Heterozygous Dcc Mutant Mice Have a Subtle Locomotor Phenotype
Axon guidance receptors such as deleted in colorectal cancer (DCC) contribute to the normal formation of neural circuits, and their mutations can be associated with neural defects. In humans, heterozygous mutations in have been linked to congenital mirror movements, which are involuntary movements o...
Gespeichert in:
Veröffentlicht in: | eNeuro 2022-03, Vol.9 (2), p.ENEURO.0216-18.2021-18.2021 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18.2021 |
---|---|
container_issue | 2 |
container_start_page | ENEURO.0216-18.2021 |
container_title | eNeuro |
container_volume | 9 |
creator | Thiry, Louise Lemaire, Chloé Rastqar, Ali Lemieux, Maxime Peng, Jimmy Ferent, Julien Roussel, Marie Beaumont, Eric Fawcett, James P Brownstone, Robert M Charron, Frédéric Bretzner, Frédéric |
description | Axon guidance receptors such as deleted in colorectal cancer (DCC) contribute to the normal formation of neural circuits, and their mutations can be associated with neural defects. In humans, heterozygous mutations in
have been linked to congenital mirror movements, which are involuntary movements on one side of the body that mirror voluntary movements of the opposite side. In mice, obvious hopping phenotypes have been reported for bi-allelic
mutations, while heterozygous mutants have not been closely examined. We hypothesized that a detailed characterization of
heterozygous mice may reveal impaired corticospinal and spinal functions. Anterograde tracing of the
motor cortex revealed a normally projecting corticospinal tract, intracortical microstimulation (ICMS) evoked normal contralateral motor responses, and behavioral tests showed normal skilled forelimb coordination. Gait analyses also showed a normal locomotor pattern and rhythm in adult
mice during treadmill locomotion, except for a decreased occurrence of out-of-phase walk and an increased duty cycle of the stance phase at slow walking speed. Neonatal isolated
spinal cords had normal left-right and flexor-extensor coupling, along with normal locomotor pattern and rhythm, except for an increase in the flexor-related motoneuronal output. Although
mice do not exhibit any obvious bilateral impairments like those in humans, they exhibit subtle motor deficits during neonatal and adult locomotion. |
doi_str_mv | 10.1523/ENEURO.0216-18.2021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8906791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626003517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-6cd3d14ff30a18e9e0b19617893aff02f701f3556caa7606b16f6d1093e5e7ce3</originalsourceid><addsrcrecordid>eNpdkV9LwzAUxYMoKtNPIEgf9aEzN1nT9GUgOp2wOfHPc0izm63SNbNNB_PT29Ip6lMuyTnnkvMj5AxoHyLGr0aPo7fnWZ8yECHIPmuGPXLMeMxDJhnb_zUfkdOqeqeUgmAxSDgkRzwCiLjkx2Q4Ro-l-9wuXF0Ft8YE09rrwgfTzGAw1hsMdPBSpz7HYOKMWznvyuBpiYXz2zWekAOr8wpPd2ePvN2NXm_G4WR2_3BzPQnNgCc-FGbO5zCwllMNEhOkKSQCYplwbS1lNqZgeRQJo3UsqEhBWDEHmnCMMDbIe2TY5a7rdIVzg4Uvda7WZbbS5VY5nam_L0W2VAu3UTKhIk6gCbjsApb_bOPriWrv6KBpSMhk02ovdstK91Fj5dUqqwzmuS6waUkxwQSlTYdxI-Wd1JSuqkq0P9lAVQtKdaBUC0qBVC2oxnX--zc_nm8s_AtrqY36</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626003517</pqid></control><display><type>article</type><title>Heterozygous Dcc Mutant Mice Have a Subtle Locomotor Phenotype</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Thiry, Louise ; Lemaire, Chloé ; Rastqar, Ali ; Lemieux, Maxime ; Peng, Jimmy ; Ferent, Julien ; Roussel, Marie ; Beaumont, Eric ; Fawcett, James P ; Brownstone, Robert M ; Charron, Frédéric ; Bretzner, Frédéric</creator><creatorcontrib>Thiry, Louise ; Lemaire, Chloé ; Rastqar, Ali ; Lemieux, Maxime ; Peng, Jimmy ; Ferent, Julien ; Roussel, Marie ; Beaumont, Eric ; Fawcett, James P ; Brownstone, Robert M ; Charron, Frédéric ; Bretzner, Frédéric</creatorcontrib><description>Axon guidance receptors such as deleted in colorectal cancer (DCC) contribute to the normal formation of neural circuits, and their mutations can be associated with neural defects. In humans, heterozygous mutations in
have been linked to congenital mirror movements, which are involuntary movements on one side of the body that mirror voluntary movements of the opposite side. In mice, obvious hopping phenotypes have been reported for bi-allelic
mutations, while heterozygous mutants have not been closely examined. We hypothesized that a detailed characterization of
heterozygous mice may reveal impaired corticospinal and spinal functions. Anterograde tracing of the
motor cortex revealed a normally projecting corticospinal tract, intracortical microstimulation (ICMS) evoked normal contralateral motor responses, and behavioral tests showed normal skilled forelimb coordination. Gait analyses also showed a normal locomotor pattern and rhythm in adult
mice during treadmill locomotion, except for a decreased occurrence of out-of-phase walk and an increased duty cycle of the stance phase at slow walking speed. Neonatal isolated
spinal cords had normal left-right and flexor-extensor coupling, along with normal locomotor pattern and rhythm, except for an increase in the flexor-related motoneuronal output. Although
mice do not exhibit any obvious bilateral impairments like those in humans, they exhibit subtle motor deficits during neonatal and adult locomotion.</description><identifier>ISSN: 2373-2822</identifier><identifier>EISSN: 2373-2822</identifier><identifier>DOI: 10.1523/ENEURO.0216-18.2021</identifier><identifier>PMID: 35115383</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; DCC Receptor - genetics ; Heterozygote ; Life Sciences ; Locomotion - genetics ; Mice ; Motor Neurons - physiology ; New Research ; Phenotype ; Pyramidal Tracts</subject><ispartof>eNeuro, 2022-03, Vol.9 (2), p.ENEURO.0216-18.2021-18.2021</ispartof><rights>Copyright © 2022 Thiry et al.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2022 Thiry et al. 2022 Thiry et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-6cd3d14ff30a18e9e0b19617893aff02f701f3556caa7606b16f6d1093e5e7ce3</citedby><orcidid>0000-0001-5135-2725 ; 0000-0003-3483-8672 ; 0000-0002-7387-3414 ; 0000-0002-4659-230X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906791/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906791/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35115383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04000689$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Thiry, Louise</creatorcontrib><creatorcontrib>Lemaire, Chloé</creatorcontrib><creatorcontrib>Rastqar, Ali</creatorcontrib><creatorcontrib>Lemieux, Maxime</creatorcontrib><creatorcontrib>Peng, Jimmy</creatorcontrib><creatorcontrib>Ferent, Julien</creatorcontrib><creatorcontrib>Roussel, Marie</creatorcontrib><creatorcontrib>Beaumont, Eric</creatorcontrib><creatorcontrib>Fawcett, James P</creatorcontrib><creatorcontrib>Brownstone, Robert M</creatorcontrib><creatorcontrib>Charron, Frédéric</creatorcontrib><creatorcontrib>Bretzner, Frédéric</creatorcontrib><title>Heterozygous Dcc Mutant Mice Have a Subtle Locomotor Phenotype</title><title>eNeuro</title><addtitle>eNeuro</addtitle><description>Axon guidance receptors such as deleted in colorectal cancer (DCC) contribute to the normal formation of neural circuits, and their mutations can be associated with neural defects. In humans, heterozygous mutations in
have been linked to congenital mirror movements, which are involuntary movements on one side of the body that mirror voluntary movements of the opposite side. In mice, obvious hopping phenotypes have been reported for bi-allelic
mutations, while heterozygous mutants have not been closely examined. We hypothesized that a detailed characterization of
heterozygous mice may reveal impaired corticospinal and spinal functions. Anterograde tracing of the
motor cortex revealed a normally projecting corticospinal tract, intracortical microstimulation (ICMS) evoked normal contralateral motor responses, and behavioral tests showed normal skilled forelimb coordination. Gait analyses also showed a normal locomotor pattern and rhythm in adult
mice during treadmill locomotion, except for a decreased occurrence of out-of-phase walk and an increased duty cycle of the stance phase at slow walking speed. Neonatal isolated
spinal cords had normal left-right and flexor-extensor coupling, along with normal locomotor pattern and rhythm, except for an increase in the flexor-related motoneuronal output. Although
mice do not exhibit any obvious bilateral impairments like those in humans, they exhibit subtle motor deficits during neonatal and adult locomotion.</description><subject>Animals</subject><subject>DCC Receptor - genetics</subject><subject>Heterozygote</subject><subject>Life Sciences</subject><subject>Locomotion - genetics</subject><subject>Mice</subject><subject>Motor Neurons - physiology</subject><subject>New Research</subject><subject>Phenotype</subject><subject>Pyramidal Tracts</subject><issn>2373-2822</issn><issn>2373-2822</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkV9LwzAUxYMoKtNPIEgf9aEzN1nT9GUgOp2wOfHPc0izm63SNbNNB_PT29Ip6lMuyTnnkvMj5AxoHyLGr0aPo7fnWZ8yECHIPmuGPXLMeMxDJhnb_zUfkdOqeqeUgmAxSDgkRzwCiLjkx2Q4Ro-l-9wuXF0Ft8YE09rrwgfTzGAw1hsMdPBSpz7HYOKMWznvyuBpiYXz2zWekAOr8wpPd2ePvN2NXm_G4WR2_3BzPQnNgCc-FGbO5zCwllMNEhOkKSQCYplwbS1lNqZgeRQJo3UsqEhBWDEHmnCMMDbIe2TY5a7rdIVzg4Uvda7WZbbS5VY5nam_L0W2VAu3UTKhIk6gCbjsApb_bOPriWrv6KBpSMhk02ovdstK91Fj5dUqqwzmuS6waUkxwQSlTYdxI-Wd1JSuqkq0P9lAVQtKdaBUC0qBVC2oxnX--zc_nm8s_AtrqY36</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Thiry, Louise</creator><creator>Lemaire, Chloé</creator><creator>Rastqar, Ali</creator><creator>Lemieux, Maxime</creator><creator>Peng, Jimmy</creator><creator>Ferent, Julien</creator><creator>Roussel, Marie</creator><creator>Beaumont, Eric</creator><creator>Fawcett, James P</creator><creator>Brownstone, Robert M</creator><creator>Charron, Frédéric</creator><creator>Bretzner, Frédéric</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5135-2725</orcidid><orcidid>https://orcid.org/0000-0003-3483-8672</orcidid><orcidid>https://orcid.org/0000-0002-7387-3414</orcidid><orcidid>https://orcid.org/0000-0002-4659-230X</orcidid></search><sort><creationdate>20220301</creationdate><title>Heterozygous Dcc Mutant Mice Have a Subtle Locomotor Phenotype</title><author>Thiry, Louise ; Lemaire, Chloé ; Rastqar, Ali ; Lemieux, Maxime ; Peng, Jimmy ; Ferent, Julien ; Roussel, Marie ; Beaumont, Eric ; Fawcett, James P ; Brownstone, Robert M ; Charron, Frédéric ; Bretzner, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-6cd3d14ff30a18e9e0b19617893aff02f701f3556caa7606b16f6d1093e5e7ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>DCC Receptor - genetics</topic><topic>Heterozygote</topic><topic>Life Sciences</topic><topic>Locomotion - genetics</topic><topic>Mice</topic><topic>Motor Neurons - physiology</topic><topic>New Research</topic><topic>Phenotype</topic><topic>Pyramidal Tracts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thiry, Louise</creatorcontrib><creatorcontrib>Lemaire, Chloé</creatorcontrib><creatorcontrib>Rastqar, Ali</creatorcontrib><creatorcontrib>Lemieux, Maxime</creatorcontrib><creatorcontrib>Peng, Jimmy</creatorcontrib><creatorcontrib>Ferent, Julien</creatorcontrib><creatorcontrib>Roussel, Marie</creatorcontrib><creatorcontrib>Beaumont, Eric</creatorcontrib><creatorcontrib>Fawcett, James P</creatorcontrib><creatorcontrib>Brownstone, Robert M</creatorcontrib><creatorcontrib>Charron, Frédéric</creatorcontrib><creatorcontrib>Bretzner, Frédéric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>eNeuro</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thiry, Louise</au><au>Lemaire, Chloé</au><au>Rastqar, Ali</au><au>Lemieux, Maxime</au><au>Peng, Jimmy</au><au>Ferent, Julien</au><au>Roussel, Marie</au><au>Beaumont, Eric</au><au>Fawcett, James P</au><au>Brownstone, Robert M</au><au>Charron, Frédéric</au><au>Bretzner, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterozygous Dcc Mutant Mice Have a Subtle Locomotor Phenotype</atitle><jtitle>eNeuro</jtitle><addtitle>eNeuro</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>9</volume><issue>2</issue><spage>ENEURO.0216-18.2021</spage><epage>18.2021</epage><pages>ENEURO.0216-18.2021-18.2021</pages><issn>2373-2822</issn><eissn>2373-2822</eissn><abstract>Axon guidance receptors such as deleted in colorectal cancer (DCC) contribute to the normal formation of neural circuits, and their mutations can be associated with neural defects. In humans, heterozygous mutations in
have been linked to congenital mirror movements, which are involuntary movements on one side of the body that mirror voluntary movements of the opposite side. In mice, obvious hopping phenotypes have been reported for bi-allelic
mutations, while heterozygous mutants have not been closely examined. We hypothesized that a detailed characterization of
heterozygous mice may reveal impaired corticospinal and spinal functions. Anterograde tracing of the
motor cortex revealed a normally projecting corticospinal tract, intracortical microstimulation (ICMS) evoked normal contralateral motor responses, and behavioral tests showed normal skilled forelimb coordination. Gait analyses also showed a normal locomotor pattern and rhythm in adult
mice during treadmill locomotion, except for a decreased occurrence of out-of-phase walk and an increased duty cycle of the stance phase at slow walking speed. Neonatal isolated
spinal cords had normal left-right and flexor-extensor coupling, along with normal locomotor pattern and rhythm, except for an increase in the flexor-related motoneuronal output. Although
mice do not exhibit any obvious bilateral impairments like those in humans, they exhibit subtle motor deficits during neonatal and adult locomotion.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>35115383</pmid><doi>10.1523/ENEURO.0216-18.2021</doi><orcidid>https://orcid.org/0000-0001-5135-2725</orcidid><orcidid>https://orcid.org/0000-0003-3483-8672</orcidid><orcidid>https://orcid.org/0000-0002-7387-3414</orcidid><orcidid>https://orcid.org/0000-0002-4659-230X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2373-2822 |
ispartof | eNeuro, 2022-03, Vol.9 (2), p.ENEURO.0216-18.2021-18.2021 |
issn | 2373-2822 2373-2822 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8906791 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals DCC Receptor - genetics Heterozygote Life Sciences Locomotion - genetics Mice Motor Neurons - physiology New Research Phenotype Pyramidal Tracts |
title | Heterozygous Dcc Mutant Mice Have a Subtle Locomotor Phenotype |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A29%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterozygous%20Dcc%20Mutant%20Mice%20Have%20a%20Subtle%20Locomotor%20Phenotype&rft.jtitle=eNeuro&rft.au=Thiry,%20Louise&rft.date=2022-03-01&rft.volume=9&rft.issue=2&rft.spage=ENEURO.0216-18.2021&rft.epage=18.2021&rft.pages=ENEURO.0216-18.2021-18.2021&rft.issn=2373-2822&rft.eissn=2373-2822&rft_id=info:doi/10.1523/ENEURO.0216-18.2021&rft_dat=%3Cproquest_pubme%3E2626003517%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626003517&rft_id=info:pmid/35115383&rfr_iscdi=true |