Patient-specific computational fluid dynamics analysis of transcatheter aortic root replacement with chimney coronary grafts

Transcatheter aortic root repair (TARR) consists of the simultaneous endovascular replacement of the aortic valve, the root and the proximal ascending aorta. The aim of the study is to set-up a computational model of TARR to explore the impact of the endovascular procedure on the coronary circulatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Interactive cardiovascular and thoracic surgery 2021-04, Vol.32 (3), p.408-416
Hauptverfasser: Conti, Michele, Romarowski, Rodrigo M, Ferrarini, Anna, Stochino, Matteo, Auricchio, Ferdinando, Morganti, Simone, Segesser, Ludwig Karl von, Ferrari, Enrico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 416
container_issue 3
container_start_page 408
container_title Interactive cardiovascular and thoracic surgery
container_volume 32
creator Conti, Michele
Romarowski, Rodrigo M
Ferrarini, Anna
Stochino, Matteo
Auricchio, Ferdinando
Morganti, Simone
Segesser, Ludwig Karl von
Ferrari, Enrico
description Transcatheter aortic root repair (TARR) consists of the simultaneous endovascular replacement of the aortic valve, the root and the proximal ascending aorta. The aim of the study is to set-up a computational model of TARR to explore the impact of the endovascular procedure on the coronary circulation supported by chimney grafts. Computed tomography of a patient with dilated ascending aorta was segmented to obtain a 3-dimensional representation of the proximal thoracic aorta, including aortic root and supra-aortic branches. Computed assisted design tools were used to modify the geometry to create the post-procedural TARR configuration featuring the main aortic endograft integrated with 2 chimney grafts for coronary circulation. Computational Fluid Dynamics simulations were run in both pre- and post-procedural configurations using a pulsatile inflow and lumped parameter models at the outflows to simulate peripheral aortic and coronary circulation. Differences in coronary flow and pressure along the cardiac cycle were evaluated. After the virtual implant of the TARR device with coronary grafts, the flow became more organized and less recirculation was seen in the ascending aorta. Coronary perfusion was guaranteed with negligible flow differences between pre- and post-procedural configurations. However, despite being well perfused by chimney grafts, the procedure induces an increase of the pressure drop between the coronary ostia and the ascending aorta of 8 mmHg. The proposed numerical simulations, in the specific case under investigation, suggest that the TARR technique maintains coronary perfusion through the chimney grafts. This study calls for experimental validation and further analyses of the impact of TARR on cardiac afterload, decrease of aortic compliance and local pressure drop induced by the coronary chimney grafts.
doi_str_mv 10.1093/icvts/ivaa288
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8906691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473403376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-636dcd5159d6acef918601948568b4dda9669cfabdb2b59ddeea0018b1df94a83</originalsourceid><addsrcrecordid>eNpVkc1rGzEQxUVJaBy3x1yLjrlsIlm7snQpFJOPgqE5tGcxqw9bYXe1lbQOhv7xUWsnuKcRoze_ecND6IqSG0oku_V6l9Ot3wEshPiAZrThspIL0ZydvC_QZUrPhFBJGPmILhhjDRWSz9CfJ8jeDrlKo9XeeY116Mcpl24YoMOum7zBZj9A73XCUHr75BMODucIQ9KQtzbbiCHEXKZjCBlHO3agbV-4-MXnLdZb3w92X9ixUOMebyK4nD6hcwddsp-PdY5-3d_9XD1W6x8P31ff1pVmYpkrzrjRpqGNNLxgnaSCl1Nq0XDR1saA5FxqB61pF20RGWuh3CpaapysQbA5-nrgjlPbW6OLrwidGqPvixkVwKv_fwa_VZuwU0KSgqYFcH0ExPB7simr3idtuw4GG6akFvWS1YSxJS_S6iDVMaQUrXtfQ4n6m5j6l5g6Jlb0X069vavfImKvHQGaTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473403376</pqid></control><display><type>article</type><title>Patient-specific computational fluid dynamics analysis of transcatheter aortic root replacement with chimney coronary grafts</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Conti, Michele ; Romarowski, Rodrigo M ; Ferrarini, Anna ; Stochino, Matteo ; Auricchio, Ferdinando ; Morganti, Simone ; Segesser, Ludwig Karl von ; Ferrari, Enrico</creator><creatorcontrib>Conti, Michele ; Romarowski, Rodrigo M ; Ferrarini, Anna ; Stochino, Matteo ; Auricchio, Ferdinando ; Morganti, Simone ; Segesser, Ludwig Karl von ; Ferrari, Enrico</creatorcontrib><description>Transcatheter aortic root repair (TARR) consists of the simultaneous endovascular replacement of the aortic valve, the root and the proximal ascending aorta. The aim of the study is to set-up a computational model of TARR to explore the impact of the endovascular procedure on the coronary circulation supported by chimney grafts. Computed tomography of a patient with dilated ascending aorta was segmented to obtain a 3-dimensional representation of the proximal thoracic aorta, including aortic root and supra-aortic branches. Computed assisted design tools were used to modify the geometry to create the post-procedural TARR configuration featuring the main aortic endograft integrated with 2 chimney grafts for coronary circulation. Computational Fluid Dynamics simulations were run in both pre- and post-procedural configurations using a pulsatile inflow and lumped parameter models at the outflows to simulate peripheral aortic and coronary circulation. Differences in coronary flow and pressure along the cardiac cycle were evaluated. After the virtual implant of the TARR device with coronary grafts, the flow became more organized and less recirculation was seen in the ascending aorta. Coronary perfusion was guaranteed with negligible flow differences between pre- and post-procedural configurations. However, despite being well perfused by chimney grafts, the procedure induces an increase of the pressure drop between the coronary ostia and the ascending aorta of 8 mmHg. The proposed numerical simulations, in the specific case under investigation, suggest that the TARR technique maintains coronary perfusion through the chimney grafts. This study calls for experimental validation and further analyses of the impact of TARR on cardiac afterload, decrease of aortic compliance and local pressure drop induced by the coronary chimney grafts.</description><identifier>ISSN: 1569-9285</identifier><identifier>ISSN: 1569-9293</identifier><identifier>EISSN: 1569-9285</identifier><identifier>DOI: 10.1093/icvts/ivaa288</identifier><identifier>PMID: 33351896</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adult Cardiac ; Aorta - diagnostic imaging ; Aorta - physiopathology ; Aorta - surgery ; Blood Vessel Prosthesis ; Computer Simulation ; Coronary Circulation ; Humans ; Hydrodynamics ; Imaging, Three-Dimensional ; Pressure ; Prosthesis Design ; Tomography, X-Ray Computed ; Transcatheter Aortic Valve Replacement</subject><ispartof>Interactive cardiovascular and thoracic surgery, 2021-04, Vol.32 (3), p.408-416</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-636dcd5159d6acef918601948568b4dda9669cfabdb2b59ddeea0018b1df94a83</citedby><cites>FETCH-LOGICAL-c387t-636dcd5159d6acef918601948568b4dda9669cfabdb2b59ddeea0018b1df94a83</cites><orcidid>0000-0002-2837-3242 ; 0000-0002-3735-2400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906691/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906691/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33351896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Conti, Michele</creatorcontrib><creatorcontrib>Romarowski, Rodrigo M</creatorcontrib><creatorcontrib>Ferrarini, Anna</creatorcontrib><creatorcontrib>Stochino, Matteo</creatorcontrib><creatorcontrib>Auricchio, Ferdinando</creatorcontrib><creatorcontrib>Morganti, Simone</creatorcontrib><creatorcontrib>Segesser, Ludwig Karl von</creatorcontrib><creatorcontrib>Ferrari, Enrico</creatorcontrib><title>Patient-specific computational fluid dynamics analysis of transcatheter aortic root replacement with chimney coronary grafts</title><title>Interactive cardiovascular and thoracic surgery</title><addtitle>Interact Cardiovasc Thorac Surg</addtitle><description>Transcatheter aortic root repair (TARR) consists of the simultaneous endovascular replacement of the aortic valve, the root and the proximal ascending aorta. The aim of the study is to set-up a computational model of TARR to explore the impact of the endovascular procedure on the coronary circulation supported by chimney grafts. Computed tomography of a patient with dilated ascending aorta was segmented to obtain a 3-dimensional representation of the proximal thoracic aorta, including aortic root and supra-aortic branches. Computed assisted design tools were used to modify the geometry to create the post-procedural TARR configuration featuring the main aortic endograft integrated with 2 chimney grafts for coronary circulation. Computational Fluid Dynamics simulations were run in both pre- and post-procedural configurations using a pulsatile inflow and lumped parameter models at the outflows to simulate peripheral aortic and coronary circulation. Differences in coronary flow and pressure along the cardiac cycle were evaluated. After the virtual implant of the TARR device with coronary grafts, the flow became more organized and less recirculation was seen in the ascending aorta. Coronary perfusion was guaranteed with negligible flow differences between pre- and post-procedural configurations. However, despite being well perfused by chimney grafts, the procedure induces an increase of the pressure drop between the coronary ostia and the ascending aorta of 8 mmHg. The proposed numerical simulations, in the specific case under investigation, suggest that the TARR technique maintains coronary perfusion through the chimney grafts. This study calls for experimental validation and further analyses of the impact of TARR on cardiac afterload, decrease of aortic compliance and local pressure drop induced by the coronary chimney grafts.</description><subject>Adult Cardiac</subject><subject>Aorta - diagnostic imaging</subject><subject>Aorta - physiopathology</subject><subject>Aorta - surgery</subject><subject>Blood Vessel Prosthesis</subject><subject>Computer Simulation</subject><subject>Coronary Circulation</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Imaging, Three-Dimensional</subject><subject>Pressure</subject><subject>Prosthesis Design</subject><subject>Tomography, X-Ray Computed</subject><subject>Transcatheter Aortic Valve Replacement</subject><issn>1569-9285</issn><issn>1569-9293</issn><issn>1569-9285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1rGzEQxUVJaBy3x1yLjrlsIlm7snQpFJOPgqE5tGcxqw9bYXe1lbQOhv7xUWsnuKcRoze_ecND6IqSG0oku_V6l9Ot3wEshPiAZrThspIL0ZydvC_QZUrPhFBJGPmILhhjDRWSz9CfJ8jeDrlKo9XeeY116Mcpl24YoMOum7zBZj9A73XCUHr75BMODucIQ9KQtzbbiCHEXKZjCBlHO3agbV-4-MXnLdZb3w92X9ixUOMebyK4nD6hcwddsp-PdY5-3d_9XD1W6x8P31ff1pVmYpkrzrjRpqGNNLxgnaSCl1Nq0XDR1saA5FxqB61pF20RGWuh3CpaapysQbA5-nrgjlPbW6OLrwidGqPvixkVwKv_fwa_VZuwU0KSgqYFcH0ExPB7simr3idtuw4GG6akFvWS1YSxJS_S6iDVMaQUrXtfQ4n6m5j6l5g6Jlb0X069vavfImKvHQGaTQ</recordid><startdate>20210408</startdate><enddate>20210408</enddate><creator>Conti, Michele</creator><creator>Romarowski, Rodrigo M</creator><creator>Ferrarini, Anna</creator><creator>Stochino, Matteo</creator><creator>Auricchio, Ferdinando</creator><creator>Morganti, Simone</creator><creator>Segesser, Ludwig Karl von</creator><creator>Ferrari, Enrico</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2837-3242</orcidid><orcidid>https://orcid.org/0000-0002-3735-2400</orcidid></search><sort><creationdate>20210408</creationdate><title>Patient-specific computational fluid dynamics analysis of transcatheter aortic root replacement with chimney coronary grafts</title><author>Conti, Michele ; Romarowski, Rodrigo M ; Ferrarini, Anna ; Stochino, Matteo ; Auricchio, Ferdinando ; Morganti, Simone ; Segesser, Ludwig Karl von ; Ferrari, Enrico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-636dcd5159d6acef918601948568b4dda9669cfabdb2b59ddeea0018b1df94a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult Cardiac</topic><topic>Aorta - diagnostic imaging</topic><topic>Aorta - physiopathology</topic><topic>Aorta - surgery</topic><topic>Blood Vessel Prosthesis</topic><topic>Computer Simulation</topic><topic>Coronary Circulation</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Imaging, Three-Dimensional</topic><topic>Pressure</topic><topic>Prosthesis Design</topic><topic>Tomography, X-Ray Computed</topic><topic>Transcatheter Aortic Valve Replacement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conti, Michele</creatorcontrib><creatorcontrib>Romarowski, Rodrigo M</creatorcontrib><creatorcontrib>Ferrarini, Anna</creatorcontrib><creatorcontrib>Stochino, Matteo</creatorcontrib><creatorcontrib>Auricchio, Ferdinando</creatorcontrib><creatorcontrib>Morganti, Simone</creatorcontrib><creatorcontrib>Segesser, Ludwig Karl von</creatorcontrib><creatorcontrib>Ferrari, Enrico</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Interactive cardiovascular and thoracic surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conti, Michele</au><au>Romarowski, Rodrigo M</au><au>Ferrarini, Anna</au><au>Stochino, Matteo</au><au>Auricchio, Ferdinando</au><au>Morganti, Simone</au><au>Segesser, Ludwig Karl von</au><au>Ferrari, Enrico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patient-specific computational fluid dynamics analysis of transcatheter aortic root replacement with chimney coronary grafts</atitle><jtitle>Interactive cardiovascular and thoracic surgery</jtitle><addtitle>Interact Cardiovasc Thorac Surg</addtitle><date>2021-04-08</date><risdate>2021</risdate><volume>32</volume><issue>3</issue><spage>408</spage><epage>416</epage><pages>408-416</pages><issn>1569-9285</issn><issn>1569-9293</issn><eissn>1569-9285</eissn><abstract>Transcatheter aortic root repair (TARR) consists of the simultaneous endovascular replacement of the aortic valve, the root and the proximal ascending aorta. The aim of the study is to set-up a computational model of TARR to explore the impact of the endovascular procedure on the coronary circulation supported by chimney grafts. Computed tomography of a patient with dilated ascending aorta was segmented to obtain a 3-dimensional representation of the proximal thoracic aorta, including aortic root and supra-aortic branches. Computed assisted design tools were used to modify the geometry to create the post-procedural TARR configuration featuring the main aortic endograft integrated with 2 chimney grafts for coronary circulation. Computational Fluid Dynamics simulations were run in both pre- and post-procedural configurations using a pulsatile inflow and lumped parameter models at the outflows to simulate peripheral aortic and coronary circulation. Differences in coronary flow and pressure along the cardiac cycle were evaluated. After the virtual implant of the TARR device with coronary grafts, the flow became more organized and less recirculation was seen in the ascending aorta. Coronary perfusion was guaranteed with negligible flow differences between pre- and post-procedural configurations. However, despite being well perfused by chimney grafts, the procedure induces an increase of the pressure drop between the coronary ostia and the ascending aorta of 8 mmHg. The proposed numerical simulations, in the specific case under investigation, suggest that the TARR technique maintains coronary perfusion through the chimney grafts. This study calls for experimental validation and further analyses of the impact of TARR on cardiac afterload, decrease of aortic compliance and local pressure drop induced by the coronary chimney grafts.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33351896</pmid><doi>10.1093/icvts/ivaa288</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2837-3242</orcidid><orcidid>https://orcid.org/0000-0002-3735-2400</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1569-9285
ispartof Interactive cardiovascular and thoracic surgery, 2021-04, Vol.32 (3), p.408-416
issn 1569-9285
1569-9293
1569-9285
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8906691
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central
subjects Adult Cardiac
Aorta - diagnostic imaging
Aorta - physiopathology
Aorta - surgery
Blood Vessel Prosthesis
Computer Simulation
Coronary Circulation
Humans
Hydrodynamics
Imaging, Three-Dimensional
Pressure
Prosthesis Design
Tomography, X-Ray Computed
Transcatheter Aortic Valve Replacement
title Patient-specific computational fluid dynamics analysis of transcatheter aortic root replacement with chimney coronary grafts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T22%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patient-specific%20computational%20fluid%20dynamics%20analysis%20of%20transcatheter%20aortic%20root%20replacement%20with%20chimney%20coronary%20grafts&rft.jtitle=Interactive%20cardiovascular%20and%20thoracic%20surgery&rft.au=Conti,%20Michele&rft.date=2021-04-08&rft.volume=32&rft.issue=3&rft.spage=408&rft.epage=416&rft.pages=408-416&rft.issn=1569-9285&rft.eissn=1569-9285&rft_id=info:doi/10.1093/icvts/ivaa288&rft_dat=%3Cproquest_pubme%3E2473403376%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473403376&rft_id=info:pmid/33351896&rfr_iscdi=true