orcid.org/0000-0002-5509-752X</orcidid><orcidid>https://orcid.org/0000-0002-4907-4794</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2022-02, Vol.14 (5), p.924
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8912407
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Additives
Antioxidants
Carbon
Composite materials
Decomposition
Design of experiments
Enthalpy
Fibers
Fillers
Laboratories
Maleic anhydride
Maximization
Mechanical properties
Melt temperature
Molecular weight
Nanoparticles
Optimization
Polymer melts
Polypropylene
Tensile strength
Thermal stability
Thermodynamic properties
Variables
Wollastonite
title Optimization of Thermal and Mechanical Properties of Polypropylene-Wollastonite Composite Drawn Fibers Based on Surface Response Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Thermal%20and%20Mechanical%20Properties%20of%20Polypropylene-Wollastonite%20Composite%20Drawn%20Fibers%20Based%20on%20Surface%20Response%20Analysis&rft.jtitle=Polymers&rft.au=Leontiadis,%20Konstantinos&rft.date=2022-02-25&rft.volume=14&rft.issue=5&rft.spage=924&rft.pages=924-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14050924&rft_dat=%3Cproquest_pubme%3E2638724879%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637784721&rft_id=info:pmid/35267749&rfr_iscdi=true