A simple technique to classify diffraction data from dynamic proteins according to individual polymorphs

One often observes small but measurable differences in the diffraction data measured from different crystals of a single protein. These differences might reflect structural differences in the protein and may reveal the natural dynamism of the molecule in solution. Partitioning these mixed‐state data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section D, Biological crystallography. Biological crystallography., 2022-03, Vol.78 (3), p.268-277
Hauptverfasser: Nguyen, Thu, Phan, Kim L., Kozakov, Dima, Gabelli, Sandra B., Kreitler, Dale F., Andrews, Lawrence C., Jakoncic, Jean, Sweet, Robert M., Soares, Alexei S., Bernstein, Herbert J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 277
container_issue 3
container_start_page 268
container_title Acta crystallographica. Section D, Biological crystallography.
container_volume 78
creator Nguyen, Thu
Phan, Kim L.
Kozakov, Dima
Gabelli, Sandra B.
Kreitler, Dale F.
Andrews, Lawrence C.
Jakoncic, Jean
Sweet, Robert M.
Soares, Alexei S.
Bernstein, Herbert J.
description One often observes small but measurable differences in the diffraction data measured from different crystals of a single protein. These differences might reflect structural differences in the protein and may reveal the natural dynamism of the molecule in solution. Partitioning these mixed‐state data into single‐state clusters is a critical step that could extract information about the dynamic behavior of proteins from hundreds or thousands of single‐crystal data sets. Mixed‐state data can be obtained deliberately (through intentional perturbation) or inadvertently (while attempting to measure highly redundant single‐crystal data). To the extent that different states adopt different molecular structures, one expects to observe differences in the crystals; each of the polystates will create a polymorph of the crystals. After mixed‐state diffraction data have been measured, deliberately or inadvertently, the challenge is to sort the data into clusters that may represent relevant biological polystates. Here, this problem is addressed using a simple multi‐factor clustering approach that classifies each data set using independent observables, thereby assigning each data set to the correct location in conformational space. This procedure is illustrated using two independent observables, unit‐cell parameters and intensities, to cluster mixed‐state data from chymotrypsinogen (ChTg) crystals. It is observed that the data populate an arc of the reaction trajectory as ChTg is converted into chymotrypsin. The dynamics of proteins can be explored from polymorphs observed by the clustering of multiple data wedges.
doi_str_mv 10.1107/S2059798321013425
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8900820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636724024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5709-c963e06ef193cfd3e23c56376436a9b93b6592a948a0fe2aeb6b0e476b21500a3</originalsourceid><addsrcrecordid>eNqFkc1u1TAQhSNURKvSB2CDLLphc2H8m3hT6aotUKkSC2DBynIcu9dVYgc7Kcrb19EtVYFFVx6Nvzkzc6aq3mD4gDHUH78R4LKWDSUYMGWEv6iO1tRmzR08iQ-rk5xvAQALWhfyVXVIOaEMM3xU7bYo-2HsLZqs2QX_ay5RRKbXOXu3oM47l7SZfAyo05NGLsUBdUvQgzdoTHGyPmSkjYmp8-FmLfah83e-m3WPxtgvQ0zjLr-uXjrdZ3vy8B5XPz5dfj__srn--vnqfHu9MbwGuTFSUAvCOiypcR21hBpe5haMCi1bSVvBJdGSNRqcJdq2ogXLatESzAE0Pa7O9rrj3A62MzZMSfdqTH7QaVFRe_X3T_A7dRPvVCMBGgJF4N1eIObJq2z8aoyJIVgzKdww0TBZoPcPXVIsluVJDT4b2_c62DhnRUSxmHFGcEFP_0Fv45xC8WClRE0YEFYovKdMijkn6x4nxqDWe6v_7l1q3j5d9bHiz3ULIPfAb9_b5XlFtf15QS6uOJQN7wGVVrZ5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636724024</pqid></control><display><type>article</type><title>A simple technique to classify diffraction data from dynamic proteins according to individual polymorphs</title><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Nguyen, Thu ; Phan, Kim L. ; Kozakov, Dima ; Gabelli, Sandra B. ; Kreitler, Dale F. ; Andrews, Lawrence C. ; Jakoncic, Jean ; Sweet, Robert M. ; Soares, Alexei S. ; Bernstein, Herbert J.</creator><creatorcontrib>Nguyen, Thu ; Phan, Kim L. ; Kozakov, Dima ; Gabelli, Sandra B. ; Kreitler, Dale F. ; Andrews, Lawrence C. ; Jakoncic, Jean ; Sweet, Robert M. ; Soares, Alexei S. ; Bernstein, Herbert J. ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>One often observes small but measurable differences in the diffraction data measured from different crystals of a single protein. These differences might reflect structural differences in the protein and may reveal the natural dynamism of the molecule in solution. Partitioning these mixed‐state data into single‐state clusters is a critical step that could extract information about the dynamic behavior of proteins from hundreds or thousands of single‐crystal data sets. Mixed‐state data can be obtained deliberately (through intentional perturbation) or inadvertently (while attempting to measure highly redundant single‐crystal data). To the extent that different states adopt different molecular structures, one expects to observe differences in the crystals; each of the polystates will create a polymorph of the crystals. After mixed‐state diffraction data have been measured, deliberately or inadvertently, the challenge is to sort the data into clusters that may represent relevant biological polystates. Here, this problem is addressed using a simple multi‐factor clustering approach that classifies each data set using independent observables, thereby assigning each data set to the correct location in conformational space. This procedure is illustrated using two independent observables, unit‐cell parameters and intensities, to cluster mixed‐state data from chymotrypsinogen (ChTg) crystals. It is observed that the data populate an arc of the reaction trajectory as ChTg is converted into chymotrypsin. The dynamics of proteins can be explored from polymorphs observed by the clustering of multiple data wedges.</description><identifier>ISSN: 2059-7983</identifier><identifier>ISSN: 0907-4449</identifier><identifier>EISSN: 2059-7983</identifier><identifier>EISSN: 1399-0047</identifier><identifier>DOI: 10.1107/S2059798321013425</identifier><identifier>PMID: 35234141</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Chymotrypsin ; chymotrypsinogen ; Clustering ; Crystal structure ; Crystals ; Datasets ; Diffraction ; Information processing ; MATERIALS SCIENCE ; Molecular structure ; Perturbation ; polymorphs ; protein dynamics ; Proteins ; Research Papers ; unit-cell changes</subject><ispartof>Acta crystallographica. Section D, Biological crystallography., 2022-03, Vol.78 (3), p.268-277</ispartof><rights>2022 Thu Nguyen et al. published by IUCr Journals.</rights><rights>open access.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Thu Nguyen et al. 2022 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5709-c963e06ef193cfd3e23c56376436a9b93b6592a948a0fe2aeb6b0e476b21500a3</citedby><cites>FETCH-LOGICAL-c5709-c963e06ef193cfd3e23c56376436a9b93b6592a948a0fe2aeb6b0e476b21500a3</cites><orcidid>0000-0002-4451-1641 ; 0000-0003-1205-5204 ; 0000-0003-3411-0964 ; 0000-0002-0517-8532 ; 0000-0003-1823-5396 ; 0000000244511641 ; 0000000205178532 ; 0000000312055204 ; 0000000334110964 ; 0000000318235396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS2059798321013425$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS2059798321013425$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35234141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1846849$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Thu</creatorcontrib><creatorcontrib>Phan, Kim L.</creatorcontrib><creatorcontrib>Kozakov, Dima</creatorcontrib><creatorcontrib>Gabelli, Sandra B.</creatorcontrib><creatorcontrib>Kreitler, Dale F.</creatorcontrib><creatorcontrib>Andrews, Lawrence C.</creatorcontrib><creatorcontrib>Jakoncic, Jean</creatorcontrib><creatorcontrib>Sweet, Robert M.</creatorcontrib><creatorcontrib>Soares, Alexei S.</creatorcontrib><creatorcontrib>Bernstein, Herbert J.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>A simple technique to classify diffraction data from dynamic proteins according to individual polymorphs</title><title>Acta crystallographica. Section D, Biological crystallography.</title><addtitle>Acta Crystallogr D Struct Biol</addtitle><description>One often observes small but measurable differences in the diffraction data measured from different crystals of a single protein. These differences might reflect structural differences in the protein and may reveal the natural dynamism of the molecule in solution. Partitioning these mixed‐state data into single‐state clusters is a critical step that could extract information about the dynamic behavior of proteins from hundreds or thousands of single‐crystal data sets. Mixed‐state data can be obtained deliberately (through intentional perturbation) or inadvertently (while attempting to measure highly redundant single‐crystal data). To the extent that different states adopt different molecular structures, one expects to observe differences in the crystals; each of the polystates will create a polymorph of the crystals. After mixed‐state diffraction data have been measured, deliberately or inadvertently, the challenge is to sort the data into clusters that may represent relevant biological polystates. Here, this problem is addressed using a simple multi‐factor clustering approach that classifies each data set using independent observables, thereby assigning each data set to the correct location in conformational space. This procedure is illustrated using two independent observables, unit‐cell parameters and intensities, to cluster mixed‐state data from chymotrypsinogen (ChTg) crystals. It is observed that the data populate an arc of the reaction trajectory as ChTg is converted into chymotrypsin. The dynamics of proteins can be explored from polymorphs observed by the clustering of multiple data wedges.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Chymotrypsin</subject><subject>chymotrypsinogen</subject><subject>Clustering</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Datasets</subject><subject>Diffraction</subject><subject>Information processing</subject><subject>MATERIALS SCIENCE</subject><subject>Molecular structure</subject><subject>Perturbation</subject><subject>polymorphs</subject><subject>protein dynamics</subject><subject>Proteins</subject><subject>Research Papers</subject><subject>unit-cell changes</subject><issn>2059-7983</issn><issn>0907-4449</issn><issn>2059-7983</issn><issn>1399-0047</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkc1u1TAQhSNURKvSB2CDLLphc2H8m3hT6aotUKkSC2DBynIcu9dVYgc7Kcrb19EtVYFFVx6Nvzkzc6aq3mD4gDHUH78R4LKWDSUYMGWEv6iO1tRmzR08iQ-rk5xvAQALWhfyVXVIOaEMM3xU7bYo-2HsLZqs2QX_ay5RRKbXOXu3oM47l7SZfAyo05NGLsUBdUvQgzdoTHGyPmSkjYmp8-FmLfah83e-m3WPxtgvQ0zjLr-uXjrdZ3vy8B5XPz5dfj__srn--vnqfHu9MbwGuTFSUAvCOiypcR21hBpe5haMCi1bSVvBJdGSNRqcJdq2ogXLatESzAE0Pa7O9rrj3A62MzZMSfdqTH7QaVFRe_X3T_A7dRPvVCMBGgJF4N1eIObJq2z8aoyJIVgzKdww0TBZoPcPXVIsluVJDT4b2_c62DhnRUSxmHFGcEFP_0Fv45xC8WClRE0YEFYovKdMijkn6x4nxqDWe6v_7l1q3j5d9bHiz3ULIPfAb9_b5XlFtf15QS6uOJQN7wGVVrZ5</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Nguyen, Thu</creator><creator>Phan, Kim L.</creator><creator>Kozakov, Dima</creator><creator>Gabelli, Sandra B.</creator><creator>Kreitler, Dale F.</creator><creator>Andrews, Lawrence C.</creator><creator>Jakoncic, Jean</creator><creator>Sweet, Robert M.</creator><creator>Soares, Alexei S.</creator><creator>Bernstein, Herbert J.</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><general>International Union of Crystallography (IUCr)</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7SP</scope><scope>7SR</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4451-1641</orcidid><orcidid>https://orcid.org/0000-0003-1205-5204</orcidid><orcidid>https://orcid.org/0000-0003-3411-0964</orcidid><orcidid>https://orcid.org/0000-0002-0517-8532</orcidid><orcidid>https://orcid.org/0000-0003-1823-5396</orcidid><orcidid>https://orcid.org/0000000244511641</orcidid><orcidid>https://orcid.org/0000000205178532</orcidid><orcidid>https://orcid.org/0000000312055204</orcidid><orcidid>https://orcid.org/0000000334110964</orcidid><orcidid>https://orcid.org/0000000318235396</orcidid></search><sort><creationdate>202203</creationdate><title>A simple technique to classify diffraction data from dynamic proteins according to individual polymorphs</title><author>Nguyen, Thu ; Phan, Kim L. ; Kozakov, Dima ; Gabelli, Sandra B. ; Kreitler, Dale F. ; Andrews, Lawrence C. ; Jakoncic, Jean ; Sweet, Robert M. ; Soares, Alexei S. ; Bernstein, Herbert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5709-c963e06ef193cfd3e23c56376436a9b93b6592a948a0fe2aeb6b0e476b21500a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Chymotrypsin</topic><topic>chymotrypsinogen</topic><topic>Clustering</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Datasets</topic><topic>Diffraction</topic><topic>Information processing</topic><topic>MATERIALS SCIENCE</topic><topic>Molecular structure</topic><topic>Perturbation</topic><topic>polymorphs</topic><topic>protein dynamics</topic><topic>Proteins</topic><topic>Research Papers</topic><topic>unit-cell changes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Thu</creatorcontrib><creatorcontrib>Phan, Kim L.</creatorcontrib><creatorcontrib>Kozakov, Dima</creatorcontrib><creatorcontrib>Gabelli, Sandra B.</creatorcontrib><creatorcontrib>Kreitler, Dale F.</creatorcontrib><creatorcontrib>Andrews, Lawrence C.</creatorcontrib><creatorcontrib>Jakoncic, Jean</creatorcontrib><creatorcontrib>Sweet, Robert M.</creatorcontrib><creatorcontrib>Soares, Alexei S.</creatorcontrib><creatorcontrib>Bernstein, Herbert J.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Thu</au><au>Phan, Kim L.</au><au>Kozakov, Dima</au><au>Gabelli, Sandra B.</au><au>Kreitler, Dale F.</au><au>Andrews, Lawrence C.</au><au>Jakoncic, Jean</au><au>Sweet, Robert M.</au><au>Soares, Alexei S.</au><au>Bernstein, Herbert J.</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple technique to classify diffraction data from dynamic proteins according to individual polymorphs</atitle><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle><addtitle>Acta Crystallogr D Struct Biol</addtitle><date>2022-03</date><risdate>2022</risdate><volume>78</volume><issue>3</issue><spage>268</spage><epage>277</epage><pages>268-277</pages><issn>2059-7983</issn><issn>0907-4449</issn><eissn>2059-7983</eissn><eissn>1399-0047</eissn><abstract>One often observes small but measurable differences in the diffraction data measured from different crystals of a single protein. These differences might reflect structural differences in the protein and may reveal the natural dynamism of the molecule in solution. Partitioning these mixed‐state data into single‐state clusters is a critical step that could extract information about the dynamic behavior of proteins from hundreds or thousands of single‐crystal data sets. Mixed‐state data can be obtained deliberately (through intentional perturbation) or inadvertently (while attempting to measure highly redundant single‐crystal data). To the extent that different states adopt different molecular structures, one expects to observe differences in the crystals; each of the polystates will create a polymorph of the crystals. After mixed‐state diffraction data have been measured, deliberately or inadvertently, the challenge is to sort the data into clusters that may represent relevant biological polystates. Here, this problem is addressed using a simple multi‐factor clustering approach that classifies each data set using independent observables, thereby assigning each data set to the correct location in conformational space. This procedure is illustrated using two independent observables, unit‐cell parameters and intensities, to cluster mixed‐state data from chymotrypsinogen (ChTg) crystals. It is observed that the data populate an arc of the reaction trajectory as ChTg is converted into chymotrypsin. The dynamics of proteins can be explored from polymorphs observed by the clustering of multiple data wedges.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>35234141</pmid><doi>10.1107/S2059798321013425</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4451-1641</orcidid><orcidid>https://orcid.org/0000-0003-1205-5204</orcidid><orcidid>https://orcid.org/0000-0003-3411-0964</orcidid><orcidid>https://orcid.org/0000-0002-0517-8532</orcidid><orcidid>https://orcid.org/0000-0003-1823-5396</orcidid><orcidid>https://orcid.org/0000000244511641</orcidid><orcidid>https://orcid.org/0000000205178532</orcidid><orcidid>https://orcid.org/0000000312055204</orcidid><orcidid>https://orcid.org/0000000334110964</orcidid><orcidid>https://orcid.org/0000000318235396</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2059-7983
ispartof Acta crystallographica. Section D, Biological crystallography., 2022-03, Vol.78 (3), p.268-277
issn 2059-7983
0907-4449
2059-7983
1399-0047
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8900820
source Wiley Online Library All Journals; Alma/SFX Local Collection
subjects BASIC BIOLOGICAL SCIENCES
Chymotrypsin
chymotrypsinogen
Clustering
Crystal structure
Crystals
Datasets
Diffraction
Information processing
MATERIALS SCIENCE
Molecular structure
Perturbation
polymorphs
protein dynamics
Proteins
Research Papers
unit-cell changes
title A simple technique to classify diffraction data from dynamic proteins according to individual polymorphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A04%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20technique%20to%20classify%20diffraction%20data%20from%20dynamic%20proteins%20according%20to%20individual%20polymorphs&rft.jtitle=Acta%20crystallographica.%20Section%20D,%20Biological%20crystallography.&rft.au=Nguyen,%20Thu&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2022-03&rft.volume=78&rft.issue=3&rft.spage=268&rft.epage=277&rft.pages=268-277&rft.issn=2059-7983&rft.eissn=2059-7983&rft_id=info:doi/10.1107/S2059798321013425&rft_dat=%3Cproquest_pubme%3E2636724024%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2636724024&rft_id=info:pmid/35234141&rfr_iscdi=true