Artificial intelligence and machine learning in nephropathology
Artificial intelligence (AI) for the purpose of this review is an umbrella term for technologies emulating a nephropathologist’s ability to extract information on diagnosis, prognosis, and therapy responsiveness from native or transplant kidney biopsies. Although AI can be used to analyze a wide var...
Gespeichert in:
Veröffentlicht in: | Kidney international 2020-07, Vol.98 (1), p.65-75 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 75 |
---|---|
container_issue | 1 |
container_start_page | 65 |
container_title | Kidney international |
container_volume | 98 |
creator | Becker, Jan U. Mayerich, David Padmanabhan, Meghana Barratt, Jonathan Ernst, Angela Boor, Peter Cicalese, Pietro A. Mohan, Chandra Nguyen, Hien V. Roysam, Badrinath |
description | Artificial intelligence (AI) for the purpose of this review is an umbrella term for technologies emulating a nephropathologist’s ability to extract information on diagnosis, prognosis, and therapy responsiveness from native or transplant kidney biopsies. Although AI can be used to analyze a wide variety of biopsy-related data, this review focuses on whole slide images traditionally used in nephropathology. AI applications in nephropathology have recently become available through several advancing technologies, including (i) widespread introduction of glass slide scanners, (ii) data servers in pathology departments worldwide, and (iii) through greatly improved computer hardware to enable AI training. In this review, we explain how AI can enhance the reproducibility of nephropathology results for certain parameters in the context of precision medicine using advanced architectures, such as convolutional neural networks, that are currently the state of the art in machine learning software for this task. Because AI applications in nephropathology are still in their infancy, we show the power and potential of AI applications mostly in the example of oncopathology. Moreover, we discuss the technological obstacles as well as the current stakeholder and regulatory concerns about developing AI applications in nephropathology from the perspective of nephropathologists and the wider nephrology community. We expect the gradual introduction of these technologies into routine diagnostics and research for selective tasks, suggesting that this technology will enhance the performance of nephropathologists rather than making them redundant. |
doi_str_mv | 10.1016/j.kint.2020.02.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8906056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0085253820303422</els_id><sourcerecordid>2408541311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-8c1b34025c8dcbef0aa1f8f862689fd75b1ed2a04b7b58907bfefa5dee1fd0343</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWj_-gAfZo5etk-xmdwuilOIXCF70HLLJpE3dJjXZFvz3prSKXoSBEOadJ5mHkHMKQwq0upoP363rhwwYDIGlqvfIgHJW5LTmfJ8MABqeM140R-Q4xjmk-6iAQ3JUsLLmFdQDcjsOvTVWWdllCYZdZ6foFGbS6Wwh1cw6zDqUwVk3TYnM4XIW_FL2M9_56ecpOTCyi3i2O0_I2_3d6-Qxf355eJqMn3NVct7njaJtUQLjqtGqRQNSUtOYpmJVMzK65i1FzSSUbd3yZgR1a9BIrhGp0VCUxQm52XKXq3aBWqHrg-zEMtiFDJ_CSyv-dpydialfiwSrgFcJcLkDBP-xwtiLhY0q7Ssd-lUUrEyySlpQmqJsG1XBxxjQ_DxDQWzMi7nYmBcb8wJYqjoNXfz-4M_It-oUuN4GMGlaWwwiKrtRrW1A1Qvt7X_8L71xl1o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408541311</pqid></control><display><type>article</type><title>Artificial intelligence and machine learning in nephropathology</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Becker, Jan U. ; Mayerich, David ; Padmanabhan, Meghana ; Barratt, Jonathan ; Ernst, Angela ; Boor, Peter ; Cicalese, Pietro A. ; Mohan, Chandra ; Nguyen, Hien V. ; Roysam, Badrinath</creator><creatorcontrib>Becker, Jan U. ; Mayerich, David ; Padmanabhan, Meghana ; Barratt, Jonathan ; Ernst, Angela ; Boor, Peter ; Cicalese, Pietro A. ; Mohan, Chandra ; Nguyen, Hien V. ; Roysam, Badrinath</creatorcontrib><description>Artificial intelligence (AI) for the purpose of this review is an umbrella term for technologies emulating a nephropathologist’s ability to extract information on diagnosis, prognosis, and therapy responsiveness from native or transplant kidney biopsies. Although AI can be used to analyze a wide variety of biopsy-related data, this review focuses on whole slide images traditionally used in nephropathology. AI applications in nephropathology have recently become available through several advancing technologies, including (i) widespread introduction of glass slide scanners, (ii) data servers in pathology departments worldwide, and (iii) through greatly improved computer hardware to enable AI training. In this review, we explain how AI can enhance the reproducibility of nephropathology results for certain parameters in the context of precision medicine using advanced architectures, such as convolutional neural networks, that are currently the state of the art in machine learning software for this task. Because AI applications in nephropathology are still in their infancy, we show the power and potential of AI applications mostly in the example of oncopathology. Moreover, we discuss the technological obstacles as well as the current stakeholder and regulatory concerns about developing AI applications in nephropathology from the perspective of nephropathologists and the wider nephrology community. We expect the gradual introduction of these technologies into routine diagnostics and research for selective tasks, suggesting that this technology will enhance the performance of nephropathologists rather than making them redundant.</description><identifier>ISSN: 0085-2538</identifier><identifier>ISSN: 1523-1755</identifier><identifier>EISSN: 1523-1755</identifier><identifier>DOI: 10.1016/j.kint.2020.02.027</identifier><identifier>PMID: 32475607</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Artificial Intelligence ; computer ; convolutional neural network ; image recognition ; Machine Learning ; nephropathology ; Neural Networks, Computer ; Reproducibility of Results ; Software</subject><ispartof>Kidney international, 2020-07, Vol.98 (1), p.65-75</ispartof><rights>2020 International Society of Nephrology</rights><rights>Copyright © 2020 International Society of Nephrology. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-8c1b34025c8dcbef0aa1f8f862689fd75b1ed2a04b7b58907bfefa5dee1fd0343</citedby><cites>FETCH-LOGICAL-c455t-8c1b34025c8dcbef0aa1f8f862689fd75b1ed2a04b7b58907bfefa5dee1fd0343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32475607$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, Jan U.</creatorcontrib><creatorcontrib>Mayerich, David</creatorcontrib><creatorcontrib>Padmanabhan, Meghana</creatorcontrib><creatorcontrib>Barratt, Jonathan</creatorcontrib><creatorcontrib>Ernst, Angela</creatorcontrib><creatorcontrib>Boor, Peter</creatorcontrib><creatorcontrib>Cicalese, Pietro A.</creatorcontrib><creatorcontrib>Mohan, Chandra</creatorcontrib><creatorcontrib>Nguyen, Hien V.</creatorcontrib><creatorcontrib>Roysam, Badrinath</creatorcontrib><title>Artificial intelligence and machine learning in nephropathology</title><title>Kidney international</title><addtitle>Kidney Int</addtitle><description>Artificial intelligence (AI) for the purpose of this review is an umbrella term for technologies emulating a nephropathologist’s ability to extract information on diagnosis, prognosis, and therapy responsiveness from native or transplant kidney biopsies. Although AI can be used to analyze a wide variety of biopsy-related data, this review focuses on whole slide images traditionally used in nephropathology. AI applications in nephropathology have recently become available through several advancing technologies, including (i) widespread introduction of glass slide scanners, (ii) data servers in pathology departments worldwide, and (iii) through greatly improved computer hardware to enable AI training. In this review, we explain how AI can enhance the reproducibility of nephropathology results for certain parameters in the context of precision medicine using advanced architectures, such as convolutional neural networks, that are currently the state of the art in machine learning software for this task. Because AI applications in nephropathology are still in their infancy, we show the power and potential of AI applications mostly in the example of oncopathology. Moreover, we discuss the technological obstacles as well as the current stakeholder and regulatory concerns about developing AI applications in nephropathology from the perspective of nephropathologists and the wider nephrology community. We expect the gradual introduction of these technologies into routine diagnostics and research for selective tasks, suggesting that this technology will enhance the performance of nephropathologists rather than making them redundant.</description><subject>Artificial Intelligence</subject><subject>computer</subject><subject>convolutional neural network</subject><subject>image recognition</subject><subject>Machine Learning</subject><subject>nephropathology</subject><subject>Neural Networks, Computer</subject><subject>Reproducibility of Results</subject><subject>Software</subject><issn>0085-2538</issn><issn>1523-1755</issn><issn>1523-1755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMoWj_-gAfZo5etk-xmdwuilOIXCF70HLLJpE3dJjXZFvz3prSKXoSBEOadJ5mHkHMKQwq0upoP363rhwwYDIGlqvfIgHJW5LTmfJ8MABqeM140R-Q4xjmk-6iAQ3JUsLLmFdQDcjsOvTVWWdllCYZdZ6foFGbS6Wwh1cw6zDqUwVk3TYnM4XIW_FL2M9_56ecpOTCyi3i2O0_I2_3d6-Qxf355eJqMn3NVct7njaJtUQLjqtGqRQNSUtOYpmJVMzK65i1FzSSUbd3yZgR1a9BIrhGp0VCUxQm52XKXq3aBWqHrg-zEMtiFDJ_CSyv-dpydialfiwSrgFcJcLkDBP-xwtiLhY0q7Ssd-lUUrEyySlpQmqJsG1XBxxjQ_DxDQWzMi7nYmBcb8wJYqjoNXfz-4M_It-oUuN4GMGlaWwwiKrtRrW1A1Qvt7X_8L71xl1o</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Becker, Jan U.</creator><creator>Mayerich, David</creator><creator>Padmanabhan, Meghana</creator><creator>Barratt, Jonathan</creator><creator>Ernst, Angela</creator><creator>Boor, Peter</creator><creator>Cicalese, Pietro A.</creator><creator>Mohan, Chandra</creator><creator>Nguyen, Hien V.</creator><creator>Roysam, Badrinath</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200701</creationdate><title>Artificial intelligence and machine learning in nephropathology</title><author>Becker, Jan U. ; Mayerich, David ; Padmanabhan, Meghana ; Barratt, Jonathan ; Ernst, Angela ; Boor, Peter ; Cicalese, Pietro A. ; Mohan, Chandra ; Nguyen, Hien V. ; Roysam, Badrinath</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-8c1b34025c8dcbef0aa1f8f862689fd75b1ed2a04b7b58907bfefa5dee1fd0343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>computer</topic><topic>convolutional neural network</topic><topic>image recognition</topic><topic>Machine Learning</topic><topic>nephropathology</topic><topic>Neural Networks, Computer</topic><topic>Reproducibility of Results</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Jan U.</creatorcontrib><creatorcontrib>Mayerich, David</creatorcontrib><creatorcontrib>Padmanabhan, Meghana</creatorcontrib><creatorcontrib>Barratt, Jonathan</creatorcontrib><creatorcontrib>Ernst, Angela</creatorcontrib><creatorcontrib>Boor, Peter</creatorcontrib><creatorcontrib>Cicalese, Pietro A.</creatorcontrib><creatorcontrib>Mohan, Chandra</creatorcontrib><creatorcontrib>Nguyen, Hien V.</creatorcontrib><creatorcontrib>Roysam, Badrinath</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Kidney international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Jan U.</au><au>Mayerich, David</au><au>Padmanabhan, Meghana</au><au>Barratt, Jonathan</au><au>Ernst, Angela</au><au>Boor, Peter</au><au>Cicalese, Pietro A.</au><au>Mohan, Chandra</au><au>Nguyen, Hien V.</au><au>Roysam, Badrinath</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence and machine learning in nephropathology</atitle><jtitle>Kidney international</jtitle><addtitle>Kidney Int</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>98</volume><issue>1</issue><spage>65</spage><epage>75</epage><pages>65-75</pages><issn>0085-2538</issn><issn>1523-1755</issn><eissn>1523-1755</eissn><abstract>Artificial intelligence (AI) for the purpose of this review is an umbrella term for technologies emulating a nephropathologist’s ability to extract information on diagnosis, prognosis, and therapy responsiveness from native or transplant kidney biopsies. Although AI can be used to analyze a wide variety of biopsy-related data, this review focuses on whole slide images traditionally used in nephropathology. AI applications in nephropathology have recently become available through several advancing technologies, including (i) widespread introduction of glass slide scanners, (ii) data servers in pathology departments worldwide, and (iii) through greatly improved computer hardware to enable AI training. In this review, we explain how AI can enhance the reproducibility of nephropathology results for certain parameters in the context of precision medicine using advanced architectures, such as convolutional neural networks, that are currently the state of the art in machine learning software for this task. Because AI applications in nephropathology are still in their infancy, we show the power and potential of AI applications mostly in the example of oncopathology. Moreover, we discuss the technological obstacles as well as the current stakeholder and regulatory concerns about developing AI applications in nephropathology from the perspective of nephropathologists and the wider nephrology community. We expect the gradual introduction of these technologies into routine diagnostics and research for selective tasks, suggesting that this technology will enhance the performance of nephropathologists rather than making them redundant.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32475607</pmid><doi>10.1016/j.kint.2020.02.027</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0085-2538 |
ispartof | Kidney international, 2020-07, Vol.98 (1), p.65-75 |
issn | 0085-2538 1523-1755 1523-1755 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8906056 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Artificial Intelligence computer convolutional neural network image recognition Machine Learning nephropathology Neural Networks, Computer Reproducibility of Results Software |
title | Artificial intelligence and machine learning in nephropathology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20and%20machine%20learning%20in%20nephropathology&rft.jtitle=Kidney%20international&rft.au=Becker,%20Jan%20U.&rft.date=2020-07-01&rft.volume=98&rft.issue=1&rft.spage=65&rft.epage=75&rft.pages=65-75&rft.issn=0085-2538&rft.eissn=1523-1755&rft_id=info:doi/10.1016/j.kint.2020.02.027&rft_dat=%3Cproquest_pubme%3E2408541311%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408541311&rft_id=info:pmid/32475607&rft_els_id=S0085253820303422&rfr_iscdi=true |