Recovery time of a plasma-wakefield accelerator

The interaction of intense particle bunches with plasma can give rise to plasma wakes 1 , 2 capable of sustaining gigavolt-per-metre electric fields 3 , 4 , which are orders of magnitude higher than provided by state-of-the-art radio-frequency technology 5 . Plasma wakefields can, therefore, strongl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2022-03, Vol.603 (7899), p.58-62
Hauptverfasser: D’Arcy, R., Chappell, J., Beinortaite, J., Diederichs, S., Boyle, G., Foster, B., Garland, M. J., Caminal, P. Gonzalez, Lindstrøm, C. A., Loisch, G., Schreiber, S., Schröder, S., Shalloo, R. J., Thévenet, M., Wesch, S., Wing, M., Osterhoff, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62
container_issue 7899
container_start_page 58
container_title Nature (London)
container_volume 603
creator D’Arcy, R.
Chappell, J.
Beinortaite, J.
Diederichs, S.
Boyle, G.
Foster, B.
Garland, M. J.
Caminal, P. Gonzalez
Lindstrøm, C. A.
Loisch, G.
Schreiber, S.
Schröder, S.
Shalloo, R. J.
Thévenet, M.
Wesch, S.
Wing, M.
Osterhoff, J.
description The interaction of intense particle bunches with plasma can give rise to plasma wakes 1 , 2 capable of sustaining gigavolt-per-metre electric fields 3 , 4 , which are orders of magnitude higher than provided by state-of-the-art radio-frequency technology 5 . Plasma wakefields can, therefore, strongly accelerate charged particles and offer the opportunity to reach higher particle energies with smaller and hence more widely available accelerator facilities. However, the luminosity and brilliance demands of high-energy physics and photon science require particle bunches to be accelerated at repetition rates of thousands or even millions per second, which are orders of magnitude higher than demonstrated with plasma-wakefield technology 6 , 7 . Here we investigate the upper limit on repetition rates of beam-driven plasma accelerators by measuring the time it takes for the plasma to recover to its initial state after perturbation by a wakefield. The many-nanosecond-level recovery time measured establishes the in-principle attainability of megahertz rates of acceleration in plasmas. The experimental signatures of the perturbation are well described by simulations of a temporally evolving parabolic ion channel, transferring energy from the collapsing wake to the surrounding media. This result establishes that plasma-wakefield modules could be developed as feasible high-repetition-rate energy boosters at current and future particle-physics and photon-science facilities. Relaxation of a perturbed plasma back to its initial state over nanosecond timescales establishes that megahertz repetition rates are supported, and high luminosities and brilliances are in principle attainable with plasma-wakefield accelerator facilities.
doi_str_mv 10.1038/s41586-021-04348-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8891014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636865693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-1845f2252736a93805bfb350306a9a5b6827b0ba36288f04143cd21686de22de3</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMoOo7-ARdScOMmevPsnY0g4gsEQXQd0jbVatuMSUfx3xudcXwsXIXL_e7JORxCdhgcMBB4GCVTqClwRkEKiRRXyIjJXFOpMV8lIwCOFFDoDbIZ4yMAKJbLdbIhFBd6kqsRObxxpX9x4S0bms5lvs5sNm1t7Cx9tU-ublxbZbYsXeuCHXzYImu1baPbXrxjcnd2entyQa-uzy9Pjq9oKXM5UIZS1ZwrngttJwJBFXUhFAhIo1WFRp4XUFihOWINkklRVpxp1JXjvHJiTI7mutNZ0bmqdP0QbGumoelseDPeNub3pm8ezL1_MYgTBkluTPYXAsE_z1wcTNfEFKO1vfOzaLgWSmKymCd07w_66GehT_E-qORJ6YlIFJ9TZfAxBlcvzTAwH32YeR8m9WE--zCYjnZ_xliefBWQADEHYlr19y58__2P7Dsp-ZQp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636865693</pqid></control><display><type>article</type><title>Recovery time of a plasma-wakefield accelerator</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>D’Arcy, R. ; Chappell, J. ; Beinortaite, J. ; Diederichs, S. ; Boyle, G. ; Foster, B. ; Garland, M. J. ; Caminal, P. Gonzalez ; Lindstrøm, C. A. ; Loisch, G. ; Schreiber, S. ; Schröder, S. ; Shalloo, R. J. ; Thévenet, M. ; Wesch, S. ; Wing, M. ; Osterhoff, J.</creator><creatorcontrib>D’Arcy, R. ; Chappell, J. ; Beinortaite, J. ; Diederichs, S. ; Boyle, G. ; Foster, B. ; Garland, M. J. ; Caminal, P. Gonzalez ; Lindstrøm, C. A. ; Loisch, G. ; Schreiber, S. ; Schröder, S. ; Shalloo, R. J. ; Thévenet, M. ; Wesch, S. ; Wing, M. ; Osterhoff, J.</creatorcontrib><description>The interaction of intense particle bunches with plasma can give rise to plasma wakes 1 , 2 capable of sustaining gigavolt-per-metre electric fields 3 , 4 , which are orders of magnitude higher than provided by state-of-the-art radio-frequency technology 5 . Plasma wakefields can, therefore, strongly accelerate charged particles and offer the opportunity to reach higher particle energies with smaller and hence more widely available accelerator facilities. However, the luminosity and brilliance demands of high-energy physics and photon science require particle bunches to be accelerated at repetition rates of thousands or even millions per second, which are orders of magnitude higher than demonstrated with plasma-wakefield technology 6 , 7 . Here we investigate the upper limit on repetition rates of beam-driven plasma accelerators by measuring the time it takes for the plasma to recover to its initial state after perturbation by a wakefield. The many-nanosecond-level recovery time measured establishes the in-principle attainability of megahertz rates of acceleration in plasmas. The experimental signatures of the perturbation are well described by simulations of a temporally evolving parabolic ion channel, transferring energy from the collapsing wake to the surrounding media. This result establishes that plasma-wakefield modules could be developed as feasible high-repetition-rate energy boosters at current and future particle-physics and photon-science facilities. Relaxation of a perturbed plasma back to its initial state over nanosecond timescales establishes that megahertz repetition rates are supported, and high luminosities and brilliances are in principle attainable with plasma-wakefield accelerator facilities.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-04348-8</identifier><identifier>PMID: 35236975</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/1960/1137 ; 639/766/419/1131 ; Charged particles ; Electric fields ; Energy ; Humanities and Social Sciences ; Ion channels ; Lasers ; Luminosity ; multidisciplinary ; Particle accelerators ; Perturbation ; Photons ; Physics ; Plasma accelerators ; Plasmas (physics) ; Recovery (Medical) ; Recovery time ; Repetition ; Science ; Science (multidisciplinary) ; Signatures ; Simulation ; Time measurement</subject><ispartof>Nature (London), 2022-03, Vol.603 (7899), p.58-62</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>Copyright Nature Publishing Group Mar 3, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-1845f2252736a93805bfb350306a9a5b6827b0ba36288f04143cd21686de22de3</citedby><cites>FETCH-LOGICAL-c474t-1845f2252736a93805bfb350306a9a5b6827b0ba36288f04143cd21686de22de3</cites><orcidid>0000-0002-6178-2339 ; 0000-0001-7705-649X ; 0000-0002-0769-0425 ; 0000-0001-9079-0461 ; 0000-0002-9568-3814 ; 0000-0002-7224-8334 ; 0000-0002-0649-9995 ; 0000-0002-7684-0140 ; 0000-0001-7216-2277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-04348-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-04348-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35236975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>D’Arcy, R.</creatorcontrib><creatorcontrib>Chappell, J.</creatorcontrib><creatorcontrib>Beinortaite, J.</creatorcontrib><creatorcontrib>Diederichs, S.</creatorcontrib><creatorcontrib>Boyle, G.</creatorcontrib><creatorcontrib>Foster, B.</creatorcontrib><creatorcontrib>Garland, M. J.</creatorcontrib><creatorcontrib>Caminal, P. Gonzalez</creatorcontrib><creatorcontrib>Lindstrøm, C. A.</creatorcontrib><creatorcontrib>Loisch, G.</creatorcontrib><creatorcontrib>Schreiber, S.</creatorcontrib><creatorcontrib>Schröder, S.</creatorcontrib><creatorcontrib>Shalloo, R. J.</creatorcontrib><creatorcontrib>Thévenet, M.</creatorcontrib><creatorcontrib>Wesch, S.</creatorcontrib><creatorcontrib>Wing, M.</creatorcontrib><creatorcontrib>Osterhoff, J.</creatorcontrib><title>Recovery time of a plasma-wakefield accelerator</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The interaction of intense particle bunches with plasma can give rise to plasma wakes 1 , 2 capable of sustaining gigavolt-per-metre electric fields 3 , 4 , which are orders of magnitude higher than provided by state-of-the-art radio-frequency technology 5 . Plasma wakefields can, therefore, strongly accelerate charged particles and offer the opportunity to reach higher particle energies with smaller and hence more widely available accelerator facilities. However, the luminosity and brilliance demands of high-energy physics and photon science require particle bunches to be accelerated at repetition rates of thousands or even millions per second, which are orders of magnitude higher than demonstrated with plasma-wakefield technology 6 , 7 . Here we investigate the upper limit on repetition rates of beam-driven plasma accelerators by measuring the time it takes for the plasma to recover to its initial state after perturbation by a wakefield. The many-nanosecond-level recovery time measured establishes the in-principle attainability of megahertz rates of acceleration in plasmas. The experimental signatures of the perturbation are well described by simulations of a temporally evolving parabolic ion channel, transferring energy from the collapsing wake to the surrounding media. This result establishes that plasma-wakefield modules could be developed as feasible high-repetition-rate energy boosters at current and future particle-physics and photon-science facilities. Relaxation of a perturbed plasma back to its initial state over nanosecond timescales establishes that megahertz repetition rates are supported, and high luminosities and brilliances are in principle attainable with plasma-wakefield accelerator facilities.</description><subject>639/766/1960/1137</subject><subject>639/766/419/1131</subject><subject>Charged particles</subject><subject>Electric fields</subject><subject>Energy</subject><subject>Humanities and Social Sciences</subject><subject>Ion channels</subject><subject>Lasers</subject><subject>Luminosity</subject><subject>multidisciplinary</subject><subject>Particle accelerators</subject><subject>Perturbation</subject><subject>Photons</subject><subject>Physics</subject><subject>Plasma accelerators</subject><subject>Plasmas (physics)</subject><subject>Recovery (Medical)</subject><subject>Recovery time</subject><subject>Repetition</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signatures</subject><subject>Simulation</subject><subject>Time measurement</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtLxDAUhYMoOo7-ARdScOMmevPsnY0g4gsEQXQd0jbVatuMSUfx3xudcXwsXIXL_e7JORxCdhgcMBB4GCVTqClwRkEKiRRXyIjJXFOpMV8lIwCOFFDoDbIZ4yMAKJbLdbIhFBd6kqsRObxxpX9x4S0bms5lvs5sNm1t7Cx9tU-ublxbZbYsXeuCHXzYImu1baPbXrxjcnd2entyQa-uzy9Pjq9oKXM5UIZS1ZwrngttJwJBFXUhFAhIo1WFRp4XUFihOWINkklRVpxp1JXjvHJiTI7mutNZ0bmqdP0QbGumoelseDPeNub3pm8ezL1_MYgTBkluTPYXAsE_z1wcTNfEFKO1vfOzaLgWSmKymCd07w_66GehT_E-qORJ6YlIFJ9TZfAxBlcvzTAwH32YeR8m9WE--zCYjnZ_xliefBWQADEHYlr19y58__2P7Dsp-ZQp</recordid><startdate>20220303</startdate><enddate>20220303</enddate><creator>D’Arcy, R.</creator><creator>Chappell, J.</creator><creator>Beinortaite, J.</creator><creator>Diederichs, S.</creator><creator>Boyle, G.</creator><creator>Foster, B.</creator><creator>Garland, M. J.</creator><creator>Caminal, P. Gonzalez</creator><creator>Lindstrøm, C. A.</creator><creator>Loisch, G.</creator><creator>Schreiber, S.</creator><creator>Schröder, S.</creator><creator>Shalloo, R. J.</creator><creator>Thévenet, M.</creator><creator>Wesch, S.</creator><creator>Wing, M.</creator><creator>Osterhoff, J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6178-2339</orcidid><orcidid>https://orcid.org/0000-0001-7705-649X</orcidid><orcidid>https://orcid.org/0000-0002-0769-0425</orcidid><orcidid>https://orcid.org/0000-0001-9079-0461</orcidid><orcidid>https://orcid.org/0000-0002-9568-3814</orcidid><orcidid>https://orcid.org/0000-0002-7224-8334</orcidid><orcidid>https://orcid.org/0000-0002-0649-9995</orcidid><orcidid>https://orcid.org/0000-0002-7684-0140</orcidid><orcidid>https://orcid.org/0000-0001-7216-2277</orcidid></search><sort><creationdate>20220303</creationdate><title>Recovery time of a plasma-wakefield accelerator</title><author>D’Arcy, R. ; Chappell, J. ; Beinortaite, J. ; Diederichs, S. ; Boyle, G. ; Foster, B. ; Garland, M. J. ; Caminal, P. Gonzalez ; Lindstrøm, C. A. ; Loisch, G. ; Schreiber, S. ; Schröder, S. ; Shalloo, R. J. ; Thévenet, M. ; Wesch, S. ; Wing, M. ; Osterhoff, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-1845f2252736a93805bfb350306a9a5b6827b0ba36288f04143cd21686de22de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/1960/1137</topic><topic>639/766/419/1131</topic><topic>Charged particles</topic><topic>Electric fields</topic><topic>Energy</topic><topic>Humanities and Social Sciences</topic><topic>Ion channels</topic><topic>Lasers</topic><topic>Luminosity</topic><topic>multidisciplinary</topic><topic>Particle accelerators</topic><topic>Perturbation</topic><topic>Photons</topic><topic>Physics</topic><topic>Plasma accelerators</topic><topic>Plasmas (physics)</topic><topic>Recovery (Medical)</topic><topic>Recovery time</topic><topic>Repetition</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signatures</topic><topic>Simulation</topic><topic>Time measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D’Arcy, R.</creatorcontrib><creatorcontrib>Chappell, J.</creatorcontrib><creatorcontrib>Beinortaite, J.</creatorcontrib><creatorcontrib>Diederichs, S.</creatorcontrib><creatorcontrib>Boyle, G.</creatorcontrib><creatorcontrib>Foster, B.</creatorcontrib><creatorcontrib>Garland, M. J.</creatorcontrib><creatorcontrib>Caminal, P. Gonzalez</creatorcontrib><creatorcontrib>Lindstrøm, C. A.</creatorcontrib><creatorcontrib>Loisch, G.</creatorcontrib><creatorcontrib>Schreiber, S.</creatorcontrib><creatorcontrib>Schröder, S.</creatorcontrib><creatorcontrib>Shalloo, R. J.</creatorcontrib><creatorcontrib>Thévenet, M.</creatorcontrib><creatorcontrib>Wesch, S.</creatorcontrib><creatorcontrib>Wing, M.</creatorcontrib><creatorcontrib>Osterhoff, J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D’Arcy, R.</au><au>Chappell, J.</au><au>Beinortaite, J.</au><au>Diederichs, S.</au><au>Boyle, G.</au><au>Foster, B.</au><au>Garland, M. J.</au><au>Caminal, P. Gonzalez</au><au>Lindstrøm, C. A.</au><au>Loisch, G.</au><au>Schreiber, S.</au><au>Schröder, S.</au><au>Shalloo, R. J.</au><au>Thévenet, M.</au><au>Wesch, S.</au><au>Wing, M.</au><au>Osterhoff, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovery time of a plasma-wakefield accelerator</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2022-03-03</date><risdate>2022</risdate><volume>603</volume><issue>7899</issue><spage>58</spage><epage>62</epage><pages>58-62</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The interaction of intense particle bunches with plasma can give rise to plasma wakes 1 , 2 capable of sustaining gigavolt-per-metre electric fields 3 , 4 , which are orders of magnitude higher than provided by state-of-the-art radio-frequency technology 5 . Plasma wakefields can, therefore, strongly accelerate charged particles and offer the opportunity to reach higher particle energies with smaller and hence more widely available accelerator facilities. However, the luminosity and brilliance demands of high-energy physics and photon science require particle bunches to be accelerated at repetition rates of thousands or even millions per second, which are orders of magnitude higher than demonstrated with plasma-wakefield technology 6 , 7 . Here we investigate the upper limit on repetition rates of beam-driven plasma accelerators by measuring the time it takes for the plasma to recover to its initial state after perturbation by a wakefield. The many-nanosecond-level recovery time measured establishes the in-principle attainability of megahertz rates of acceleration in plasmas. The experimental signatures of the perturbation are well described by simulations of a temporally evolving parabolic ion channel, transferring energy from the collapsing wake to the surrounding media. This result establishes that plasma-wakefield modules could be developed as feasible high-repetition-rate energy boosters at current and future particle-physics and photon-science facilities. Relaxation of a perturbed plasma back to its initial state over nanosecond timescales establishes that megahertz repetition rates are supported, and high luminosities and brilliances are in principle attainable with plasma-wakefield accelerator facilities.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35236975</pmid><doi>10.1038/s41586-021-04348-8</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6178-2339</orcidid><orcidid>https://orcid.org/0000-0001-7705-649X</orcidid><orcidid>https://orcid.org/0000-0002-0769-0425</orcidid><orcidid>https://orcid.org/0000-0001-9079-0461</orcidid><orcidid>https://orcid.org/0000-0002-9568-3814</orcidid><orcidid>https://orcid.org/0000-0002-7224-8334</orcidid><orcidid>https://orcid.org/0000-0002-0649-9995</orcidid><orcidid>https://orcid.org/0000-0002-7684-0140</orcidid><orcidid>https://orcid.org/0000-0001-7216-2277</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2022-03, Vol.603 (7899), p.58-62
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8891014
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 639/766/1960/1137
639/766/419/1131
Charged particles
Electric fields
Energy
Humanities and Social Sciences
Ion channels
Lasers
Luminosity
multidisciplinary
Particle accelerators
Perturbation
Photons
Physics
Plasma accelerators
Plasmas (physics)
Recovery (Medical)
Recovery time
Repetition
Science
Science (multidisciplinary)
Signatures
Simulation
Time measurement
title Recovery time of a plasma-wakefield accelerator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovery%20time%20of%20a%20plasma-wakefield%20accelerator&rft.jtitle=Nature%20(London)&rft.au=D%E2%80%99Arcy,%20R.&rft.date=2022-03-03&rft.volume=603&rft.issue=7899&rft.spage=58&rft.epage=62&rft.pages=58-62&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-04348-8&rft_dat=%3Cproquest_pubme%3E2636865693%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2636865693&rft_id=info:pmid/35236975&rfr_iscdi=true