Innate, translation‐dependent silencing of an invasive transposon in Arabidopsis

Co‐evolution between hosts’ and parasites’ genomes shapes diverse pathways of acquired immunity based on silencing small (s)RNAs. In plants, sRNAs cause heterochromatinization, sequence degeneration, and, ultimately, loss of autonomy of most transposable elements (TEs). Recognition of newly invasive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EMBO reports 2022-02, Vol.23 (3), p.e53400-n/a
Hauptverfasser: Oberlin, Stefan, Rajeswaran, Rajendran, Trasser, Marieke, Barragán‐Borrero, Verónica, Schon, Michael A, Plotnikova, Alexandra, Loncsek, Lukas, Nodine, Michael D, Marí‐Ordóñez, Arturo, Voinnet, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page e53400
container_title EMBO reports
container_volume 23
creator Oberlin, Stefan
Rajeswaran, Rajendran
Trasser, Marieke
Barragán‐Borrero, Verónica
Schon, Michael A
Plotnikova, Alexandra
Loncsek, Lukas
Nodine, Michael D
Marí‐Ordóñez, Arturo
Voinnet, Olivier
description Co‐evolution between hosts’ and parasites’ genomes shapes diverse pathways of acquired immunity based on silencing small (s)RNAs. In plants, sRNAs cause heterochromatinization, sequence degeneration, and, ultimately, loss of autonomy of most transposable elements (TEs). Recognition of newly invasive plant TEs, by contrast, involves an innate antiviral‐like silencing response. To investigate this response’s activation, we studied the single‐copy element EVADÉ ( EVD ), one of few representatives of the large Ty1/Copia family able to proliferate in Arabidopsis when epigenetically reactivated. In Ty1/Copia elements, a short subgenomic mRNA ( shGAG ) provides the necessary excess of structural GAG protein over the catalytic components encoded by the full‐length genomic flGAG‐POL . We show here that the predominant cytosolic distribution of shGAG strongly favors its translation over mostly nuclear flGAG‐POL . During this process, an unusually intense ribosomal stalling event coincides with mRNA breakage yielding unconventional 5’OH RNA fragments that evade RNA quality control. The starting point of sRNA production by RNA‐DEPENDENT‐RNA‐POLYMERASE‐6 (RDR6), exclusively on shGAG , occurs precisely at this breakage point. This hitherto ‐unrecognized “translation‐dependent silencing” (TdS) is independent of codon usage or GC content and is not observed on TE remnants populating the Arabidopsis genome, consistent with their poor association, if any, with polysomes. We propose that TdS forms a primal defense against EVD de novo invasions that underlies its associated sRNA pattern. SYNOPSIS Analyzing the initiation of RNA silencing of the Arabidopsis transposon EVADE (EVD) reveals a ribosome stalling event during EVD translation that correlates with the production of small RNAs involving RNA‐dependent RNA polymerase 6 (RDR6). Only a cytoplasmic and translated mRNA isoform of EVD triggers RDR6‐dependent siRNA production. An intense and discrete ribosome stalling event coincides with the onset of EVD siRNA production from this isoform. Atypical 5’‐OH RNA cleavage fragments overlap with the ribosome stalling site and possibly serve as RDR6 substrates. Graphical Abstract Analyzing the initiation of RNA silencing of the Arabidopsis transposon EVADE (EVD) reveals a ribosome stalling event during EVD translation that correlates with the production of small RNAs involving RNA‐dependent RNA polymerase 6 (RDR6).
doi_str_mv 10.15252/embr.202153400
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8892269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612389330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5130-ae1a90cacd726cb9299f3df51d21c6c1d9d2c075e83c3915d59570c6ea773b393</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxYMo9o8--yYDvvjQbZPcTWbig1BL1UJFKAq-hUxyZ02ZTabJ7Erf_Ah-Rj-JWWddqyA-3XDzO4dzOYQ8YfSYCS74CS7bdMwpZwLmlN4j-2wu1QxY3dzfvjlnn_bIQc7XlFKh6uYh2YO5AjYHvk-uLkIwIx5VYzIh92b0MXz_-s3hgMFhGKvsewzWh0UVu8qEyoe1yX6Nk2CIOW521WkyrXdxyD4_Ig8602d8vJ2H5OPr8w9nb2eX799cnJ1ezqxgQGcGmVHUGutqLm2ruFIduE4wx5mVljnluKW1wAYsKCacUKKmVqKpa2hBwSF5OfkOq3aJzpa0yfR6SH5p0q2Oxus_f4L_rBdxrZtGcS43Bs-3BinerDCPeumzxb43AeMqay4Zh0YB0II--wu9jqsUynmFAsGkhFoW6mSibIo5J-x2YRjVP_vSm770rq-ieHr3hh3_q6ACvJiAL6WH2__56fN3r67uutNJnIsuLDD9Tv2vQD8ABPW0Tg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635166376</pqid></control><display><type>article</type><title>Innate, translation‐dependent silencing of an invasive transposon in Arabidopsis</title><source>MEDLINE</source><source>Springer Nature OA Free Journals</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Oberlin, Stefan ; Rajeswaran, Rajendran ; Trasser, Marieke ; Barragán‐Borrero, Verónica ; Schon, Michael A ; Plotnikova, Alexandra ; Loncsek, Lukas ; Nodine, Michael D ; Marí‐Ordóñez, Arturo ; Voinnet, Olivier</creator><creatorcontrib>Oberlin, Stefan ; Rajeswaran, Rajendran ; Trasser, Marieke ; Barragán‐Borrero, Verónica ; Schon, Michael A ; Plotnikova, Alexandra ; Loncsek, Lukas ; Nodine, Michael D ; Marí‐Ordóñez, Arturo ; Voinnet, Olivier</creatorcontrib><description>Co‐evolution between hosts’ and parasites’ genomes shapes diverse pathways of acquired immunity based on silencing small (s)RNAs. In plants, sRNAs cause heterochromatinization, sequence degeneration, and, ultimately, loss of autonomy of most transposable elements (TEs). Recognition of newly invasive plant TEs, by contrast, involves an innate antiviral‐like silencing response. To investigate this response’s activation, we studied the single‐copy element EVADÉ ( EVD ), one of few representatives of the large Ty1/Copia family able to proliferate in Arabidopsis when epigenetically reactivated. In Ty1/Copia elements, a short subgenomic mRNA ( shGAG ) provides the necessary excess of structural GAG protein over the catalytic components encoded by the full‐length genomic flGAG‐POL . We show here that the predominant cytosolic distribution of shGAG strongly favors its translation over mostly nuclear flGAG‐POL . During this process, an unusually intense ribosomal stalling event coincides with mRNA breakage yielding unconventional 5’OH RNA fragments that evade RNA quality control. The starting point of sRNA production by RNA‐DEPENDENT‐RNA‐POLYMERASE‐6 (RDR6), exclusively on shGAG , occurs precisely at this breakage point. This hitherto ‐unrecognized “translation‐dependent silencing” (TdS) is independent of codon usage or GC content and is not observed on TE remnants populating the Arabidopsis genome, consistent with their poor association, if any, with polysomes. We propose that TdS forms a primal defense against EVD de novo invasions that underlies its associated sRNA pattern. SYNOPSIS Analyzing the initiation of RNA silencing of the Arabidopsis transposon EVADE (EVD) reveals a ribosome stalling event during EVD translation that correlates with the production of small RNAs involving RNA‐dependent RNA polymerase 6 (RDR6). Only a cytoplasmic and translated mRNA isoform of EVD triggers RDR6‐dependent siRNA production. An intense and discrete ribosome stalling event coincides with the onset of EVD siRNA production from this isoform. Atypical 5’‐OH RNA cleavage fragments overlap with the ribosome stalling site and possibly serve as RDR6 substrates. Graphical Abstract Analyzing the initiation of RNA silencing of the Arabidopsis transposon EVADE (EVD) reveals a ribosome stalling event during EVD translation that correlates with the production of small RNAs involving RNA‐dependent RNA polymerase 6 (RDR6).</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.202153400</identifier><identifier>PMID: 34931432</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Autonomy ; Degeneration ; DNA Transposable Elements - genetics ; DNA-directed RNA polymerase ; EMBO09 ; EMBO30 ; EMBO36 ; Fragments ; Gag protein ; Gene Expression Regulation, Plant ; Genomes ; Invasive plants ; mRNA ; Parasites ; Pattern analysis ; Polyribosomes ; Quality control ; RDR6 ; ribosome stalling ; RNA polymerase ; RNA, Small Interfering - genetics ; RNA-mediated interference ; siRNA ; small RNAs ; Stalling ; Substrates ; Translation ; Transposons</subject><ispartof>EMBO reports, 2022-02, Vol.23 (3), p.e53400-n/a</ispartof><rights>The Author(s) 2021</rights><rights>2021 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2021 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5130-ae1a90cacd726cb9299f3df51d21c6c1d9d2c075e83c3915d59570c6ea773b393</citedby><cites>FETCH-LOGICAL-c5130-ae1a90cacd726cb9299f3df51d21c6c1d9d2c075e83c3915d59570c6ea773b393</cites><orcidid>0000-0002-4756-3906 ; 0000-0001-6982-9544 ; 0000-0002-0718-1858 ; 0000-0002-4842-1256 ; 0000-0001-8507-5770 ; 0000-0002-6204-8857 ; 0000-0002-7370-2041 ; 0000-0003-0772-6587 ; 0000-0002-4416-6382 ; 0000-0003-4577-9946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892269/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892269/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27923,27924,41119,42188,45573,45574,46408,46832,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34931432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oberlin, Stefan</creatorcontrib><creatorcontrib>Rajeswaran, Rajendran</creatorcontrib><creatorcontrib>Trasser, Marieke</creatorcontrib><creatorcontrib>Barragán‐Borrero, Verónica</creatorcontrib><creatorcontrib>Schon, Michael A</creatorcontrib><creatorcontrib>Plotnikova, Alexandra</creatorcontrib><creatorcontrib>Loncsek, Lukas</creatorcontrib><creatorcontrib>Nodine, Michael D</creatorcontrib><creatorcontrib>Marí‐Ordóñez, Arturo</creatorcontrib><creatorcontrib>Voinnet, Olivier</creatorcontrib><title>Innate, translation‐dependent silencing of an invasive transposon in Arabidopsis</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Co‐evolution between hosts’ and parasites’ genomes shapes diverse pathways of acquired immunity based on silencing small (s)RNAs. In plants, sRNAs cause heterochromatinization, sequence degeneration, and, ultimately, loss of autonomy of most transposable elements (TEs). Recognition of newly invasive plant TEs, by contrast, involves an innate antiviral‐like silencing response. To investigate this response’s activation, we studied the single‐copy element EVADÉ ( EVD ), one of few representatives of the large Ty1/Copia family able to proliferate in Arabidopsis when epigenetically reactivated. In Ty1/Copia elements, a short subgenomic mRNA ( shGAG ) provides the necessary excess of structural GAG protein over the catalytic components encoded by the full‐length genomic flGAG‐POL . We show here that the predominant cytosolic distribution of shGAG strongly favors its translation over mostly nuclear flGAG‐POL . During this process, an unusually intense ribosomal stalling event coincides with mRNA breakage yielding unconventional 5’OH RNA fragments that evade RNA quality control. The starting point of sRNA production by RNA‐DEPENDENT‐RNA‐POLYMERASE‐6 (RDR6), exclusively on shGAG , occurs precisely at this breakage point. This hitherto ‐unrecognized “translation‐dependent silencing” (TdS) is independent of codon usage or GC content and is not observed on TE remnants populating the Arabidopsis genome, consistent with their poor association, if any, with polysomes. We propose that TdS forms a primal defense against EVD de novo invasions that underlies its associated sRNA pattern. SYNOPSIS Analyzing the initiation of RNA silencing of the Arabidopsis transposon EVADE (EVD) reveals a ribosome stalling event during EVD translation that correlates with the production of small RNAs involving RNA‐dependent RNA polymerase 6 (RDR6). Only a cytoplasmic and translated mRNA isoform of EVD triggers RDR6‐dependent siRNA production. An intense and discrete ribosome stalling event coincides with the onset of EVD siRNA production from this isoform. Atypical 5’‐OH RNA cleavage fragments overlap with the ribosome stalling site and possibly serve as RDR6 substrates. Graphical Abstract Analyzing the initiation of RNA silencing of the Arabidopsis transposon EVADE (EVD) reveals a ribosome stalling event during EVD translation that correlates with the production of small RNAs involving RNA‐dependent RNA polymerase 6 (RDR6).</description><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Autonomy</subject><subject>Degeneration</subject><subject>DNA Transposable Elements - genetics</subject><subject>DNA-directed RNA polymerase</subject><subject>EMBO09</subject><subject>EMBO30</subject><subject>EMBO36</subject><subject>Fragments</subject><subject>Gag protein</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genomes</subject><subject>Invasive plants</subject><subject>mRNA</subject><subject>Parasites</subject><subject>Pattern analysis</subject><subject>Polyribosomes</subject><subject>Quality control</subject><subject>RDR6</subject><subject>ribosome stalling</subject><subject>RNA polymerase</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA-mediated interference</subject><subject>siRNA</subject><subject>small RNAs</subject><subject>Stalling</subject><subject>Substrates</subject><subject>Translation</subject><subject>Transposons</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkV9rFDEUxYMo9o8--yYDvvjQbZPcTWbig1BL1UJFKAq-hUxyZ02ZTabJ7Erf_Ah-Rj-JWWddqyA-3XDzO4dzOYQ8YfSYCS74CS7bdMwpZwLmlN4j-2wu1QxY3dzfvjlnn_bIQc7XlFKh6uYh2YO5AjYHvk-uLkIwIx5VYzIh92b0MXz_-s3hgMFhGKvsewzWh0UVu8qEyoe1yX6Nk2CIOW521WkyrXdxyD4_Ig8602d8vJ2H5OPr8w9nb2eX799cnJ1ezqxgQGcGmVHUGutqLm2ruFIduE4wx5mVljnluKW1wAYsKCacUKKmVqKpa2hBwSF5OfkOq3aJzpa0yfR6SH5p0q2Oxus_f4L_rBdxrZtGcS43Bs-3BinerDCPeumzxb43AeMqay4Zh0YB0II--wu9jqsUynmFAsGkhFoW6mSibIo5J-x2YRjVP_vSm770rq-ieHr3hh3_q6ACvJiAL6WH2__56fN3r67uutNJnIsuLDD9Tv2vQD8ABPW0Tg</recordid><startdate>20220203</startdate><enddate>20220203</enddate><creator>Oberlin, Stefan</creator><creator>Rajeswaran, Rajendran</creator><creator>Trasser, Marieke</creator><creator>Barragán‐Borrero, Verónica</creator><creator>Schon, Michael A</creator><creator>Plotnikova, Alexandra</creator><creator>Loncsek, Lukas</creator><creator>Nodine, Michael D</creator><creator>Marí‐Ordóñez, Arturo</creator><creator>Voinnet, Olivier</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4756-3906</orcidid><orcidid>https://orcid.org/0000-0001-6982-9544</orcidid><orcidid>https://orcid.org/0000-0002-0718-1858</orcidid><orcidid>https://orcid.org/0000-0002-4842-1256</orcidid><orcidid>https://orcid.org/0000-0001-8507-5770</orcidid><orcidid>https://orcid.org/0000-0002-6204-8857</orcidid><orcidid>https://orcid.org/0000-0002-7370-2041</orcidid><orcidid>https://orcid.org/0000-0003-0772-6587</orcidid><orcidid>https://orcid.org/0000-0002-4416-6382</orcidid><orcidid>https://orcid.org/0000-0003-4577-9946</orcidid></search><sort><creationdate>20220203</creationdate><title>Innate, translation‐dependent silencing of an invasive transposon in Arabidopsis</title><author>Oberlin, Stefan ; Rajeswaran, Rajendran ; Trasser, Marieke ; Barragán‐Borrero, Verónica ; Schon, Michael A ; Plotnikova, Alexandra ; Loncsek, Lukas ; Nodine, Michael D ; Marí‐Ordóñez, Arturo ; Voinnet, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5130-ae1a90cacd726cb9299f3df51d21c6c1d9d2c075e83c3915d59570c6ea773b393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Autonomy</topic><topic>Degeneration</topic><topic>DNA Transposable Elements - genetics</topic><topic>DNA-directed RNA polymerase</topic><topic>EMBO09</topic><topic>EMBO30</topic><topic>EMBO36</topic><topic>Fragments</topic><topic>Gag protein</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genomes</topic><topic>Invasive plants</topic><topic>mRNA</topic><topic>Parasites</topic><topic>Pattern analysis</topic><topic>Polyribosomes</topic><topic>Quality control</topic><topic>RDR6</topic><topic>ribosome stalling</topic><topic>RNA polymerase</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA-mediated interference</topic><topic>siRNA</topic><topic>small RNAs</topic><topic>Stalling</topic><topic>Substrates</topic><topic>Translation</topic><topic>Transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oberlin, Stefan</creatorcontrib><creatorcontrib>Rajeswaran, Rajendran</creatorcontrib><creatorcontrib>Trasser, Marieke</creatorcontrib><creatorcontrib>Barragán‐Borrero, Verónica</creatorcontrib><creatorcontrib>Schon, Michael A</creatorcontrib><creatorcontrib>Plotnikova, Alexandra</creatorcontrib><creatorcontrib>Loncsek, Lukas</creatorcontrib><creatorcontrib>Nodine, Michael D</creatorcontrib><creatorcontrib>Marí‐Ordóñez, Arturo</creatorcontrib><creatorcontrib>Voinnet, Olivier</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oberlin, Stefan</au><au>Rajeswaran, Rajendran</au><au>Trasser, Marieke</au><au>Barragán‐Borrero, Verónica</au><au>Schon, Michael A</au><au>Plotnikova, Alexandra</au><au>Loncsek, Lukas</au><au>Nodine, Michael D</au><au>Marí‐Ordóñez, Arturo</au><au>Voinnet, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Innate, translation‐dependent silencing of an invasive transposon in Arabidopsis</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2022-02-03</date><risdate>2022</risdate><volume>23</volume><issue>3</issue><spage>e53400</spage><epage>n/a</epage><pages>e53400-n/a</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>Co‐evolution between hosts’ and parasites’ genomes shapes diverse pathways of acquired immunity based on silencing small (s)RNAs. In plants, sRNAs cause heterochromatinization, sequence degeneration, and, ultimately, loss of autonomy of most transposable elements (TEs). Recognition of newly invasive plant TEs, by contrast, involves an innate antiviral‐like silencing response. To investigate this response’s activation, we studied the single‐copy element EVADÉ ( EVD ), one of few representatives of the large Ty1/Copia family able to proliferate in Arabidopsis when epigenetically reactivated. In Ty1/Copia elements, a short subgenomic mRNA ( shGAG ) provides the necessary excess of structural GAG protein over the catalytic components encoded by the full‐length genomic flGAG‐POL . We show here that the predominant cytosolic distribution of shGAG strongly favors its translation over mostly nuclear flGAG‐POL . During this process, an unusually intense ribosomal stalling event coincides with mRNA breakage yielding unconventional 5’OH RNA fragments that evade RNA quality control. The starting point of sRNA production by RNA‐DEPENDENT‐RNA‐POLYMERASE‐6 (RDR6), exclusively on shGAG , occurs precisely at this breakage point. This hitherto ‐unrecognized “translation‐dependent silencing” (TdS) is independent of codon usage or GC content and is not observed on TE remnants populating the Arabidopsis genome, consistent with their poor association, if any, with polysomes. We propose that TdS forms a primal defense against EVD de novo invasions that underlies its associated sRNA pattern. SYNOPSIS Analyzing the initiation of RNA silencing of the Arabidopsis transposon EVADE (EVD) reveals a ribosome stalling event during EVD translation that correlates with the production of small RNAs involving RNA‐dependent RNA polymerase 6 (RDR6). Only a cytoplasmic and translated mRNA isoform of EVD triggers RDR6‐dependent siRNA production. An intense and discrete ribosome stalling event coincides with the onset of EVD siRNA production from this isoform. Atypical 5’‐OH RNA cleavage fragments overlap with the ribosome stalling site and possibly serve as RDR6 substrates. Graphical Abstract Analyzing the initiation of RNA silencing of the Arabidopsis transposon EVADE (EVD) reveals a ribosome stalling event during EVD translation that correlates with the production of small RNAs involving RNA‐dependent RNA polymerase 6 (RDR6).</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34931432</pmid><doi>10.15252/embr.202153400</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4756-3906</orcidid><orcidid>https://orcid.org/0000-0001-6982-9544</orcidid><orcidid>https://orcid.org/0000-0002-0718-1858</orcidid><orcidid>https://orcid.org/0000-0002-4842-1256</orcidid><orcidid>https://orcid.org/0000-0001-8507-5770</orcidid><orcidid>https://orcid.org/0000-0002-6204-8857</orcidid><orcidid>https://orcid.org/0000-0002-7370-2041</orcidid><orcidid>https://orcid.org/0000-0003-0772-6587</orcidid><orcidid>https://orcid.org/0000-0002-4416-6382</orcidid><orcidid>https://orcid.org/0000-0003-4577-9946</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-221X
ispartof EMBO reports, 2022-02, Vol.23 (3), p.e53400-n/a
issn 1469-221X
1469-3178
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8892269
source MEDLINE; Springer Nature OA Free Journals; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central
subjects Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Autonomy
Degeneration
DNA Transposable Elements - genetics
DNA-directed RNA polymerase
EMBO09
EMBO30
EMBO36
Fragments
Gag protein
Gene Expression Regulation, Plant
Genomes
Invasive plants
mRNA
Parasites
Pattern analysis
Polyribosomes
Quality control
RDR6
ribosome stalling
RNA polymerase
RNA, Small Interfering - genetics
RNA-mediated interference
siRNA
small RNAs
Stalling
Substrates
Translation
Transposons
title Innate, translation‐dependent silencing of an invasive transposon in Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Innate,%20translation%E2%80%90dependent%20silencing%20of%20an%20invasive%20transposon%20in%20Arabidopsis&rft.jtitle=EMBO%20reports&rft.au=Oberlin,%20Stefan&rft.date=2022-02-03&rft.volume=23&rft.issue=3&rft.spage=e53400&rft.epage=n/a&rft.pages=e53400-n/a&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.202153400&rft_dat=%3Cproquest_pubme%3E2612389330%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635166376&rft_id=info:pmid/34931432&rfr_iscdi=true