Heterozygous Dcc Mutant Mice Have a Subtle Locomotor Phenotype

Axon guidance receptors such as deleted in colorectal cancer (DCC) contribute to the normal formation of neural circuits, and their mutations can be associated with neural defects. In humans, heterozygous mutations in have been linked to congenital mirror movements, which are involuntary movements o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:eNeuro 2022-03, Vol.9 (2), p.ENEURO.0216-18.2021-18.2021
Hauptverfasser: Thiry, Louise, Lemaire, Chloé, Rastqar, Ali, Lemieux, Maxime, Peng, Jimmy, Ferent, Julien, Roussel, Marie, Beaumont, Eric, Fawcett, James P, Brownstone, Robert M, Charron, Frédéric, Bretzner, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18.2021
container_issue 2
container_start_page ENEURO.0216-18.2021
container_title eNeuro
container_volume 9
creator Thiry, Louise
Lemaire, Chloé
Rastqar, Ali
Lemieux, Maxime
Peng, Jimmy
Ferent, Julien
Roussel, Marie
Beaumont, Eric
Fawcett, James P
Brownstone, Robert M
Charron, Frédéric
Bretzner, Frédéric
description Axon guidance receptors such as deleted in colorectal cancer (DCC) contribute to the normal formation of neural circuits, and their mutations can be associated with neural defects. In humans, heterozygous mutations in have been linked to congenital mirror movements, which are involuntary movements on one side of the body that mirror voluntary movements of the opposite side. In mice, obvious hopping phenotypes have been reported for bi-allelic mutations, while heterozygous mutants have not been closely examined. We hypothesized that a detailed characterization of heterozygous mice may reveal impaired corticospinal and spinal functions. Anterograde tracing of the motor cortex revealed a normally projecting corticospinal tract, intracortical microstimulation (ICMS) evoked normal contralateral motor responses, and behavioral tests showed normal skilled forelimb coordination. Gait analyses also showed a normal locomotor pattern and rhythm in adult mice during treadmill locomotion, except for a decreased occurrence of out-of-phase walk and an increased duty cycle of the stance phase at slow walking speed. Neonatal isolated spinal cords had normal left-right and flexor-extensor coupling, along with normal locomotor pattern and rhythm, except for an increase in the flexor-related motoneuronal output. Although mice do not exhibit any obvious bilateral impairments like those in humans, they exhibit subtle motor deficits during neonatal and adult locomotion.
doi_str_mv 10.1523/ENEURO.0216-18.2021
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8906791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626003517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-6cd3d14ff30a18e9e0b19617893aff02f701f3556caa7606b16f6d1093e5e7ce3</originalsourceid><addsrcrecordid>eNpdkV9LwzAUxYMoKtNPIEgf9aEzN1nT9GUgOp2wOfHPc0izm63SNbNNB_PT29Ip6lMuyTnnkvMj5AxoHyLGr0aPo7fnWZ8yECHIPmuGPXLMeMxDJhnb_zUfkdOqeqeUgmAxSDgkRzwCiLjkx2Q4Ro-l-9wuXF0Ft8YE09rrwgfTzGAw1hsMdPBSpz7HYOKMWznvyuBpiYXz2zWekAOr8wpPd2ePvN2NXm_G4WR2_3BzPQnNgCc-FGbO5zCwllMNEhOkKSQCYplwbS1lNqZgeRQJo3UsqEhBWDEHmnCMMDbIe2TY5a7rdIVzg4Uvda7WZbbS5VY5nam_L0W2VAu3UTKhIk6gCbjsApb_bOPriWrv6KBpSMhk02ovdstK91Fj5dUqqwzmuS6waUkxwQSlTYdxI-Wd1JSuqkq0P9lAVQtKdaBUC0qBVC2oxnX--zc_nm8s_AtrqY36</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626003517</pqid></control><display><type>article</type><title>Heterozygous Dcc Mutant Mice Have a Subtle Locomotor Phenotype</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Thiry, Louise ; Lemaire, Chloé ; Rastqar, Ali ; Lemieux, Maxime ; Peng, Jimmy ; Ferent, Julien ; Roussel, Marie ; Beaumont, Eric ; Fawcett, James P ; Brownstone, Robert M ; Charron, Frédéric ; Bretzner, Frédéric</creator><creatorcontrib>Thiry, Louise ; Lemaire, Chloé ; Rastqar, Ali ; Lemieux, Maxime ; Peng, Jimmy ; Ferent, Julien ; Roussel, Marie ; Beaumont, Eric ; Fawcett, James P ; Brownstone, Robert M ; Charron, Frédéric ; Bretzner, Frédéric</creatorcontrib><description>Axon guidance receptors such as deleted in colorectal cancer (DCC) contribute to the normal formation of neural circuits, and their mutations can be associated with neural defects. In humans, heterozygous mutations in have been linked to congenital mirror movements, which are involuntary movements on one side of the body that mirror voluntary movements of the opposite side. In mice, obvious hopping phenotypes have been reported for bi-allelic mutations, while heterozygous mutants have not been closely examined. We hypothesized that a detailed characterization of heterozygous mice may reveal impaired corticospinal and spinal functions. Anterograde tracing of the motor cortex revealed a normally projecting corticospinal tract, intracortical microstimulation (ICMS) evoked normal contralateral motor responses, and behavioral tests showed normal skilled forelimb coordination. Gait analyses also showed a normal locomotor pattern and rhythm in adult mice during treadmill locomotion, except for a decreased occurrence of out-of-phase walk and an increased duty cycle of the stance phase at slow walking speed. Neonatal isolated spinal cords had normal left-right and flexor-extensor coupling, along with normal locomotor pattern and rhythm, except for an increase in the flexor-related motoneuronal output. Although mice do not exhibit any obvious bilateral impairments like those in humans, they exhibit subtle motor deficits during neonatal and adult locomotion.</description><identifier>ISSN: 2373-2822</identifier><identifier>EISSN: 2373-2822</identifier><identifier>DOI: 10.1523/ENEURO.0216-18.2021</identifier><identifier>PMID: 35115383</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; DCC Receptor - genetics ; Heterozygote ; Life Sciences ; Locomotion - genetics ; Mice ; Motor Neurons - physiology ; New Research ; Phenotype ; Pyramidal Tracts</subject><ispartof>eNeuro, 2022-03, Vol.9 (2), p.ENEURO.0216-18.2021-18.2021</ispartof><rights>Copyright © 2022 Thiry et al.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2022 Thiry et al. 2022 Thiry et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-6cd3d14ff30a18e9e0b19617893aff02f701f3556caa7606b16f6d1093e5e7ce3</citedby><orcidid>0000-0001-5135-2725 ; 0000-0003-3483-8672 ; 0000-0002-7387-3414 ; 0000-0002-4659-230X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906791/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906791/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35115383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04000689$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Thiry, Louise</creatorcontrib><creatorcontrib>Lemaire, Chloé</creatorcontrib><creatorcontrib>Rastqar, Ali</creatorcontrib><creatorcontrib>Lemieux, Maxime</creatorcontrib><creatorcontrib>Peng, Jimmy</creatorcontrib><creatorcontrib>Ferent, Julien</creatorcontrib><creatorcontrib>Roussel, Marie</creatorcontrib><creatorcontrib>Beaumont, Eric</creatorcontrib><creatorcontrib>Fawcett, James P</creatorcontrib><creatorcontrib>Brownstone, Robert M</creatorcontrib><creatorcontrib>Charron, Frédéric</creatorcontrib><creatorcontrib>Bretzner, Frédéric</creatorcontrib><title>Heterozygous Dcc Mutant Mice Have a Subtle Locomotor Phenotype</title><title>eNeuro</title><addtitle>eNeuro</addtitle><description>Axon guidance receptors such as deleted in colorectal cancer (DCC) contribute to the normal formation of neural circuits, and their mutations can be associated with neural defects. In humans, heterozygous mutations in have been linked to congenital mirror movements, which are involuntary movements on one side of the body that mirror voluntary movements of the opposite side. In mice, obvious hopping phenotypes have been reported for bi-allelic mutations, while heterozygous mutants have not been closely examined. We hypothesized that a detailed characterization of heterozygous mice may reveal impaired corticospinal and spinal functions. Anterograde tracing of the motor cortex revealed a normally projecting corticospinal tract, intracortical microstimulation (ICMS) evoked normal contralateral motor responses, and behavioral tests showed normal skilled forelimb coordination. Gait analyses also showed a normal locomotor pattern and rhythm in adult mice during treadmill locomotion, except for a decreased occurrence of out-of-phase walk and an increased duty cycle of the stance phase at slow walking speed. Neonatal isolated spinal cords had normal left-right and flexor-extensor coupling, along with normal locomotor pattern and rhythm, except for an increase in the flexor-related motoneuronal output. Although mice do not exhibit any obvious bilateral impairments like those in humans, they exhibit subtle motor deficits during neonatal and adult locomotion.</description><subject>Animals</subject><subject>DCC Receptor - genetics</subject><subject>Heterozygote</subject><subject>Life Sciences</subject><subject>Locomotion - genetics</subject><subject>Mice</subject><subject>Motor Neurons - physiology</subject><subject>New Research</subject><subject>Phenotype</subject><subject>Pyramidal Tracts</subject><issn>2373-2822</issn><issn>2373-2822</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkV9LwzAUxYMoKtNPIEgf9aEzN1nT9GUgOp2wOfHPc0izm63SNbNNB_PT29Ip6lMuyTnnkvMj5AxoHyLGr0aPo7fnWZ8yECHIPmuGPXLMeMxDJhnb_zUfkdOqeqeUgmAxSDgkRzwCiLjkx2Q4Ro-l-9wuXF0Ft8YE09rrwgfTzGAw1hsMdPBSpz7HYOKMWznvyuBpiYXz2zWekAOr8wpPd2ePvN2NXm_G4WR2_3BzPQnNgCc-FGbO5zCwllMNEhOkKSQCYplwbS1lNqZgeRQJo3UsqEhBWDEHmnCMMDbIe2TY5a7rdIVzg4Uvda7WZbbS5VY5nam_L0W2VAu3UTKhIk6gCbjsApb_bOPriWrv6KBpSMhk02ovdstK91Fj5dUqqwzmuS6waUkxwQSlTYdxI-Wd1JSuqkq0P9lAVQtKdaBUC0qBVC2oxnX--zc_nm8s_AtrqY36</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Thiry, Louise</creator><creator>Lemaire, Chloé</creator><creator>Rastqar, Ali</creator><creator>Lemieux, Maxime</creator><creator>Peng, Jimmy</creator><creator>Ferent, Julien</creator><creator>Roussel, Marie</creator><creator>Beaumont, Eric</creator><creator>Fawcett, James P</creator><creator>Brownstone, Robert M</creator><creator>Charron, Frédéric</creator><creator>Bretzner, Frédéric</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5135-2725</orcidid><orcidid>https://orcid.org/0000-0003-3483-8672</orcidid><orcidid>https://orcid.org/0000-0002-7387-3414</orcidid><orcidid>https://orcid.org/0000-0002-4659-230X</orcidid></search><sort><creationdate>20220301</creationdate><title>Heterozygous Dcc Mutant Mice Have a Subtle Locomotor Phenotype</title><author>Thiry, Louise ; Lemaire, Chloé ; Rastqar, Ali ; Lemieux, Maxime ; Peng, Jimmy ; Ferent, Julien ; Roussel, Marie ; Beaumont, Eric ; Fawcett, James P ; Brownstone, Robert M ; Charron, Frédéric ; Bretzner, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-6cd3d14ff30a18e9e0b19617893aff02f701f3556caa7606b16f6d1093e5e7ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>DCC Receptor - genetics</topic><topic>Heterozygote</topic><topic>Life Sciences</topic><topic>Locomotion - genetics</topic><topic>Mice</topic><topic>Motor Neurons - physiology</topic><topic>New Research</topic><topic>Phenotype</topic><topic>Pyramidal Tracts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thiry, Louise</creatorcontrib><creatorcontrib>Lemaire, Chloé</creatorcontrib><creatorcontrib>Rastqar, Ali</creatorcontrib><creatorcontrib>Lemieux, Maxime</creatorcontrib><creatorcontrib>Peng, Jimmy</creatorcontrib><creatorcontrib>Ferent, Julien</creatorcontrib><creatorcontrib>Roussel, Marie</creatorcontrib><creatorcontrib>Beaumont, Eric</creatorcontrib><creatorcontrib>Fawcett, James P</creatorcontrib><creatorcontrib>Brownstone, Robert M</creatorcontrib><creatorcontrib>Charron, Frédéric</creatorcontrib><creatorcontrib>Bretzner, Frédéric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>eNeuro</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thiry, Louise</au><au>Lemaire, Chloé</au><au>Rastqar, Ali</au><au>Lemieux, Maxime</au><au>Peng, Jimmy</au><au>Ferent, Julien</au><au>Roussel, Marie</au><au>Beaumont, Eric</au><au>Fawcett, James P</au><au>Brownstone, Robert M</au><au>Charron, Frédéric</au><au>Bretzner, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterozygous Dcc Mutant Mice Have a Subtle Locomotor Phenotype</atitle><jtitle>eNeuro</jtitle><addtitle>eNeuro</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>9</volume><issue>2</issue><spage>ENEURO.0216-18.2021</spage><epage>18.2021</epage><pages>ENEURO.0216-18.2021-18.2021</pages><issn>2373-2822</issn><eissn>2373-2822</eissn><abstract>Axon guidance receptors such as deleted in colorectal cancer (DCC) contribute to the normal formation of neural circuits, and their mutations can be associated with neural defects. In humans, heterozygous mutations in have been linked to congenital mirror movements, which are involuntary movements on one side of the body that mirror voluntary movements of the opposite side. In mice, obvious hopping phenotypes have been reported for bi-allelic mutations, while heterozygous mutants have not been closely examined. We hypothesized that a detailed characterization of heterozygous mice may reveal impaired corticospinal and spinal functions. Anterograde tracing of the motor cortex revealed a normally projecting corticospinal tract, intracortical microstimulation (ICMS) evoked normal contralateral motor responses, and behavioral tests showed normal skilled forelimb coordination. Gait analyses also showed a normal locomotor pattern and rhythm in adult mice during treadmill locomotion, except for a decreased occurrence of out-of-phase walk and an increased duty cycle of the stance phase at slow walking speed. Neonatal isolated spinal cords had normal left-right and flexor-extensor coupling, along with normal locomotor pattern and rhythm, except for an increase in the flexor-related motoneuronal output. Although mice do not exhibit any obvious bilateral impairments like those in humans, they exhibit subtle motor deficits during neonatal and adult locomotion.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>35115383</pmid><doi>10.1523/ENEURO.0216-18.2021</doi><orcidid>https://orcid.org/0000-0001-5135-2725</orcidid><orcidid>https://orcid.org/0000-0003-3483-8672</orcidid><orcidid>https://orcid.org/0000-0002-7387-3414</orcidid><orcidid>https://orcid.org/0000-0002-4659-230X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2373-2822
ispartof eNeuro, 2022-03, Vol.9 (2), p.ENEURO.0216-18.2021-18.2021
issn 2373-2822
2373-2822
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8906791
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
DCC Receptor - genetics
Heterozygote
Life Sciences
Locomotion - genetics
Mice
Motor Neurons - physiology
New Research
Phenotype
Pyramidal Tracts
title Heterozygous Dcc Mutant Mice Have a Subtle Locomotor Phenotype
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A29%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterozygous%20Dcc%20Mutant%20Mice%20Have%20a%20Subtle%20Locomotor%20Phenotype&rft.jtitle=eNeuro&rft.au=Thiry,%20Louise&rft.date=2022-03-01&rft.volume=9&rft.issue=2&rft.spage=ENEURO.0216-18.2021&rft.epage=18.2021&rft.pages=ENEURO.0216-18.2021-18.2021&rft.issn=2373-2822&rft.eissn=2373-2822&rft_id=info:doi/10.1523/ENEURO.0216-18.2021&rft_dat=%3Cproquest_pubme%3E2626003517%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626003517&rft_id=info:pmid/35115383&rfr_iscdi=true