Innate, translation‐dependent silencing of an invasive transposon in Arabidopsis
Co‐evolution between hosts’ and parasites’ genomes shapes diverse pathways of acquired immunity based on silencing small (s)RNAs. In plants, sRNAs cause heterochromatinization, sequence degeneration, and, ultimately, loss of autonomy of most transposable elements (TEs). Recognition of newly invasive...
Gespeichert in:
Veröffentlicht in: | EMBO reports 2022-02, Vol.23 (3), p.e53400-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e53400 |
container_title | EMBO reports |
container_volume | 23 |
creator | Oberlin, Stefan Rajeswaran, Rajendran Trasser, Marieke Barragán‐Borrero, Verónica Schon, Michael A Plotnikova, Alexandra Loncsek, Lukas Nodine, Michael D Marí‐Ordóñez, Arturo Voinnet, Olivier |
description | Co‐evolution between hosts’ and parasites’ genomes shapes diverse pathways of acquired immunity based on silencing small (s)RNAs. In plants, sRNAs cause heterochromatinization, sequence degeneration, and, ultimately, loss of autonomy of most transposable elements (TEs). Recognition of newly invasive plant TEs, by contrast, involves an innate antiviral‐like silencing response. To investigate this response’s activation, we studied the single‐copy element
EVADÉ
(
EVD
), one of few representatives of the large
Ty1/Copia
family able to proliferate in
Arabidopsis
when epigenetically reactivated. In
Ty1/Copia
elements, a short subgenomic mRNA (
shGAG
) provides the necessary excess of structural GAG protein over the catalytic components encoded by the full‐length genomic
flGAG‐POL
. We show here that the predominant cytosolic distribution of
shGAG
strongly favors its translation over mostly nuclear
flGAG‐POL
. During this process, an unusually intense ribosomal stalling event coincides with mRNA breakage yielding unconventional 5’OH RNA fragments that evade RNA quality control. The starting point of sRNA production by RNA‐DEPENDENT‐RNA‐POLYMERASE‐6 (RDR6), exclusively on
shGAG
, occurs precisely at this breakage point. This
hitherto
‐unrecognized “translation‐dependent silencing” (TdS) is independent of codon usage or GC content and is not observed on TE remnants populating the
Arabidopsis
genome, consistent with their poor association, if any, with polysomes. We propose that TdS forms a primal defense against
EVD de novo
invasions that underlies its associated sRNA pattern.
SYNOPSIS
Analyzing the initiation of RNA silencing of the
Arabidopsis
transposon EVADE (EVD) reveals a ribosome stalling event during EVD translation that correlates with the production of small RNAs involving RNA‐dependent RNA polymerase 6 (RDR6).
Only a cytoplasmic and translated mRNA isoform of EVD triggers RDR6‐dependent siRNA production.
An intense and discrete ribosome stalling event coincides with the onset of EVD siRNA production from this isoform.
Atypical 5’‐OH RNA cleavage fragments overlap with the ribosome stalling site and possibly serve as RDR6 substrates.
Graphical Abstract
Analyzing the initiation of RNA silencing of the
Arabidopsis
transposon EVADE (EVD) reveals a ribosome stalling event during EVD translation that correlates with the production of small RNAs involving RNA‐dependent RNA polymerase 6 (RDR6). |
doi_str_mv | 10.15252/embr.202153400 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8892269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612389330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5130-ae1a90cacd726cb9299f3df51d21c6c1d9d2c075e83c3915d59570c6ea773b393</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxYMo9o8--yYDvvjQbZPcTWbig1BL1UJFKAq-hUxyZ02ZTabJ7Erf_Ah-Rj-JWWddqyA-3XDzO4dzOYQ8YfSYCS74CS7bdMwpZwLmlN4j-2wu1QxY3dzfvjlnn_bIQc7XlFKh6uYh2YO5AjYHvk-uLkIwIx5VYzIh92b0MXz_-s3hgMFhGKvsewzWh0UVu8qEyoe1yX6Nk2CIOW521WkyrXdxyD4_Ig8602d8vJ2H5OPr8w9nb2eX799cnJ1ezqxgQGcGmVHUGutqLm2ruFIduE4wx5mVljnluKW1wAYsKCacUKKmVqKpa2hBwSF5OfkOq3aJzpa0yfR6SH5p0q2Oxus_f4L_rBdxrZtGcS43Bs-3BinerDCPeumzxb43AeMqay4Zh0YB0II--wu9jqsUynmFAsGkhFoW6mSibIo5J-x2YRjVP_vSm770rq-ieHr3hh3_q6ACvJiAL6WH2__56fN3r67uutNJnIsuLDD9Tv2vQD8ABPW0Tg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635166376</pqid></control><display><type>article</type><title>Innate, translation‐dependent silencing of an invasive transposon in Arabidopsis</title><source>MEDLINE</source><source>Springer Nature OA Free Journals</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Oberlin, Stefan ; Rajeswaran, Rajendran ; Trasser, Marieke ; Barragán‐Borrero, Verónica ; Schon, Michael A ; Plotnikova, Alexandra ; Loncsek, Lukas ; Nodine, Michael D ; Marí‐Ordóñez, Arturo ; Voinnet, Olivier</creator><creatorcontrib>Oberlin, Stefan ; Rajeswaran, Rajendran ; Trasser, Marieke ; Barragán‐Borrero, Verónica ; Schon, Michael A ; Plotnikova, Alexandra ; Loncsek, Lukas ; Nodine, Michael D ; Marí‐Ordóñez, Arturo ; Voinnet, Olivier</creatorcontrib><description>Co‐evolution between hosts’ and parasites’ genomes shapes diverse pathways of acquired immunity based on silencing small (s)RNAs. In plants, sRNAs cause heterochromatinization, sequence degeneration, and, ultimately, loss of autonomy of most transposable elements (TEs). Recognition of newly invasive plant TEs, by contrast, involves an innate antiviral‐like silencing response. To investigate this response’s activation, we studied the single‐copy element
EVADÉ
(
EVD
), one of few representatives of the large
Ty1/Copia
family able to proliferate in
Arabidopsis
when epigenetically reactivated. In
Ty1/Copia
elements, a short subgenomic mRNA (
shGAG
) provides the necessary excess of structural GAG protein over the catalytic components encoded by the full‐length genomic
flGAG‐POL
. We show here that the predominant cytosolic distribution of
shGAG
strongly favors its translation over mostly nuclear
flGAG‐POL
. During this process, an unusually intense ribosomal stalling event coincides with mRNA breakage yielding unconventional 5’OH RNA fragments that evade RNA quality control. The starting point of sRNA production by RNA‐DEPENDENT‐RNA‐POLYMERASE‐6 (RDR6), exclusively on
shGAG
, occurs precisely at this breakage point. This
hitherto
‐unrecognized “translation‐dependent silencing” (TdS) is independent of codon usage or GC content and is not observed on TE remnants populating the
Arabidopsis
genome, consistent with their poor association, if any, with polysomes. We propose that TdS forms a primal defense against
EVD de novo
invasions that underlies its associated sRNA pattern.
SYNOPSIS
Analyzing the initiation of RNA silencing of the
Arabidopsis
transposon EVADE (EVD) reveals a ribosome stalling event during EVD translation that correlates with the production of small RNAs involving RNA‐dependent RNA polymerase 6 (RDR6).
Only a cytoplasmic and translated mRNA isoform of EVD triggers RDR6‐dependent siRNA production.
An intense and discrete ribosome stalling event coincides with the onset of EVD siRNA production from this isoform.
Atypical 5’‐OH RNA cleavage fragments overlap with the ribosome stalling site and possibly serve as RDR6 substrates.
Graphical Abstract
Analyzing the initiation of RNA silencing of the
Arabidopsis
transposon EVADE (EVD) reveals a ribosome stalling event during EVD translation that correlates with the production of small RNAs involving RNA‐dependent RNA polymerase 6 (RDR6).</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.202153400</identifier><identifier>PMID: 34931432</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Autonomy ; Degeneration ; DNA Transposable Elements - genetics ; DNA-directed RNA polymerase ; EMBO09 ; EMBO30 ; EMBO36 ; Fragments ; Gag protein ; Gene Expression Regulation, Plant ; Genomes ; Invasive plants ; mRNA ; Parasites ; Pattern analysis ; Polyribosomes ; Quality control ; RDR6 ; ribosome stalling ; RNA polymerase ; RNA, Small Interfering - genetics ; RNA-mediated interference ; siRNA ; small RNAs ; Stalling ; Substrates ; Translation ; Transposons</subject><ispartof>EMBO reports, 2022-02, Vol.23 (3), p.e53400-n/a</ispartof><rights>The Author(s) 2021</rights><rights>2021 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2021 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5130-ae1a90cacd726cb9299f3df51d21c6c1d9d2c075e83c3915d59570c6ea773b393</citedby><cites>FETCH-LOGICAL-c5130-ae1a90cacd726cb9299f3df51d21c6c1d9d2c075e83c3915d59570c6ea773b393</cites><orcidid>0000-0002-4756-3906 ; 0000-0001-6982-9544 ; 0000-0002-0718-1858 ; 0000-0002-4842-1256 ; 0000-0001-8507-5770 ; 0000-0002-6204-8857 ; 0000-0002-7370-2041 ; 0000-0003-0772-6587 ; 0000-0002-4416-6382 ; 0000-0003-4577-9946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892269/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892269/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27923,27924,41119,42188,45573,45574,46408,46832,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34931432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oberlin, Stefan</creatorcontrib><creatorcontrib>Rajeswaran, Rajendran</creatorcontrib><creatorcontrib>Trasser, Marieke</creatorcontrib><creatorcontrib>Barragán‐Borrero, Verónica</creatorcontrib><creatorcontrib>Schon, Michael A</creatorcontrib><creatorcontrib>Plotnikova, Alexandra</creatorcontrib><creatorcontrib>Loncsek, Lukas</creatorcontrib><creatorcontrib>Nodine, Michael D</creatorcontrib><creatorcontrib>Marí‐Ordóñez, Arturo</creatorcontrib><creatorcontrib>Voinnet, Olivier</creatorcontrib><title>Innate, translation‐dependent silencing of an invasive transposon in Arabidopsis</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Co‐evolution between hosts’ and parasites’ genomes shapes diverse pathways of acquired immunity based on silencing small (s)RNAs. In plants, sRNAs cause heterochromatinization, sequence degeneration, and, ultimately, loss of autonomy of most transposable elements (TEs). Recognition of newly invasive plant TEs, by contrast, involves an innate antiviral‐like silencing response. To investigate this response’s activation, we studied the single‐copy element
EVADÉ
(
EVD
), one of few representatives of the large
Ty1/Copia
family able to proliferate in
Arabidopsis
when epigenetically reactivated. In
Ty1/Copia
elements, a short subgenomic mRNA (
shGAG
) provides the necessary excess of structural GAG protein over the catalytic components encoded by the full‐length genomic
flGAG‐POL
. We show here that the predominant cytosolic distribution of
shGAG
strongly favors its translation over mostly nuclear
flGAG‐POL
. During this process, an unusually intense ribosomal stalling event coincides with mRNA breakage yielding unconventional 5’OH RNA fragments that evade RNA quality control. The starting point of sRNA production by RNA‐DEPENDENT‐RNA‐POLYMERASE‐6 (RDR6), exclusively on
shGAG
, occurs precisely at this breakage point. This
hitherto
‐unrecognized “translation‐dependent silencing” (TdS) is independent of codon usage or GC content and is not observed on TE remnants populating the
Arabidopsis
genome, consistent with their poor association, if any, with polysomes. We propose that TdS forms a primal defense against
EVD de novo
invasions that underlies its associated sRNA pattern.
SYNOPSIS
Analyzing the initiation of RNA silencing of the
Arabidopsis
transposon EVADE (EVD) reveals a ribosome stalling event during EVD translation that correlates with the production of small RNAs involving RNA‐dependent RNA polymerase 6 (RDR6).
Only a cytoplasmic and translated mRNA isoform of EVD triggers RDR6‐dependent siRNA production.
An intense and discrete ribosome stalling event coincides with the onset of EVD siRNA production from this isoform.
Atypical 5’‐OH RNA cleavage fragments overlap with the ribosome stalling site and possibly serve as RDR6 substrates.
Graphical Abstract
Analyzing the initiation of RNA silencing of the
Arabidopsis
transposon EVADE (EVD) reveals a ribosome stalling event during EVD translation that correlates with the production of small RNAs involving RNA‐dependent RNA polymerase 6 (RDR6).</description><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Autonomy</subject><subject>Degeneration</subject><subject>DNA Transposable Elements - genetics</subject><subject>DNA-directed RNA polymerase</subject><subject>EMBO09</subject><subject>EMBO30</subject><subject>EMBO36</subject><subject>Fragments</subject><subject>Gag protein</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genomes</subject><subject>Invasive plants</subject><subject>mRNA</subject><subject>Parasites</subject><subject>Pattern analysis</subject><subject>Polyribosomes</subject><subject>Quality control</subject><subject>RDR6</subject><subject>ribosome stalling</subject><subject>RNA polymerase</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA-mediated interference</subject><subject>siRNA</subject><subject>small RNAs</subject><subject>Stalling</subject><subject>Substrates</subject><subject>Translation</subject><subject>Transposons</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkV9rFDEUxYMo9o8--yYDvvjQbZPcTWbig1BL1UJFKAq-hUxyZ02ZTabJ7Erf_Ah-Rj-JWWddqyA-3XDzO4dzOYQ8YfSYCS74CS7bdMwpZwLmlN4j-2wu1QxY3dzfvjlnn_bIQc7XlFKh6uYh2YO5AjYHvk-uLkIwIx5VYzIh92b0MXz_-s3hgMFhGKvsewzWh0UVu8qEyoe1yX6Nk2CIOW521WkyrXdxyD4_Ig8602d8vJ2H5OPr8w9nb2eX799cnJ1ezqxgQGcGmVHUGutqLm2ruFIduE4wx5mVljnluKW1wAYsKCacUKKmVqKpa2hBwSF5OfkOq3aJzpa0yfR6SH5p0q2Oxus_f4L_rBdxrZtGcS43Bs-3BinerDCPeumzxb43AeMqay4Zh0YB0II--wu9jqsUynmFAsGkhFoW6mSibIo5J-x2YRjVP_vSm770rq-ieHr3hh3_q6ACvJiAL6WH2__56fN3r67uutNJnIsuLDD9Tv2vQD8ABPW0Tg</recordid><startdate>20220203</startdate><enddate>20220203</enddate><creator>Oberlin, Stefan</creator><creator>Rajeswaran, Rajendran</creator><creator>Trasser, Marieke</creator><creator>Barragán‐Borrero, Verónica</creator><creator>Schon, Michael A</creator><creator>Plotnikova, Alexandra</creator><creator>Loncsek, Lukas</creator><creator>Nodine, Michael D</creator><creator>Marí‐Ordóñez, Arturo</creator><creator>Voinnet, Olivier</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4756-3906</orcidid><orcidid>https://orcid.org/0000-0001-6982-9544</orcidid><orcidid>https://orcid.org/0000-0002-0718-1858</orcidid><orcidid>https://orcid.org/0000-0002-4842-1256</orcidid><orcidid>https://orcid.org/0000-0001-8507-5770</orcidid><orcidid>https://orcid.org/0000-0002-6204-8857</orcidid><orcidid>https://orcid.org/0000-0002-7370-2041</orcidid><orcidid>https://orcid.org/0000-0003-0772-6587</orcidid><orcidid>https://orcid.org/0000-0002-4416-6382</orcidid><orcidid>https://orcid.org/0000-0003-4577-9946</orcidid></search><sort><creationdate>20220203</creationdate><title>Innate, translation‐dependent silencing of an invasive transposon in Arabidopsis</title><author>Oberlin, Stefan ; Rajeswaran, Rajendran ; Trasser, Marieke ; Barragán‐Borrero, Verónica ; Schon, Michael A ; Plotnikova, Alexandra ; Loncsek, Lukas ; Nodine, Michael D ; Marí‐Ordóñez, Arturo ; Voinnet, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5130-ae1a90cacd726cb9299f3df51d21c6c1d9d2c075e83c3915d59570c6ea773b393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Autonomy</topic><topic>Degeneration</topic><topic>DNA Transposable Elements - genetics</topic><topic>DNA-directed RNA polymerase</topic><topic>EMBO09</topic><topic>EMBO30</topic><topic>EMBO36</topic><topic>Fragments</topic><topic>Gag protein</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genomes</topic><topic>Invasive plants</topic><topic>mRNA</topic><topic>Parasites</topic><topic>Pattern analysis</topic><topic>Polyribosomes</topic><topic>Quality control</topic><topic>RDR6</topic><topic>ribosome stalling</topic><topic>RNA polymerase</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA-mediated interference</topic><topic>siRNA</topic><topic>small RNAs</topic><topic>Stalling</topic><topic>Substrates</topic><topic>Translation</topic><topic>Transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oberlin, Stefan</creatorcontrib><creatorcontrib>Rajeswaran, Rajendran</creatorcontrib><creatorcontrib>Trasser, Marieke</creatorcontrib><creatorcontrib>Barragán‐Borrero, Verónica</creatorcontrib><creatorcontrib>Schon, Michael A</creatorcontrib><creatorcontrib>Plotnikova, Alexandra</creatorcontrib><creatorcontrib>Loncsek, Lukas</creatorcontrib><creatorcontrib>Nodine, Michael D</creatorcontrib><creatorcontrib>Marí‐Ordóñez, Arturo</creatorcontrib><creatorcontrib>Voinnet, Olivier</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oberlin, Stefan</au><au>Rajeswaran, Rajendran</au><au>Trasser, Marieke</au><au>Barragán‐Borrero, Verónica</au><au>Schon, Michael A</au><au>Plotnikova, Alexandra</au><au>Loncsek, Lukas</au><au>Nodine, Michael D</au><au>Marí‐Ordóñez, Arturo</au><au>Voinnet, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Innate, translation‐dependent silencing of an invasive transposon in Arabidopsis</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2022-02-03</date><risdate>2022</risdate><volume>23</volume><issue>3</issue><spage>e53400</spage><epage>n/a</epage><pages>e53400-n/a</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>Co‐evolution between hosts’ and parasites’ genomes shapes diverse pathways of acquired immunity based on silencing small (s)RNAs. In plants, sRNAs cause heterochromatinization, sequence degeneration, and, ultimately, loss of autonomy of most transposable elements (TEs). Recognition of newly invasive plant TEs, by contrast, involves an innate antiviral‐like silencing response. To investigate this response’s activation, we studied the single‐copy element
EVADÉ
(
EVD
), one of few representatives of the large
Ty1/Copia
family able to proliferate in
Arabidopsis
when epigenetically reactivated. In
Ty1/Copia
elements, a short subgenomic mRNA (
shGAG
) provides the necessary excess of structural GAG protein over the catalytic components encoded by the full‐length genomic
flGAG‐POL
. We show here that the predominant cytosolic distribution of
shGAG
strongly favors its translation over mostly nuclear
flGAG‐POL
. During this process, an unusually intense ribosomal stalling event coincides with mRNA breakage yielding unconventional 5’OH RNA fragments that evade RNA quality control. The starting point of sRNA production by RNA‐DEPENDENT‐RNA‐POLYMERASE‐6 (RDR6), exclusively on
shGAG
, occurs precisely at this breakage point. This
hitherto
‐unrecognized “translation‐dependent silencing” (TdS) is independent of codon usage or GC content and is not observed on TE remnants populating the
Arabidopsis
genome, consistent with their poor association, if any, with polysomes. We propose that TdS forms a primal defense against
EVD de novo
invasions that underlies its associated sRNA pattern.
SYNOPSIS
Analyzing the initiation of RNA silencing of the
Arabidopsis
transposon EVADE (EVD) reveals a ribosome stalling event during EVD translation that correlates with the production of small RNAs involving RNA‐dependent RNA polymerase 6 (RDR6).
Only a cytoplasmic and translated mRNA isoform of EVD triggers RDR6‐dependent siRNA production.
An intense and discrete ribosome stalling event coincides with the onset of EVD siRNA production from this isoform.
Atypical 5’‐OH RNA cleavage fragments overlap with the ribosome stalling site and possibly serve as RDR6 substrates.
Graphical Abstract
Analyzing the initiation of RNA silencing of the
Arabidopsis
transposon EVADE (EVD) reveals a ribosome stalling event during EVD translation that correlates with the production of small RNAs involving RNA‐dependent RNA polymerase 6 (RDR6).</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34931432</pmid><doi>10.15252/embr.202153400</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4756-3906</orcidid><orcidid>https://orcid.org/0000-0001-6982-9544</orcidid><orcidid>https://orcid.org/0000-0002-0718-1858</orcidid><orcidid>https://orcid.org/0000-0002-4842-1256</orcidid><orcidid>https://orcid.org/0000-0001-8507-5770</orcidid><orcidid>https://orcid.org/0000-0002-6204-8857</orcidid><orcidid>https://orcid.org/0000-0002-7370-2041</orcidid><orcidid>https://orcid.org/0000-0003-0772-6587</orcidid><orcidid>https://orcid.org/0000-0002-4416-6382</orcidid><orcidid>https://orcid.org/0000-0003-4577-9946</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1469-221X |
ispartof | EMBO reports, 2022-02, Vol.23 (3), p.e53400-n/a |
issn | 1469-221X 1469-3178 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8892269 |
source | MEDLINE; Springer Nature OA Free Journals; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central |
subjects | Arabidopsis Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Autonomy Degeneration DNA Transposable Elements - genetics DNA-directed RNA polymerase EMBO09 EMBO30 EMBO36 Fragments Gag protein Gene Expression Regulation, Plant Genomes Invasive plants mRNA Parasites Pattern analysis Polyribosomes Quality control RDR6 ribosome stalling RNA polymerase RNA, Small Interfering - genetics RNA-mediated interference siRNA small RNAs Stalling Substrates Translation Transposons |
title | Innate, translation‐dependent silencing of an invasive transposon in Arabidopsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Innate,%20translation%E2%80%90dependent%20silencing%20of%20an%20invasive%20transposon%20in%20Arabidopsis&rft.jtitle=EMBO%20reports&rft.au=Oberlin,%20Stefan&rft.date=2022-02-03&rft.volume=23&rft.issue=3&rft.spage=e53400&rft.epage=n/a&rft.pages=e53400-n/a&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.202153400&rft_dat=%3Cproquest_pubme%3E2612389330%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635166376&rft_id=info:pmid/34931432&rfr_iscdi=true |