ELOF1 is a transcription-coupled DNA repair factor that directs RNA polymerase II ubiquitylation

Cells employ transcription-coupled repair (TCR) to eliminate transcription-blocking DNA lesions. DNA damage-induced binding of the TCR-specific repair factor CSB to RNA polymerase II (RNAPII) triggers RNAPII ubiquitylation of a single lysine (K1268) by the CRL4 CSA ubiquitin ligase. How CRL4 CSA is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2021-06, Vol.23 (6), p.595-607
Hauptverfasser: van der Weegen, Yana, de Lint, Klaas, van den Heuvel, Diana, Nakazawa, Yuka, Mevissen, Tycho E. T., van Schie, Janne J. M., San Martin Alonso, Marta, Boer, Daphne E. C., González-Prieto, Román, Narayanan, Ishwarya V., Klaassen, Noud H. M., Wondergem, Annelotte P., Roohollahi, Khashayar, Dorsman, Josephine C., Hara, Yuichiro, Vertegaal, Alfred C. O., de Lange, Job, Walter, Johannes C., Noordermeer, Sylvie M., Ljungman, Mats, Ogi, Tomoo, Wolthuis, Rob M. F., Luijsterburg, Martijn S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 607
container_issue 6
container_start_page 595
container_title Nature cell biology
container_volume 23
creator van der Weegen, Yana
de Lint, Klaas
van den Heuvel, Diana
Nakazawa, Yuka
Mevissen, Tycho E. T.
van Schie, Janne J. M.
San Martin Alonso, Marta
Boer, Daphne E. C.
González-Prieto, Román
Narayanan, Ishwarya V.
Klaassen, Noud H. M.
Wondergem, Annelotte P.
Roohollahi, Khashayar
Dorsman, Josephine C.
Hara, Yuichiro
Vertegaal, Alfred C. O.
de Lange, Job
Walter, Johannes C.
Noordermeer, Sylvie M.
Ljungman, Mats
Ogi, Tomoo
Wolthuis, Rob M. F.
Luijsterburg, Martijn S.
description Cells employ transcription-coupled repair (TCR) to eliminate transcription-blocking DNA lesions. DNA damage-induced binding of the TCR-specific repair factor CSB to RNA polymerase II (RNAPII) triggers RNAPII ubiquitylation of a single lysine (K1268) by the CRL4 CSA ubiquitin ligase. How CRL4 CSA is specifically directed towards K1268 is unknown. Here, we identify ELOF1 as the missing link that facilitates RNAPII ubiquitylation, a key signal for the assembly of downstream repair factors. This function requires its constitutive interaction with RNAPII close to K1268, revealing ELOF1 as a specificity factor that binds and positions CRL4 CSA for optimal RNAPII ubiquitylation. Drug–genetic interaction screening also revealed a CSB-independent pathway in which ELOF1 prevents R-loops in active genes and protects cells against DNA replication stress. Our study offers key insights into the molecular mechanisms of TCR and provides a genetic framework of the interplay between transcriptional stress responses and DNA replication. Two side-by-side papers report that the transcription elongation factor ELOF1 drives transcription-coupled repair and prevents replication stress.
doi_str_mv 10.1038/s41556-021-00688-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8890769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539398931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-70314ceb9e33847abf08af3de5f7352939a78f8bf9d3e1d2c12aaed85b57f70d3</originalsourceid><addsrcrecordid>eNp9kUtPJCEUhYnR-Jr5Ay4MiWsUCqqAjYnRVjvpaDKZWTMUBYqpLkqgTPrfS9s-Zjau7k3O4buHHACOCD4lmIqzxEhdNwhXBGHcCIHkFtgnjDeINVxur_emRpzKag8cpPSEMWEM812wRxnBomnoPvg7W9xfE-gT1DBHPSQT_Zh9GJAJ09jbDl7dXcBoR-0jdNrkEGF-1Bl2PlqTE_xV5DH0q6WNOlk4n8Op9c-Tz6terzk_wI7TfbI_3-ch-HM9-315ixb3N_PLiwUyjLOMOKaEGdtKS6lgXLcOC-1oZ2vHaV1JKjUXTrROdtSSrjKk0tp2om5r7jju6CE433DHqV3aztihfKdXY_RLHVcqaK_-Vwb_qB7CixJCYt7IAjh5B8TwPNmU1VOY4lAyq6qmJYCQlBRXtXGZGFKK1n1eIFitW1GbVlRpRb21otbo43-zfT75qKEY6MaQijQ82Ph1-xvsK-LDmao</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539398931</pqid></control><display><type>article</type><title>ELOF1 is a transcription-coupled DNA repair factor that directs RNA polymerase II ubiquitylation</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>van der Weegen, Yana ; de Lint, Klaas ; van den Heuvel, Diana ; Nakazawa, Yuka ; Mevissen, Tycho E. T. ; van Schie, Janne J. M. ; San Martin Alonso, Marta ; Boer, Daphne E. C. ; González-Prieto, Román ; Narayanan, Ishwarya V. ; Klaassen, Noud H. M. ; Wondergem, Annelotte P. ; Roohollahi, Khashayar ; Dorsman, Josephine C. ; Hara, Yuichiro ; Vertegaal, Alfred C. O. ; de Lange, Job ; Walter, Johannes C. ; Noordermeer, Sylvie M. ; Ljungman, Mats ; Ogi, Tomoo ; Wolthuis, Rob M. F. ; Luijsterburg, Martijn S.</creator><creatorcontrib>van der Weegen, Yana ; de Lint, Klaas ; van den Heuvel, Diana ; Nakazawa, Yuka ; Mevissen, Tycho E. T. ; van Schie, Janne J. M. ; San Martin Alonso, Marta ; Boer, Daphne E. C. ; González-Prieto, Román ; Narayanan, Ishwarya V. ; Klaassen, Noud H. M. ; Wondergem, Annelotte P. ; Roohollahi, Khashayar ; Dorsman, Josephine C. ; Hara, Yuichiro ; Vertegaal, Alfred C. O. ; de Lange, Job ; Walter, Johannes C. ; Noordermeer, Sylvie M. ; Ljungman, Mats ; Ogi, Tomoo ; Wolthuis, Rob M. F. ; Luijsterburg, Martijn S.</creatorcontrib><description>Cells employ transcription-coupled repair (TCR) to eliminate transcription-blocking DNA lesions. DNA damage-induced binding of the TCR-specific repair factor CSB to RNA polymerase II (RNAPII) triggers RNAPII ubiquitylation of a single lysine (K1268) by the CRL4 CSA ubiquitin ligase. How CRL4 CSA is specifically directed towards K1268 is unknown. Here, we identify ELOF1 as the missing link that facilitates RNAPII ubiquitylation, a key signal for the assembly of downstream repair factors. This function requires its constitutive interaction with RNAPII close to K1268, revealing ELOF1 as a specificity factor that binds and positions CRL4 CSA for optimal RNAPII ubiquitylation. Drug–genetic interaction screening also revealed a CSB-independent pathway in which ELOF1 prevents R-loops in active genes and protects cells against DNA replication stress. Our study offers key insights into the molecular mechanisms of TCR and provides a genetic framework of the interplay between transcriptional stress responses and DNA replication. Two side-by-side papers report that the transcription elongation factor ELOF1 drives transcription-coupled repair and prevents replication stress.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/s41556-021-00688-9</identifier><identifier>PMID: 34108663</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 14 ; 38 ; 45 ; 631/337/1427 ; 631/337/151 ; 631/337/572 ; 631/80/458/582 ; 82 ; Biomedical and Life Sciences ; Cancer Research ; Cell Biology ; Cell Line, Tumor ; Cellular stress response ; CRISPR-Cas Systems ; Deoxyribonucleic acid ; Developmental Biology ; DNA ; DNA biosynthesis ; DNA Damage ; DNA Helicases - genetics ; DNA Helicases - metabolism ; DNA Repair ; DNA Repair Enzymes - genetics ; DNA Repair Enzymes - metabolism ; DNA-directed RNA polymerase ; Elongation ; Genetic screening ; Humans ; Life Sciences ; Lysine ; Molecular modelling ; Peptide Elongation Factor 1 - genetics ; Peptide Elongation Factor 1 - metabolism ; Poly-ADP-Ribose Binding Proteins - genetics ; Poly-ADP-Ribose Binding Proteins - metabolism ; Protein Binding ; Protein Interaction Domains and Motifs ; R-loops ; Repair ; Replication ; Ribonucleic acid ; RNA ; RNA polymerase ; RNA polymerase II ; RNA Polymerase II - genetics ; RNA Polymerase II - metabolism ; Stem Cells ; Transcription Elongation, Genetic ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription-coupled repair ; Ubiquitin ; Ubiquitin-protein ligase ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitination</subject><ispartof>Nature cell biology, 2021-06, Vol.23 (6), p.595-607</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-70314ceb9e33847abf08af3de5f7352939a78f8bf9d3e1d2c12aaed85b57f70d3</citedby><cites>FETCH-LOGICAL-c474t-70314ceb9e33847abf08af3de5f7352939a78f8bf9d3e1d2c12aaed85b57f70d3</cites><orcidid>0000-0002-2324-5292 ; 0000-0002-9002-8829 ; 0000-0002-3109-1588 ; 0000-0003-2737-9690 ; 0000-0003-1553-6695 ; 0000-0002-5492-9072 ; 0000-0001-5796-6541 ; 0000-0002-4186-7570 ; 0000-0001-8997-2321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41556-021-00688-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41556-021-00688-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34108663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van der Weegen, Yana</creatorcontrib><creatorcontrib>de Lint, Klaas</creatorcontrib><creatorcontrib>van den Heuvel, Diana</creatorcontrib><creatorcontrib>Nakazawa, Yuka</creatorcontrib><creatorcontrib>Mevissen, Tycho E. T.</creatorcontrib><creatorcontrib>van Schie, Janne J. M.</creatorcontrib><creatorcontrib>San Martin Alonso, Marta</creatorcontrib><creatorcontrib>Boer, Daphne E. C.</creatorcontrib><creatorcontrib>González-Prieto, Román</creatorcontrib><creatorcontrib>Narayanan, Ishwarya V.</creatorcontrib><creatorcontrib>Klaassen, Noud H. M.</creatorcontrib><creatorcontrib>Wondergem, Annelotte P.</creatorcontrib><creatorcontrib>Roohollahi, Khashayar</creatorcontrib><creatorcontrib>Dorsman, Josephine C.</creatorcontrib><creatorcontrib>Hara, Yuichiro</creatorcontrib><creatorcontrib>Vertegaal, Alfred C. O.</creatorcontrib><creatorcontrib>de Lange, Job</creatorcontrib><creatorcontrib>Walter, Johannes C.</creatorcontrib><creatorcontrib>Noordermeer, Sylvie M.</creatorcontrib><creatorcontrib>Ljungman, Mats</creatorcontrib><creatorcontrib>Ogi, Tomoo</creatorcontrib><creatorcontrib>Wolthuis, Rob M. F.</creatorcontrib><creatorcontrib>Luijsterburg, Martijn S.</creatorcontrib><title>ELOF1 is a transcription-coupled DNA repair factor that directs RNA polymerase II ubiquitylation</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Cells employ transcription-coupled repair (TCR) to eliminate transcription-blocking DNA lesions. DNA damage-induced binding of the TCR-specific repair factor CSB to RNA polymerase II (RNAPII) triggers RNAPII ubiquitylation of a single lysine (K1268) by the CRL4 CSA ubiquitin ligase. How CRL4 CSA is specifically directed towards K1268 is unknown. Here, we identify ELOF1 as the missing link that facilitates RNAPII ubiquitylation, a key signal for the assembly of downstream repair factors. This function requires its constitutive interaction with RNAPII close to K1268, revealing ELOF1 as a specificity factor that binds and positions CRL4 CSA for optimal RNAPII ubiquitylation. Drug–genetic interaction screening also revealed a CSB-independent pathway in which ELOF1 prevents R-loops in active genes and protects cells against DNA replication stress. Our study offers key insights into the molecular mechanisms of TCR and provides a genetic framework of the interplay between transcriptional stress responses and DNA replication. Two side-by-side papers report that the transcription elongation factor ELOF1 drives transcription-coupled repair and prevents replication stress.</description><subject>13</subject><subject>14</subject><subject>38</subject><subject>45</subject><subject>631/337/1427</subject><subject>631/337/151</subject><subject>631/337/572</subject><subject>631/80/458/582</subject><subject>82</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Cellular stress response</subject><subject>CRISPR-Cas Systems</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental Biology</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA Damage</subject><subject>DNA Helicases - genetics</subject><subject>DNA Helicases - metabolism</subject><subject>DNA Repair</subject><subject>DNA Repair Enzymes - genetics</subject><subject>DNA Repair Enzymes - metabolism</subject><subject>DNA-directed RNA polymerase</subject><subject>Elongation</subject><subject>Genetic screening</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Lysine</subject><subject>Molecular modelling</subject><subject>Peptide Elongation Factor 1 - genetics</subject><subject>Peptide Elongation Factor 1 - metabolism</subject><subject>Poly-ADP-Ribose Binding Proteins - genetics</subject><subject>Poly-ADP-Ribose Binding Proteins - metabolism</subject><subject>Protein Binding</subject><subject>Protein Interaction Domains and Motifs</subject><subject>R-loops</subject><subject>Repair</subject><subject>Replication</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>RNA polymerase II</subject><subject>RNA Polymerase II - genetics</subject><subject>RNA Polymerase II - metabolism</subject><subject>Stem Cells</subject><subject>Transcription Elongation, Genetic</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription-coupled repair</subject><subject>Ubiquitin</subject><subject>Ubiquitin-protein ligase</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitination</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtPJCEUhYnR-Jr5Ay4MiWsUCqqAjYnRVjvpaDKZWTMUBYqpLkqgTPrfS9s-Zjau7k3O4buHHACOCD4lmIqzxEhdNwhXBGHcCIHkFtgnjDeINVxur_emRpzKag8cpPSEMWEM812wRxnBomnoPvg7W9xfE-gT1DBHPSQT_Zh9GJAJ09jbDl7dXcBoR-0jdNrkEGF-1Bl2PlqTE_xV5DH0q6WNOlk4n8Op9c-Tz6terzk_wI7TfbI_3-ch-HM9-315ixb3N_PLiwUyjLOMOKaEGdtKS6lgXLcOC-1oZ2vHaV1JKjUXTrROdtSSrjKk0tp2om5r7jju6CE433DHqV3aztihfKdXY_RLHVcqaK_-Vwb_qB7CixJCYt7IAjh5B8TwPNmU1VOY4lAyq6qmJYCQlBRXtXGZGFKK1n1eIFitW1GbVlRpRb21otbo43-zfT75qKEY6MaQijQ82Ph1-xvsK-LDmao</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>van der Weegen, Yana</creator><creator>de Lint, Klaas</creator><creator>van den Heuvel, Diana</creator><creator>Nakazawa, Yuka</creator><creator>Mevissen, Tycho E. T.</creator><creator>van Schie, Janne J. M.</creator><creator>San Martin Alonso, Marta</creator><creator>Boer, Daphne E. C.</creator><creator>González-Prieto, Román</creator><creator>Narayanan, Ishwarya V.</creator><creator>Klaassen, Noud H. M.</creator><creator>Wondergem, Annelotte P.</creator><creator>Roohollahi, Khashayar</creator><creator>Dorsman, Josephine C.</creator><creator>Hara, Yuichiro</creator><creator>Vertegaal, Alfred C. O.</creator><creator>de Lange, Job</creator><creator>Walter, Johannes C.</creator><creator>Noordermeer, Sylvie M.</creator><creator>Ljungman, Mats</creator><creator>Ogi, Tomoo</creator><creator>Wolthuis, Rob M. F.</creator><creator>Luijsterburg, Martijn S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2324-5292</orcidid><orcidid>https://orcid.org/0000-0002-9002-8829</orcidid><orcidid>https://orcid.org/0000-0002-3109-1588</orcidid><orcidid>https://orcid.org/0000-0003-2737-9690</orcidid><orcidid>https://orcid.org/0000-0003-1553-6695</orcidid><orcidid>https://orcid.org/0000-0002-5492-9072</orcidid><orcidid>https://orcid.org/0000-0001-5796-6541</orcidid><orcidid>https://orcid.org/0000-0002-4186-7570</orcidid><orcidid>https://orcid.org/0000-0001-8997-2321</orcidid></search><sort><creationdate>20210601</creationdate><title>ELOF1 is a transcription-coupled DNA repair factor that directs RNA polymerase II ubiquitylation</title><author>van der Weegen, Yana ; de Lint, Klaas ; van den Heuvel, Diana ; Nakazawa, Yuka ; Mevissen, Tycho E. T. ; van Schie, Janne J. M. ; San Martin Alonso, Marta ; Boer, Daphne E. C. ; González-Prieto, Román ; Narayanan, Ishwarya V. ; Klaassen, Noud H. M. ; Wondergem, Annelotte P. ; Roohollahi, Khashayar ; Dorsman, Josephine C. ; Hara, Yuichiro ; Vertegaal, Alfred C. O. ; de Lange, Job ; Walter, Johannes C. ; Noordermeer, Sylvie M. ; Ljungman, Mats ; Ogi, Tomoo ; Wolthuis, Rob M. F. ; Luijsterburg, Martijn S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-70314ceb9e33847abf08af3de5f7352939a78f8bf9d3e1d2c12aaed85b57f70d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13</topic><topic>14</topic><topic>38</topic><topic>45</topic><topic>631/337/1427</topic><topic>631/337/151</topic><topic>631/337/572</topic><topic>631/80/458/582</topic><topic>82</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Cellular stress response</topic><topic>CRISPR-Cas Systems</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental Biology</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA Damage</topic><topic>DNA Helicases - genetics</topic><topic>DNA Helicases - metabolism</topic><topic>DNA Repair</topic><topic>DNA Repair Enzymes - genetics</topic><topic>DNA Repair Enzymes - metabolism</topic><topic>DNA-directed RNA polymerase</topic><topic>Elongation</topic><topic>Genetic screening</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Lysine</topic><topic>Molecular modelling</topic><topic>Peptide Elongation Factor 1 - genetics</topic><topic>Peptide Elongation Factor 1 - metabolism</topic><topic>Poly-ADP-Ribose Binding Proteins - genetics</topic><topic>Poly-ADP-Ribose Binding Proteins - metabolism</topic><topic>Protein Binding</topic><topic>Protein Interaction Domains and Motifs</topic><topic>R-loops</topic><topic>Repair</topic><topic>Replication</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>RNA polymerase II</topic><topic>RNA Polymerase II - genetics</topic><topic>RNA Polymerase II - metabolism</topic><topic>Stem Cells</topic><topic>Transcription Elongation, Genetic</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription-coupled repair</topic><topic>Ubiquitin</topic><topic>Ubiquitin-protein ligase</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Weegen, Yana</creatorcontrib><creatorcontrib>de Lint, Klaas</creatorcontrib><creatorcontrib>van den Heuvel, Diana</creatorcontrib><creatorcontrib>Nakazawa, Yuka</creatorcontrib><creatorcontrib>Mevissen, Tycho E. T.</creatorcontrib><creatorcontrib>van Schie, Janne J. M.</creatorcontrib><creatorcontrib>San Martin Alonso, Marta</creatorcontrib><creatorcontrib>Boer, Daphne E. C.</creatorcontrib><creatorcontrib>González-Prieto, Román</creatorcontrib><creatorcontrib>Narayanan, Ishwarya V.</creatorcontrib><creatorcontrib>Klaassen, Noud H. M.</creatorcontrib><creatorcontrib>Wondergem, Annelotte P.</creatorcontrib><creatorcontrib>Roohollahi, Khashayar</creatorcontrib><creatorcontrib>Dorsman, Josephine C.</creatorcontrib><creatorcontrib>Hara, Yuichiro</creatorcontrib><creatorcontrib>Vertegaal, Alfred C. O.</creatorcontrib><creatorcontrib>de Lange, Job</creatorcontrib><creatorcontrib>Walter, Johannes C.</creatorcontrib><creatorcontrib>Noordermeer, Sylvie M.</creatorcontrib><creatorcontrib>Ljungman, Mats</creatorcontrib><creatorcontrib>Ogi, Tomoo</creatorcontrib><creatorcontrib>Wolthuis, Rob M. F.</creatorcontrib><creatorcontrib>Luijsterburg, Martijn S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Weegen, Yana</au><au>de Lint, Klaas</au><au>van den Heuvel, Diana</au><au>Nakazawa, Yuka</au><au>Mevissen, Tycho E. T.</au><au>van Schie, Janne J. M.</au><au>San Martin Alonso, Marta</au><au>Boer, Daphne E. C.</au><au>González-Prieto, Román</au><au>Narayanan, Ishwarya V.</au><au>Klaassen, Noud H. M.</au><au>Wondergem, Annelotte P.</au><au>Roohollahi, Khashayar</au><au>Dorsman, Josephine C.</au><au>Hara, Yuichiro</au><au>Vertegaal, Alfred C. O.</au><au>de Lange, Job</au><au>Walter, Johannes C.</au><au>Noordermeer, Sylvie M.</au><au>Ljungman, Mats</au><au>Ogi, Tomoo</au><au>Wolthuis, Rob M. F.</au><au>Luijsterburg, Martijn S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ELOF1 is a transcription-coupled DNA repair factor that directs RNA polymerase II ubiquitylation</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>23</volume><issue>6</issue><spage>595</spage><epage>607</epage><pages>595-607</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Cells employ transcription-coupled repair (TCR) to eliminate transcription-blocking DNA lesions. DNA damage-induced binding of the TCR-specific repair factor CSB to RNA polymerase II (RNAPII) triggers RNAPII ubiquitylation of a single lysine (K1268) by the CRL4 CSA ubiquitin ligase. How CRL4 CSA is specifically directed towards K1268 is unknown. Here, we identify ELOF1 as the missing link that facilitates RNAPII ubiquitylation, a key signal for the assembly of downstream repair factors. This function requires its constitutive interaction with RNAPII close to K1268, revealing ELOF1 as a specificity factor that binds and positions CRL4 CSA for optimal RNAPII ubiquitylation. Drug–genetic interaction screening also revealed a CSB-independent pathway in which ELOF1 prevents R-loops in active genes and protects cells against DNA replication stress. Our study offers key insights into the molecular mechanisms of TCR and provides a genetic framework of the interplay between transcriptional stress responses and DNA replication. Two side-by-side papers report that the transcription elongation factor ELOF1 drives transcription-coupled repair and prevents replication stress.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34108663</pmid><doi>10.1038/s41556-021-00688-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2324-5292</orcidid><orcidid>https://orcid.org/0000-0002-9002-8829</orcidid><orcidid>https://orcid.org/0000-0002-3109-1588</orcidid><orcidid>https://orcid.org/0000-0003-2737-9690</orcidid><orcidid>https://orcid.org/0000-0003-1553-6695</orcidid><orcidid>https://orcid.org/0000-0002-5492-9072</orcidid><orcidid>https://orcid.org/0000-0001-5796-6541</orcidid><orcidid>https://orcid.org/0000-0002-4186-7570</orcidid><orcidid>https://orcid.org/0000-0001-8997-2321</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2021-06, Vol.23 (6), p.595-607
issn 1465-7392
1476-4679
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8890769
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 13
14
38
45
631/337/1427
631/337/151
631/337/572
631/80/458/582
82
Biomedical and Life Sciences
Cancer Research
Cell Biology
Cell Line, Tumor
Cellular stress response
CRISPR-Cas Systems
Deoxyribonucleic acid
Developmental Biology
DNA
DNA biosynthesis
DNA Damage
DNA Helicases - genetics
DNA Helicases - metabolism
DNA Repair
DNA Repair Enzymes - genetics
DNA Repair Enzymes - metabolism
DNA-directed RNA polymerase
Elongation
Genetic screening
Humans
Life Sciences
Lysine
Molecular modelling
Peptide Elongation Factor 1 - genetics
Peptide Elongation Factor 1 - metabolism
Poly-ADP-Ribose Binding Proteins - genetics
Poly-ADP-Ribose Binding Proteins - metabolism
Protein Binding
Protein Interaction Domains and Motifs
R-loops
Repair
Replication
Ribonucleic acid
RNA
RNA polymerase
RNA polymerase II
RNA Polymerase II - genetics
RNA Polymerase II - metabolism
Stem Cells
Transcription Elongation, Genetic
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription-coupled repair
Ubiquitin
Ubiquitin-protein ligase
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
title ELOF1 is a transcription-coupled DNA repair factor that directs RNA polymerase II ubiquitylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ELOF1%20is%20a%20transcription-coupled%20DNA%20repair%20factor%20that%20directs%20RNA%20polymerase%20II%20ubiquitylation&rft.jtitle=Nature%20cell%20biology&rft.au=van%20der%20Weegen,%20Yana&rft.date=2021-06-01&rft.volume=23&rft.issue=6&rft.spage=595&rft.epage=607&rft.pages=595-607&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/s41556-021-00688-9&rft_dat=%3Cproquest_pubme%3E2539398931%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539398931&rft_id=info:pmid/34108663&rfr_iscdi=true