Targeting stem-loop 1 of the SARS-CoV-2 5′ UTR to suppress viral translation and Nsp1 evasion
SARS-CoV-2 is a highly pathogenic virus that evades antiviral immunity by interfering with host protein synthesis, mRNA stability, and protein trafficking. The SARS-CoV-2 nonstructural protein 1 (Nsp1) uses its C-terminal domain to block the messenger RNA (mRNA) entry channel of the 40S ribosome to...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2022-03, Vol.119 (9), p.1-10 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 9 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | Vora, Setu M. Fontana, Pietro Mao, Tianyang Leger, Valerie Zhang, Ying Fu, Tian-Min Lieberman, Judy Gehrke, Lee Shi, Ming Wang, Longfei Iwasaki, Akiko Wu, Hao |
description | SARS-CoV-2 is a highly pathogenic virus that evades antiviral immunity by interfering with host protein synthesis, mRNA stability, and protein trafficking. The SARS-CoV-2 nonstructural protein 1 (Nsp1) uses its C-terminal domain to block the messenger RNA (mRNA) entry channel of the 40S ribosome to inhibit host protein synthesis. However, how SARS-CoV-2 circumvents Nsp1-mediated suppression for viral protein synthesis and if the mechanism can be targeted therapeutically remain unclear. Here, we show that N- and C-terminal domains of Nsp1 coordinate to drive a tuned ratio of viral to host translation, likely to maintain a certain level of host fitness while maximizing replication. We reveal that the stem-loop 1 (SL1) region of the SARS-CoV-2 5′ untranslated region (5′ UTR) is necessary and sufficient to evade Nsp1-mediated translational suppression. Targeting SL1 with locked nucleic acid antisense oligonucleotides inhibits viral translation and makes SARS-CoV-2 5′ UTR vulnerable to Nsp1 suppression, hindering viral replication in vitro at a nanomolar concentration, as well as providing protection against SARS-CoV-2–induced lethality in transgenic mice expressing human ACE2. Thus, SL1 allows Nsp1 to switch infected cells from host to SARS-CoV-2 translation, presenting a therapeutic target against COVID-19 that is conserved among immune-evasive variants. This unique strategy of unleashing a virus’ own virulence mechanism against itself could force a critical trade-off between drug resistance and pathogenicity. |
doi_str_mv | 10.1073/pnas.2117198119 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8892331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27150810</jstor_id><sourcerecordid>27150810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-2a370e2ca2058db9bd846ae312c02c7e2b956f4d9d34f789250dd1e984ad52373</originalsourceid><addsrcrecordid>eNpVkU9vEzEQxS0EomnhzAlkifO2M_6zti9IVUQLUgVSm3K1nLU33WizXmwnEjc-Uz9SP0m3SglwGmneb9486RHyDuEUQfGzcXD5lCEqNBrRvCAzBINVLQy8JDMApiotmDgixzmvAcBIDa_JEZcojJRyRuzCpVUo3bCiuYRN1cc4UqSxpeUu0Jvz65tqHn9UjMqH3_f0dnFNS6R5O44p5Ex3XXI9LckNuXeliwN1g6ff8og07FyeFm_Iq9b1Obx9nifk9uLzYv6luvp--XV-flU1QvBSMccVBNY4BlL7pVl6LWoXOLIGWKMCWxpZt8Ibz0WrtGESvMdgtHBeMq74Cfm09x23y03wTRimVL0dU7dx6ZeNrrP_K0N3Z1dxZ_VkxjlOBh-fDVL8uQ252HXcpmHKbFnNVV1rDWKizvZUk2LOKbSHDwj2qRH71Ij928h08eHfYAf-TwUT8H4PrHOJ6aAzhRI0An8EXXGRRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637668804</pqid></control><display><type>article</type><title>Targeting stem-loop 1 of the SARS-CoV-2 5′ UTR to suppress viral translation and Nsp1 evasion</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Vora, Setu M. ; Fontana, Pietro ; Mao, Tianyang ; Leger, Valerie ; Zhang, Ying ; Fu, Tian-Min ; Lieberman, Judy ; Gehrke, Lee ; Shi, Ming ; Wang, Longfei ; Iwasaki, Akiko ; Wu, Hao</creator><creatorcontrib>Vora, Setu M. ; Fontana, Pietro ; Mao, Tianyang ; Leger, Valerie ; Zhang, Ying ; Fu, Tian-Min ; Lieberman, Judy ; Gehrke, Lee ; Shi, Ming ; Wang, Longfei ; Iwasaki, Akiko ; Wu, Hao</creatorcontrib><description>SARS-CoV-2 is a highly pathogenic virus that evades antiviral immunity by interfering with host protein synthesis, mRNA stability, and protein trafficking. The SARS-CoV-2 nonstructural protein 1 (Nsp1) uses its C-terminal domain to block the messenger RNA (mRNA) entry channel of the 40S ribosome to inhibit host protein synthesis. However, how SARS-CoV-2 circumvents Nsp1-mediated suppression for viral protein synthesis and if the mechanism can be targeted therapeutically remain unclear. Here, we show that N- and C-terminal domains of Nsp1 coordinate to drive a tuned ratio of viral to host translation, likely to maintain a certain level of host fitness while maximizing replication. We reveal that the stem-loop 1 (SL1) region of the SARS-CoV-2 5′ untranslated region (5′ UTR) is necessary and sufficient to evade Nsp1-mediated translational suppression. Targeting SL1 with locked nucleic acid antisense oligonucleotides inhibits viral translation and makes SARS-CoV-2 5′ UTR vulnerable to Nsp1 suppression, hindering viral replication in vitro at a nanomolar concentration, as well as providing protection against SARS-CoV-2–induced lethality in transgenic mice expressing human ACE2. Thus, SL1 allows Nsp1 to switch infected cells from host to SARS-CoV-2 translation, presenting a therapeutic target against COVID-19 that is conserved among immune-evasive variants. This unique strategy of unleashing a virus’ own virulence mechanism against itself could force a critical trade-off between drug resistance and pathogenicity.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2117198119</identifier><identifier>PMID: 35149555</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>5' Untranslated Regions ; 5' Untranslated Regions - genetics ; ACE2 ; Angiotensin-converting enzyme 2 ; Animals ; Antisense oligonucleotides ; Antisense therapy ; Base Sequence ; Biological Sciences ; Chlorocebus aethiops ; COVID-19 ; Drug resistance ; HEK293 Cells ; Host-Pathogen Interactions - drug effects ; Host-Pathogen Interactions - genetics ; Humans ; Immune Evasion - drug effects ; Immune Evasion - genetics ; Lethality ; Mice, Transgenic ; Models, Biological ; mRNA stability ; Nucleic acids ; Oligonucleotides ; Oligonucleotides, Antisense - pharmacology ; Pathogenicity ; Pathogens ; Protein biosynthesis ; Protein Biosynthesis - drug effects ; Protein synthesis ; Protein transport ; Proteins ; Replication ; SARS-CoV-2 - drug effects ; SARS-CoV-2 - genetics ; Severe acute respiratory syndrome coronavirus 2 ; Therapeutic targets ; Transcription ; Transgenic mice ; Translation ; Vero Cells ; Viral diseases ; Viral Nonstructural Proteins - genetics ; Virulence ; Virus Replication - drug effects ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-03, Vol.119 (9), p.1-10</ispartof><rights>Copyright © 2022 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Mar 1, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-2a370e2ca2058db9bd846ae312c02c7e2b956f4d9d34f789250dd1e984ad52373</citedby><cites>FETCH-LOGICAL-c443t-2a370e2ca2058db9bd846ae312c02c7e2b956f4d9d34f789250dd1e984ad52373</cites><orcidid>0000-0002-7824-9856 ; 0000-0002-1116-2182 ; 0000-0002-9387-8212 ; 0000-0002-7281-8579 ; 0000-0003-0527-0061 ; 0000-0002-6281-1752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892331/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892331/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35149555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vora, Setu M.</creatorcontrib><creatorcontrib>Fontana, Pietro</creatorcontrib><creatorcontrib>Mao, Tianyang</creatorcontrib><creatorcontrib>Leger, Valerie</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Fu, Tian-Min</creatorcontrib><creatorcontrib>Lieberman, Judy</creatorcontrib><creatorcontrib>Gehrke, Lee</creatorcontrib><creatorcontrib>Shi, Ming</creatorcontrib><creatorcontrib>Wang, Longfei</creatorcontrib><creatorcontrib>Iwasaki, Akiko</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><title>Targeting stem-loop 1 of the SARS-CoV-2 5′ UTR to suppress viral translation and Nsp1 evasion</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>SARS-CoV-2 is a highly pathogenic virus that evades antiviral immunity by interfering with host protein synthesis, mRNA stability, and protein trafficking. The SARS-CoV-2 nonstructural protein 1 (Nsp1) uses its C-terminal domain to block the messenger RNA (mRNA) entry channel of the 40S ribosome to inhibit host protein synthesis. However, how SARS-CoV-2 circumvents Nsp1-mediated suppression for viral protein synthesis and if the mechanism can be targeted therapeutically remain unclear. Here, we show that N- and C-terminal domains of Nsp1 coordinate to drive a tuned ratio of viral to host translation, likely to maintain a certain level of host fitness while maximizing replication. We reveal that the stem-loop 1 (SL1) region of the SARS-CoV-2 5′ untranslated region (5′ UTR) is necessary and sufficient to evade Nsp1-mediated translational suppression. Targeting SL1 with locked nucleic acid antisense oligonucleotides inhibits viral translation and makes SARS-CoV-2 5′ UTR vulnerable to Nsp1 suppression, hindering viral replication in vitro at a nanomolar concentration, as well as providing protection against SARS-CoV-2–induced lethality in transgenic mice expressing human ACE2. Thus, SL1 allows Nsp1 to switch infected cells from host to SARS-CoV-2 translation, presenting a therapeutic target against COVID-19 that is conserved among immune-evasive variants. This unique strategy of unleashing a virus’ own virulence mechanism against itself could force a critical trade-off between drug resistance and pathogenicity.</description><subject>5' Untranslated Regions</subject><subject>5' Untranslated Regions - genetics</subject><subject>ACE2</subject><subject>Angiotensin-converting enzyme 2</subject><subject>Animals</subject><subject>Antisense oligonucleotides</subject><subject>Antisense therapy</subject><subject>Base Sequence</subject><subject>Biological Sciences</subject><subject>Chlorocebus aethiops</subject><subject>COVID-19</subject><subject>Drug resistance</subject><subject>HEK293 Cells</subject><subject>Host-Pathogen Interactions - drug effects</subject><subject>Host-Pathogen Interactions - genetics</subject><subject>Humans</subject><subject>Immune Evasion - drug effects</subject><subject>Immune Evasion - genetics</subject><subject>Lethality</subject><subject>Mice, Transgenic</subject><subject>Models, Biological</subject><subject>mRNA stability</subject><subject>Nucleic acids</subject><subject>Oligonucleotides</subject><subject>Oligonucleotides, Antisense - pharmacology</subject><subject>Pathogenicity</subject><subject>Pathogens</subject><subject>Protein biosynthesis</subject><subject>Protein Biosynthesis - drug effects</subject><subject>Protein synthesis</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Replication</subject><subject>SARS-CoV-2 - drug effects</subject><subject>SARS-CoV-2 - genetics</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Therapeutic targets</subject><subject>Transcription</subject><subject>Transgenic mice</subject><subject>Translation</subject><subject>Vero Cells</subject><subject>Viral diseases</subject><subject>Viral Nonstructural Proteins - genetics</subject><subject>Virulence</subject><subject>Virus Replication - drug effects</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU9vEzEQxS0EomnhzAlkifO2M_6zti9IVUQLUgVSm3K1nLU33WizXmwnEjc-Uz9SP0m3SglwGmneb9486RHyDuEUQfGzcXD5lCEqNBrRvCAzBINVLQy8JDMApiotmDgixzmvAcBIDa_JEZcojJRyRuzCpVUo3bCiuYRN1cc4UqSxpeUu0Jvz65tqHn9UjMqH3_f0dnFNS6R5O44p5Ex3XXI9LckNuXeliwN1g6ff8og07FyeFm_Iq9b1Obx9nifk9uLzYv6luvp--XV-flU1QvBSMccVBNY4BlL7pVl6LWoXOLIGWKMCWxpZt8Ibz0WrtGESvMdgtHBeMq74Cfm09x23y03wTRimVL0dU7dx6ZeNrrP_K0N3Z1dxZ_VkxjlOBh-fDVL8uQ252HXcpmHKbFnNVV1rDWKizvZUk2LOKbSHDwj2qRH71Ij928h08eHfYAf-TwUT8H4PrHOJ6aAzhRI0An8EXXGRRQ</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Vora, Setu M.</creator><creator>Fontana, Pietro</creator><creator>Mao, Tianyang</creator><creator>Leger, Valerie</creator><creator>Zhang, Ying</creator><creator>Fu, Tian-Min</creator><creator>Lieberman, Judy</creator><creator>Gehrke, Lee</creator><creator>Shi, Ming</creator><creator>Wang, Longfei</creator><creator>Iwasaki, Akiko</creator><creator>Wu, Hao</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7824-9856</orcidid><orcidid>https://orcid.org/0000-0002-1116-2182</orcidid><orcidid>https://orcid.org/0000-0002-9387-8212</orcidid><orcidid>https://orcid.org/0000-0002-7281-8579</orcidid><orcidid>https://orcid.org/0000-0003-0527-0061</orcidid><orcidid>https://orcid.org/0000-0002-6281-1752</orcidid></search><sort><creationdate>20220301</creationdate><title>Targeting stem-loop 1 of the SARS-CoV-2 5′ UTR to suppress viral translation and Nsp1 evasion</title><author>Vora, Setu M. ; Fontana, Pietro ; Mao, Tianyang ; Leger, Valerie ; Zhang, Ying ; Fu, Tian-Min ; Lieberman, Judy ; Gehrke, Lee ; Shi, Ming ; Wang, Longfei ; Iwasaki, Akiko ; Wu, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-2a370e2ca2058db9bd846ae312c02c7e2b956f4d9d34f789250dd1e984ad52373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>5' Untranslated Regions</topic><topic>5' Untranslated Regions - genetics</topic><topic>ACE2</topic><topic>Angiotensin-converting enzyme 2</topic><topic>Animals</topic><topic>Antisense oligonucleotides</topic><topic>Antisense therapy</topic><topic>Base Sequence</topic><topic>Biological Sciences</topic><topic>Chlorocebus aethiops</topic><topic>COVID-19</topic><topic>Drug resistance</topic><topic>HEK293 Cells</topic><topic>Host-Pathogen Interactions - drug effects</topic><topic>Host-Pathogen Interactions - genetics</topic><topic>Humans</topic><topic>Immune Evasion - drug effects</topic><topic>Immune Evasion - genetics</topic><topic>Lethality</topic><topic>Mice, Transgenic</topic><topic>Models, Biological</topic><topic>mRNA stability</topic><topic>Nucleic acids</topic><topic>Oligonucleotides</topic><topic>Oligonucleotides, Antisense - pharmacology</topic><topic>Pathogenicity</topic><topic>Pathogens</topic><topic>Protein biosynthesis</topic><topic>Protein Biosynthesis - drug effects</topic><topic>Protein synthesis</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Replication</topic><topic>SARS-CoV-2 - drug effects</topic><topic>SARS-CoV-2 - genetics</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Therapeutic targets</topic><topic>Transcription</topic><topic>Transgenic mice</topic><topic>Translation</topic><topic>Vero Cells</topic><topic>Viral diseases</topic><topic>Viral Nonstructural Proteins - genetics</topic><topic>Virulence</topic><topic>Virus Replication - drug effects</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vora, Setu M.</creatorcontrib><creatorcontrib>Fontana, Pietro</creatorcontrib><creatorcontrib>Mao, Tianyang</creatorcontrib><creatorcontrib>Leger, Valerie</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Fu, Tian-Min</creatorcontrib><creatorcontrib>Lieberman, Judy</creatorcontrib><creatorcontrib>Gehrke, Lee</creatorcontrib><creatorcontrib>Shi, Ming</creatorcontrib><creatorcontrib>Wang, Longfei</creatorcontrib><creatorcontrib>Iwasaki, Akiko</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vora, Setu M.</au><au>Fontana, Pietro</au><au>Mao, Tianyang</au><au>Leger, Valerie</au><au>Zhang, Ying</au><au>Fu, Tian-Min</au><au>Lieberman, Judy</au><au>Gehrke, Lee</au><au>Shi, Ming</au><au>Wang, Longfei</au><au>Iwasaki, Akiko</au><au>Wu, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting stem-loop 1 of the SARS-CoV-2 5′ UTR to suppress viral translation and Nsp1 evasion</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>119</volume><issue>9</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>SARS-CoV-2 is a highly pathogenic virus that evades antiviral immunity by interfering with host protein synthesis, mRNA stability, and protein trafficking. The SARS-CoV-2 nonstructural protein 1 (Nsp1) uses its C-terminal domain to block the messenger RNA (mRNA) entry channel of the 40S ribosome to inhibit host protein synthesis. However, how SARS-CoV-2 circumvents Nsp1-mediated suppression for viral protein synthesis and if the mechanism can be targeted therapeutically remain unclear. Here, we show that N- and C-terminal domains of Nsp1 coordinate to drive a tuned ratio of viral to host translation, likely to maintain a certain level of host fitness while maximizing replication. We reveal that the stem-loop 1 (SL1) region of the SARS-CoV-2 5′ untranslated region (5′ UTR) is necessary and sufficient to evade Nsp1-mediated translational suppression. Targeting SL1 with locked nucleic acid antisense oligonucleotides inhibits viral translation and makes SARS-CoV-2 5′ UTR vulnerable to Nsp1 suppression, hindering viral replication in vitro at a nanomolar concentration, as well as providing protection against SARS-CoV-2–induced lethality in transgenic mice expressing human ACE2. Thus, SL1 allows Nsp1 to switch infected cells from host to SARS-CoV-2 translation, presenting a therapeutic target against COVID-19 that is conserved among immune-evasive variants. This unique strategy of unleashing a virus’ own virulence mechanism against itself could force a critical trade-off between drug resistance and pathogenicity.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>35149555</pmid><doi>10.1073/pnas.2117198119</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7824-9856</orcidid><orcidid>https://orcid.org/0000-0002-1116-2182</orcidid><orcidid>https://orcid.org/0000-0002-9387-8212</orcidid><orcidid>https://orcid.org/0000-0002-7281-8579</orcidid><orcidid>https://orcid.org/0000-0003-0527-0061</orcidid><orcidid>https://orcid.org/0000-0002-6281-1752</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-03, Vol.119 (9), p.1-10 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8892331 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 5' Untranslated Regions 5' Untranslated Regions - genetics ACE2 Angiotensin-converting enzyme 2 Animals Antisense oligonucleotides Antisense therapy Base Sequence Biological Sciences Chlorocebus aethiops COVID-19 Drug resistance HEK293 Cells Host-Pathogen Interactions - drug effects Host-Pathogen Interactions - genetics Humans Immune Evasion - drug effects Immune Evasion - genetics Lethality Mice, Transgenic Models, Biological mRNA stability Nucleic acids Oligonucleotides Oligonucleotides, Antisense - pharmacology Pathogenicity Pathogens Protein biosynthesis Protein Biosynthesis - drug effects Protein synthesis Protein transport Proteins Replication SARS-CoV-2 - drug effects SARS-CoV-2 - genetics Severe acute respiratory syndrome coronavirus 2 Therapeutic targets Transcription Transgenic mice Translation Vero Cells Viral diseases Viral Nonstructural Proteins - genetics Virulence Virus Replication - drug effects Viruses |
title | Targeting stem-loop 1 of the SARS-CoV-2 5′ UTR to suppress viral translation and Nsp1 evasion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A51%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20stem-loop%201%20of%20the%20SARS-CoV-2%205%E2%80%B2%20UTR%20to%20suppress%20viral%20translation%20and%20Nsp1%20evasion&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Vora,%20Setu%20M.&rft.date=2022-03-01&rft.volume=119&rft.issue=9&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2117198119&rft_dat=%3Cjstor_pubme%3E27150810%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637668804&rft_id=info:pmid/35149555&rft_jstor_id=27150810&rfr_iscdi=true |