Regulation of psbA and psaE Expression by Light Quality in Synechocystis Species PCC 6803. A Redox Control Mechanism
We investigated the influence of light of different wavelengths on the expression of the psbA gene, which encodes the D1 protein of the photosystem II and the psaE gene, which encodes the subunit Psa-E of the photosystem I, in Synechocystis sp PCC 6803. In an attempt to differentiate between a light...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2001-04, Vol.125 (4), p.1988-2000 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2000 |
---|---|
container_issue | 4 |
container_start_page | 1988 |
container_title | Plant physiology (Bethesda) |
container_volume | 125 |
creator | EL BISSATI, Kamal KIRILOVSKY, Diana |
description | We investigated the influence of light of different wavelengths on the expression of the psbA gene, which encodes the D1 protein of the photosystem II and the psaE gene, which encodes the subunit Psa-E of the photosystem I, in Synechocystis sp PCC 6803. In an attempt to differentiate between a light-sensory and a redox-sensory signaling processes, the effect of orange, blue, and far-red light was studied in the wild-type and in a phycobilisome-less mutant. Transferring wild-type cells from one type of illumination to another induced changes in the redox state of the electron transport chain and in psbA and psaE expression. Blue and far-red lights (which are preferentially absorbed by the photosystem I) induced an accumulation of psbA transcripts and a decrease of the psaE mRNA level. In contrast, orange light (which is preferentially absorbed by the photosystem II) induced a large accumulation of psaE transcripts and a decrease of psbA mRNA level. Transferring mutant cells from blue to orange light (or vice versa) had no effect either on the redox state of the electron transport chain or on the levels of psbA and psaE mRNAs. Thus, light quality seems to regulate expression of these genes via a redox sensory mechanism in Synechocystis sp PCC 6803 cells. Our data suggest that the redox state of one of the electron carriers between the plastoquinone pool and the photosystem I has opposite influences on psbA and psaE expression. Its reduction induces accumulation of psaE transcripts, and its oxidation induces accumulation of psbA mRNAs. |
doi_str_mv | 10.1104/pp.125.4.1988 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_88854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4279829</jstor_id><sourcerecordid>4279829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-9f045be0b8bd2e9ff842805fc483a1ee9ecfe86f460069d0b97b82f46d42361c3</originalsourceid><addsrcrecordid>eNpdkc2P0zAQxS0EYsvCkRtCFkjcEmzHTmyJSxV1F6QiYBfOluPYras0DnaCNv89jlqVj9PM6P1m_KwHwEuMcowRfT8MOSYspzkWnD8CK8wKkhFG-WOwQij1iHNxBZ7FeEAI4QLTp-AKYyJEUfEVGO_MburU6HwPvYVDbNZQ9W1q1AZuHoZgYly0ZoZbt9uP8NukOjfO0PXwfu6N3ns9x9FFeD8Y7UyEX-salhwVOVzDO9P6B1j7fgy-g58TrXoXj8_BE6u6aF6c6zX4cbP5Xn_Mtl9uP9XrbaZZicZMWERZY1DDm5YYYS2nhCNmNeWFwsYIo63hpaUlQqVoUSOqhpM0tpQUJdbFNfhwujtMzdG02iQfqpNDcEcVZumVk_8qvdvLnf8lOeeMpvV35_Xgf04mjvLoojZdp3rjpyirCrFktEzgm__Ag59Cn74mCeZlwRhZrmUnSAcfYzD24gMjuUQph0GmKCWVS5SJf_23-T_0ObsEvD0DKmrV2aB67eKFEyWheHn21Yk6xNGHi0pJJTgRxW-5i7Aa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218635524</pqid></control><display><type>article</type><title>Regulation of psbA and psaE Expression by Light Quality in Synechocystis Species PCC 6803. A Redox Control Mechanism</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>EL BISSATI, Kamal ; KIRILOVSKY, Diana</creator><creatorcontrib>EL BISSATI, Kamal ; KIRILOVSKY, Diana</creatorcontrib><description>We investigated the influence of light of different wavelengths on the expression of the psbA gene, which encodes the D1 protein of the photosystem II and the psaE gene, which encodes the subunit Psa-E of the photosystem I, in Synechocystis sp PCC 6803. In an attempt to differentiate between a light-sensory and a redox-sensory signaling processes, the effect of orange, blue, and far-red light was studied in the wild-type and in a phycobilisome-less mutant. Transferring wild-type cells from one type of illumination to another induced changes in the redox state of the electron transport chain and in psbA and psaE expression. Blue and far-red lights (which are preferentially absorbed by the photosystem I) induced an accumulation of psbA transcripts and a decrease of the psaE mRNA level. In contrast, orange light (which is preferentially absorbed by the photosystem II) induced a large accumulation of psaE transcripts and a decrease of psbA mRNA level. Transferring mutant cells from blue to orange light (or vice versa) had no effect either on the redox state of the electron transport chain or on the levels of psbA and psaE mRNAs. Thus, light quality seems to regulate expression of these genes via a redox sensory mechanism in Synechocystis sp PCC 6803 cells. Our data suggest that the redox state of one of the electron carriers between the plastoquinone pool and the photosystem I has opposite influences on psbA and psaE expression. Its reduction induces accumulation of psaE transcripts, and its oxidation induces accumulation of psbA mRNAs.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.125.4.1988</identifier><identifier>PMID: 11299378</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>Accumulation ; Biological and medical sciences ; Charge carriers ; Colors ; Cyanobacteria ; Cyanobacteria - drug effects ; Cyanobacteria - genetics ; Cyanobacteria - radiation effects ; Diuron - pharmacology ; Electron Transport - drug effects ; Electron Transport - radiation effects ; Electron transport chain ; Environmental Stress and Adaptation ; Fluorescence ; Fundamental and applied biological sciences. Psychology ; Gene expression regulation ; Gene Expression Regulation, Bacterial - drug effects ; Gene Expression Regulation, Bacterial - radiation effects ; Genes ; Light ; Light quality ; Lighting ; Messenger RNA ; Metabolism ; Oxidation-Reduction ; Photoreceptors ; Photosynthesis, respiration. Anabolism, catabolism ; Photosynthetic Reaction Center Complex Proteins - genetics ; Photosystem I Protein Complex ; Photosystem II Protein Complex ; Phycobilisomes ; Plant physiology and development ; Plants ; RNA, Messenger - genetics ; Transcription, Genetic - radiation effects ; Wavelengths</subject><ispartof>Plant physiology (Bethesda), 2001-04, Vol.125 (4), p.1988-2000</ispartof><rights>Copyright 2001 American Society of Plant Physiologists</rights><rights>2001 INIST-CNRS</rights><rights>Copyright American Society of Plant Physiologists Apr 2001</rights><rights>Copyright © 2001, American Society of Plant Physiologists 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-9f045be0b8bd2e9ff842805fc483a1ee9ecfe86f460069d0b97b82f46d42361c3</citedby><cites>FETCH-LOGICAL-c560t-9f045be0b8bd2e9ff842805fc483a1ee9ecfe86f460069d0b97b82f46d42361c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4279829$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4279829$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,781,785,804,886,27929,27930,58022,58255</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=962414$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11299378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>EL BISSATI, Kamal</creatorcontrib><creatorcontrib>KIRILOVSKY, Diana</creatorcontrib><title>Regulation of psbA and psaE Expression by Light Quality in Synechocystis Species PCC 6803. A Redox Control Mechanism</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>We investigated the influence of light of different wavelengths on the expression of the psbA gene, which encodes the D1 protein of the photosystem II and the psaE gene, which encodes the subunit Psa-E of the photosystem I, in Synechocystis sp PCC 6803. In an attempt to differentiate between a light-sensory and a redox-sensory signaling processes, the effect of orange, blue, and far-red light was studied in the wild-type and in a phycobilisome-less mutant. Transferring wild-type cells from one type of illumination to another induced changes in the redox state of the electron transport chain and in psbA and psaE expression. Blue and far-red lights (which are preferentially absorbed by the photosystem I) induced an accumulation of psbA transcripts and a decrease of the psaE mRNA level. In contrast, orange light (which is preferentially absorbed by the photosystem II) induced a large accumulation of psaE transcripts and a decrease of psbA mRNA level. Transferring mutant cells from blue to orange light (or vice versa) had no effect either on the redox state of the electron transport chain or on the levels of psbA and psaE mRNAs. Thus, light quality seems to regulate expression of these genes via a redox sensory mechanism in Synechocystis sp PCC 6803 cells. Our data suggest that the redox state of one of the electron carriers between the plastoquinone pool and the photosystem I has opposite influences on psbA and psaE expression. Its reduction induces accumulation of psaE transcripts, and its oxidation induces accumulation of psbA mRNAs.</description><subject>Accumulation</subject><subject>Biological and medical sciences</subject><subject>Charge carriers</subject><subject>Colors</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - drug effects</subject><subject>Cyanobacteria - genetics</subject><subject>Cyanobacteria - radiation effects</subject><subject>Diuron - pharmacology</subject><subject>Electron Transport - drug effects</subject><subject>Electron Transport - radiation effects</subject><subject>Electron transport chain</subject><subject>Environmental Stress and Adaptation</subject><subject>Fluorescence</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation, Bacterial - drug effects</subject><subject>Gene Expression Regulation, Bacterial - radiation effects</subject><subject>Genes</subject><subject>Light</subject><subject>Light quality</subject><subject>Lighting</subject><subject>Messenger RNA</subject><subject>Metabolism</subject><subject>Oxidation-Reduction</subject><subject>Photoreceptors</subject><subject>Photosynthesis, respiration. Anabolism, catabolism</subject><subject>Photosynthetic Reaction Center Complex Proteins - genetics</subject><subject>Photosystem I Protein Complex</subject><subject>Photosystem II Protein Complex</subject><subject>Phycobilisomes</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>RNA, Messenger - genetics</subject><subject>Transcription, Genetic - radiation effects</subject><subject>Wavelengths</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc2P0zAQxS0EYsvCkRtCFkjcEmzHTmyJSxV1F6QiYBfOluPYras0DnaCNv89jlqVj9PM6P1m_KwHwEuMcowRfT8MOSYspzkWnD8CK8wKkhFG-WOwQij1iHNxBZ7FeEAI4QLTp-AKYyJEUfEVGO_MburU6HwPvYVDbNZQ9W1q1AZuHoZgYly0ZoZbt9uP8NukOjfO0PXwfu6N3ns9x9FFeD8Y7UyEX-salhwVOVzDO9P6B1j7fgy-g58TrXoXj8_BE6u6aF6c6zX4cbP5Xn_Mtl9uP9XrbaZZicZMWERZY1DDm5YYYS2nhCNmNeWFwsYIo63hpaUlQqVoUSOqhpM0tpQUJdbFNfhwujtMzdG02iQfqpNDcEcVZumVk_8qvdvLnf8lOeeMpvV35_Xgf04mjvLoojZdp3rjpyirCrFktEzgm__Ag59Cn74mCeZlwRhZrmUnSAcfYzD24gMjuUQph0GmKCWVS5SJf_23-T_0ObsEvD0DKmrV2aB67eKFEyWheHn21Yk6xNGHi0pJJTgRxW-5i7Aa</recordid><startdate>20010401</startdate><enddate>20010401</enddate><creator>EL BISSATI, Kamal</creator><creator>KIRILOVSKY, Diana</creator><general>American Society of Plant Physiologists</general><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20010401</creationdate><title>Regulation of psbA and psaE Expression by Light Quality in Synechocystis Species PCC 6803. A Redox Control Mechanism</title><author>EL BISSATI, Kamal ; KIRILOVSKY, Diana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-9f045be0b8bd2e9ff842805fc483a1ee9ecfe86f460069d0b97b82f46d42361c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Accumulation</topic><topic>Biological and medical sciences</topic><topic>Charge carriers</topic><topic>Colors</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - drug effects</topic><topic>Cyanobacteria - genetics</topic><topic>Cyanobacteria - radiation effects</topic><topic>Diuron - pharmacology</topic><topic>Electron Transport - drug effects</topic><topic>Electron Transport - radiation effects</topic><topic>Electron transport chain</topic><topic>Environmental Stress and Adaptation</topic><topic>Fluorescence</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation, Bacterial - drug effects</topic><topic>Gene Expression Regulation, Bacterial - radiation effects</topic><topic>Genes</topic><topic>Light</topic><topic>Light quality</topic><topic>Lighting</topic><topic>Messenger RNA</topic><topic>Metabolism</topic><topic>Oxidation-Reduction</topic><topic>Photoreceptors</topic><topic>Photosynthesis, respiration. Anabolism, catabolism</topic><topic>Photosynthetic Reaction Center Complex Proteins - genetics</topic><topic>Photosystem I Protein Complex</topic><topic>Photosystem II Protein Complex</topic><topic>Phycobilisomes</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>RNA, Messenger - genetics</topic><topic>Transcription, Genetic - radiation effects</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>EL BISSATI, Kamal</creatorcontrib><creatorcontrib>KIRILOVSKY, Diana</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>EL BISSATI, Kamal</au><au>KIRILOVSKY, Diana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of psbA and psaE Expression by Light Quality in Synechocystis Species PCC 6803. A Redox Control Mechanism</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2001-04-01</date><risdate>2001</risdate><volume>125</volume><issue>4</issue><spage>1988</spage><epage>2000</epage><pages>1988-2000</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>We investigated the influence of light of different wavelengths on the expression of the psbA gene, which encodes the D1 protein of the photosystem II and the psaE gene, which encodes the subunit Psa-E of the photosystem I, in Synechocystis sp PCC 6803. In an attempt to differentiate between a light-sensory and a redox-sensory signaling processes, the effect of orange, blue, and far-red light was studied in the wild-type and in a phycobilisome-less mutant. Transferring wild-type cells from one type of illumination to another induced changes in the redox state of the electron transport chain and in psbA and psaE expression. Blue and far-red lights (which are preferentially absorbed by the photosystem I) induced an accumulation of psbA transcripts and a decrease of the psaE mRNA level. In contrast, orange light (which is preferentially absorbed by the photosystem II) induced a large accumulation of psaE transcripts and a decrease of psbA mRNA level. Transferring mutant cells from blue to orange light (or vice versa) had no effect either on the redox state of the electron transport chain or on the levels of psbA and psaE mRNAs. Thus, light quality seems to regulate expression of these genes via a redox sensory mechanism in Synechocystis sp PCC 6803 cells. Our data suggest that the redox state of one of the electron carriers between the plastoquinone pool and the photosystem I has opposite influences on psbA and psaE expression. Its reduction induces accumulation of psaE transcripts, and its oxidation induces accumulation of psbA mRNAs.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><pmid>11299378</pmid><doi>10.1104/pp.125.4.1988</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2001-04, Vol.125 (4), p.1988-2000 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_88854 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current) |
subjects | Accumulation Biological and medical sciences Charge carriers Colors Cyanobacteria Cyanobacteria - drug effects Cyanobacteria - genetics Cyanobacteria - radiation effects Diuron - pharmacology Electron Transport - drug effects Electron Transport - radiation effects Electron transport chain Environmental Stress and Adaptation Fluorescence Fundamental and applied biological sciences. Psychology Gene expression regulation Gene Expression Regulation, Bacterial - drug effects Gene Expression Regulation, Bacterial - radiation effects Genes Light Light quality Lighting Messenger RNA Metabolism Oxidation-Reduction Photoreceptors Photosynthesis, respiration. Anabolism, catabolism Photosynthetic Reaction Center Complex Proteins - genetics Photosystem I Protein Complex Photosystem II Protein Complex Phycobilisomes Plant physiology and development Plants RNA, Messenger - genetics Transcription, Genetic - radiation effects Wavelengths |
title | Regulation of psbA and psaE Expression by Light Quality in Synechocystis Species PCC 6803. A Redox Control Mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T04%3A41%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20psbA%20and%20psaE%20Expression%20by%20Light%20Quality%20in%20Synechocystis%20Species%20PCC%206803.%20A%20Redox%20Control%20Mechanism&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=EL%20BISSATI,%20Kamal&rft.date=2001-04-01&rft.volume=125&rft.issue=4&rft.spage=1988&rft.epage=2000&rft.pages=1988-2000&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.125.4.1988&rft_dat=%3Cjstor_pubme%3E4279829%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218635524&rft_id=info:pmid/11299378&rft_jstor_id=4279829&rfr_iscdi=true |