Regulation of psbA and psaE Expression by Light Quality in Synechocystis Species PCC 6803. A Redox Control Mechanism

We investigated the influence of light of different wavelengths on the expression of the psbA gene, which encodes the D1 protein of the photosystem II and the psaE gene, which encodes the subunit Psa-E of the photosystem I, in Synechocystis sp PCC 6803. In an attempt to differentiate between a light...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2001-04, Vol.125 (4), p.1988-2000
Hauptverfasser: EL BISSATI, Kamal, KIRILOVSKY, Diana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2000
container_issue 4
container_start_page 1988
container_title Plant physiology (Bethesda)
container_volume 125
creator EL BISSATI, Kamal
KIRILOVSKY, Diana
description We investigated the influence of light of different wavelengths on the expression of the psbA gene, which encodes the D1 protein of the photosystem II and the psaE gene, which encodes the subunit Psa-E of the photosystem I, in Synechocystis sp PCC 6803. In an attempt to differentiate between a light-sensory and a redox-sensory signaling processes, the effect of orange, blue, and far-red light was studied in the wild-type and in a phycobilisome-less mutant. Transferring wild-type cells from one type of illumination to another induced changes in the redox state of the electron transport chain and in psbA and psaE expression. Blue and far-red lights (which are preferentially absorbed by the photosystem I) induced an accumulation of psbA transcripts and a decrease of the psaE mRNA level. In contrast, orange light (which is preferentially absorbed by the photosystem II) induced a large accumulation of psaE transcripts and a decrease of psbA mRNA level. Transferring mutant cells from blue to orange light (or vice versa) had no effect either on the redox state of the electron transport chain or on the levels of psbA and psaE mRNAs. Thus, light quality seems to regulate expression of these genes via a redox sensory mechanism in Synechocystis sp PCC 6803 cells. Our data suggest that the redox state of one of the electron carriers between the plastoquinone pool and the photosystem I has opposite influences on psbA and psaE expression. Its reduction induces accumulation of psaE transcripts, and its oxidation induces accumulation of psbA mRNAs.
doi_str_mv 10.1104/pp.125.4.1988
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_88854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4279829</jstor_id><sourcerecordid>4279829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-9f045be0b8bd2e9ff842805fc483a1ee9ecfe86f460069d0b97b82f46d42361c3</originalsourceid><addsrcrecordid>eNpdkc2P0zAQxS0EYsvCkRtCFkjcEmzHTmyJSxV1F6QiYBfOluPYras0DnaCNv89jlqVj9PM6P1m_KwHwEuMcowRfT8MOSYspzkWnD8CK8wKkhFG-WOwQij1iHNxBZ7FeEAI4QLTp-AKYyJEUfEVGO_MburU6HwPvYVDbNZQ9W1q1AZuHoZgYly0ZoZbt9uP8NukOjfO0PXwfu6N3ns9x9FFeD8Y7UyEX-salhwVOVzDO9P6B1j7fgy-g58TrXoXj8_BE6u6aF6c6zX4cbP5Xn_Mtl9uP9XrbaZZicZMWERZY1DDm5YYYS2nhCNmNeWFwsYIo63hpaUlQqVoUSOqhpM0tpQUJdbFNfhwujtMzdG02iQfqpNDcEcVZumVk_8qvdvLnf8lOeeMpvV35_Xgf04mjvLoojZdp3rjpyirCrFktEzgm__Ag59Cn74mCeZlwRhZrmUnSAcfYzD24gMjuUQph0GmKCWVS5SJf_23-T_0ObsEvD0DKmrV2aB67eKFEyWheHn21Yk6xNGHi0pJJTgRxW-5i7Aa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218635524</pqid></control><display><type>article</type><title>Regulation of psbA and psaE Expression by Light Quality in Synechocystis Species PCC 6803. A Redox Control Mechanism</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>EL BISSATI, Kamal ; KIRILOVSKY, Diana</creator><creatorcontrib>EL BISSATI, Kamal ; KIRILOVSKY, Diana</creatorcontrib><description>We investigated the influence of light of different wavelengths on the expression of the psbA gene, which encodes the D1 protein of the photosystem II and the psaE gene, which encodes the subunit Psa-E of the photosystem I, in Synechocystis sp PCC 6803. In an attempt to differentiate between a light-sensory and a redox-sensory signaling processes, the effect of orange, blue, and far-red light was studied in the wild-type and in a phycobilisome-less mutant. Transferring wild-type cells from one type of illumination to another induced changes in the redox state of the electron transport chain and in psbA and psaE expression. Blue and far-red lights (which are preferentially absorbed by the photosystem I) induced an accumulation of psbA transcripts and a decrease of the psaE mRNA level. In contrast, orange light (which is preferentially absorbed by the photosystem II) induced a large accumulation of psaE transcripts and a decrease of psbA mRNA level. Transferring mutant cells from blue to orange light (or vice versa) had no effect either on the redox state of the electron transport chain or on the levels of psbA and psaE mRNAs. Thus, light quality seems to regulate expression of these genes via a redox sensory mechanism in Synechocystis sp PCC 6803 cells. Our data suggest that the redox state of one of the electron carriers between the plastoquinone pool and the photosystem I has opposite influences on psbA and psaE expression. Its reduction induces accumulation of psaE transcripts, and its oxidation induces accumulation of psbA mRNAs.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.125.4.1988</identifier><identifier>PMID: 11299378</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>Accumulation ; Biological and medical sciences ; Charge carriers ; Colors ; Cyanobacteria ; Cyanobacteria - drug effects ; Cyanobacteria - genetics ; Cyanobacteria - radiation effects ; Diuron - pharmacology ; Electron Transport - drug effects ; Electron Transport - radiation effects ; Electron transport chain ; Environmental Stress and Adaptation ; Fluorescence ; Fundamental and applied biological sciences. Psychology ; Gene expression regulation ; Gene Expression Regulation, Bacterial - drug effects ; Gene Expression Regulation, Bacterial - radiation effects ; Genes ; Light ; Light quality ; Lighting ; Messenger RNA ; Metabolism ; Oxidation-Reduction ; Photoreceptors ; Photosynthesis, respiration. Anabolism, catabolism ; Photosynthetic Reaction Center Complex Proteins - genetics ; Photosystem I Protein Complex ; Photosystem II Protein Complex ; Phycobilisomes ; Plant physiology and development ; Plants ; RNA, Messenger - genetics ; Transcription, Genetic - radiation effects ; Wavelengths</subject><ispartof>Plant physiology (Bethesda), 2001-04, Vol.125 (4), p.1988-2000</ispartof><rights>Copyright 2001 American Society of Plant Physiologists</rights><rights>2001 INIST-CNRS</rights><rights>Copyright American Society of Plant Physiologists Apr 2001</rights><rights>Copyright © 2001, American Society of Plant Physiologists 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-9f045be0b8bd2e9ff842805fc483a1ee9ecfe86f460069d0b97b82f46d42361c3</citedby><cites>FETCH-LOGICAL-c560t-9f045be0b8bd2e9ff842805fc483a1ee9ecfe86f460069d0b97b82f46d42361c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4279829$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4279829$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,781,785,804,886,27929,27930,58022,58255</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=962414$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11299378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>EL BISSATI, Kamal</creatorcontrib><creatorcontrib>KIRILOVSKY, Diana</creatorcontrib><title>Regulation of psbA and psaE Expression by Light Quality in Synechocystis Species PCC 6803. A Redox Control Mechanism</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>We investigated the influence of light of different wavelengths on the expression of the psbA gene, which encodes the D1 protein of the photosystem II and the psaE gene, which encodes the subunit Psa-E of the photosystem I, in Synechocystis sp PCC 6803. In an attempt to differentiate between a light-sensory and a redox-sensory signaling processes, the effect of orange, blue, and far-red light was studied in the wild-type and in a phycobilisome-less mutant. Transferring wild-type cells from one type of illumination to another induced changes in the redox state of the electron transport chain and in psbA and psaE expression. Blue and far-red lights (which are preferentially absorbed by the photosystem I) induced an accumulation of psbA transcripts and a decrease of the psaE mRNA level. In contrast, orange light (which is preferentially absorbed by the photosystem II) induced a large accumulation of psaE transcripts and a decrease of psbA mRNA level. Transferring mutant cells from blue to orange light (or vice versa) had no effect either on the redox state of the electron transport chain or on the levels of psbA and psaE mRNAs. Thus, light quality seems to regulate expression of these genes via a redox sensory mechanism in Synechocystis sp PCC 6803 cells. Our data suggest that the redox state of one of the electron carriers between the plastoquinone pool and the photosystem I has opposite influences on psbA and psaE expression. Its reduction induces accumulation of psaE transcripts, and its oxidation induces accumulation of psbA mRNAs.</description><subject>Accumulation</subject><subject>Biological and medical sciences</subject><subject>Charge carriers</subject><subject>Colors</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - drug effects</subject><subject>Cyanobacteria - genetics</subject><subject>Cyanobacteria - radiation effects</subject><subject>Diuron - pharmacology</subject><subject>Electron Transport - drug effects</subject><subject>Electron Transport - radiation effects</subject><subject>Electron transport chain</subject><subject>Environmental Stress and Adaptation</subject><subject>Fluorescence</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation, Bacterial - drug effects</subject><subject>Gene Expression Regulation, Bacterial - radiation effects</subject><subject>Genes</subject><subject>Light</subject><subject>Light quality</subject><subject>Lighting</subject><subject>Messenger RNA</subject><subject>Metabolism</subject><subject>Oxidation-Reduction</subject><subject>Photoreceptors</subject><subject>Photosynthesis, respiration. Anabolism, catabolism</subject><subject>Photosynthetic Reaction Center Complex Proteins - genetics</subject><subject>Photosystem I Protein Complex</subject><subject>Photosystem II Protein Complex</subject><subject>Phycobilisomes</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>RNA, Messenger - genetics</subject><subject>Transcription, Genetic - radiation effects</subject><subject>Wavelengths</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc2P0zAQxS0EYsvCkRtCFkjcEmzHTmyJSxV1F6QiYBfOluPYras0DnaCNv89jlqVj9PM6P1m_KwHwEuMcowRfT8MOSYspzkWnD8CK8wKkhFG-WOwQij1iHNxBZ7FeEAI4QLTp-AKYyJEUfEVGO_MburU6HwPvYVDbNZQ9W1q1AZuHoZgYly0ZoZbt9uP8NukOjfO0PXwfu6N3ns9x9FFeD8Y7UyEX-salhwVOVzDO9P6B1j7fgy-g58TrXoXj8_BE6u6aF6c6zX4cbP5Xn_Mtl9uP9XrbaZZicZMWERZY1DDm5YYYS2nhCNmNeWFwsYIo63hpaUlQqVoUSOqhpM0tpQUJdbFNfhwujtMzdG02iQfqpNDcEcVZumVk_8qvdvLnf8lOeeMpvV35_Xgf04mjvLoojZdp3rjpyirCrFktEzgm__Ag59Cn74mCeZlwRhZrmUnSAcfYzD24gMjuUQph0GmKCWVS5SJf_23-T_0ObsEvD0DKmrV2aB67eKFEyWheHn21Yk6xNGHi0pJJTgRxW-5i7Aa</recordid><startdate>20010401</startdate><enddate>20010401</enddate><creator>EL BISSATI, Kamal</creator><creator>KIRILOVSKY, Diana</creator><general>American Society of Plant Physiologists</general><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20010401</creationdate><title>Regulation of psbA and psaE Expression by Light Quality in Synechocystis Species PCC 6803. A Redox Control Mechanism</title><author>EL BISSATI, Kamal ; KIRILOVSKY, Diana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-9f045be0b8bd2e9ff842805fc483a1ee9ecfe86f460069d0b97b82f46d42361c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Accumulation</topic><topic>Biological and medical sciences</topic><topic>Charge carriers</topic><topic>Colors</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - drug effects</topic><topic>Cyanobacteria - genetics</topic><topic>Cyanobacteria - radiation effects</topic><topic>Diuron - pharmacology</topic><topic>Electron Transport - drug effects</topic><topic>Electron Transport - radiation effects</topic><topic>Electron transport chain</topic><topic>Environmental Stress and Adaptation</topic><topic>Fluorescence</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation, Bacterial - drug effects</topic><topic>Gene Expression Regulation, Bacterial - radiation effects</topic><topic>Genes</topic><topic>Light</topic><topic>Light quality</topic><topic>Lighting</topic><topic>Messenger RNA</topic><topic>Metabolism</topic><topic>Oxidation-Reduction</topic><topic>Photoreceptors</topic><topic>Photosynthesis, respiration. Anabolism, catabolism</topic><topic>Photosynthetic Reaction Center Complex Proteins - genetics</topic><topic>Photosystem I Protein Complex</topic><topic>Photosystem II Protein Complex</topic><topic>Phycobilisomes</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>RNA, Messenger - genetics</topic><topic>Transcription, Genetic - radiation effects</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>EL BISSATI, Kamal</creatorcontrib><creatorcontrib>KIRILOVSKY, Diana</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>EL BISSATI, Kamal</au><au>KIRILOVSKY, Diana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of psbA and psaE Expression by Light Quality in Synechocystis Species PCC 6803. A Redox Control Mechanism</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2001-04-01</date><risdate>2001</risdate><volume>125</volume><issue>4</issue><spage>1988</spage><epage>2000</epage><pages>1988-2000</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>We investigated the influence of light of different wavelengths on the expression of the psbA gene, which encodes the D1 protein of the photosystem II and the psaE gene, which encodes the subunit Psa-E of the photosystem I, in Synechocystis sp PCC 6803. In an attempt to differentiate between a light-sensory and a redox-sensory signaling processes, the effect of orange, blue, and far-red light was studied in the wild-type and in a phycobilisome-less mutant. Transferring wild-type cells from one type of illumination to another induced changes in the redox state of the electron transport chain and in psbA and psaE expression. Blue and far-red lights (which are preferentially absorbed by the photosystem I) induced an accumulation of psbA transcripts and a decrease of the psaE mRNA level. In contrast, orange light (which is preferentially absorbed by the photosystem II) induced a large accumulation of psaE transcripts and a decrease of psbA mRNA level. Transferring mutant cells from blue to orange light (or vice versa) had no effect either on the redox state of the electron transport chain or on the levels of psbA and psaE mRNAs. Thus, light quality seems to regulate expression of these genes via a redox sensory mechanism in Synechocystis sp PCC 6803 cells. Our data suggest that the redox state of one of the electron carriers between the plastoquinone pool and the photosystem I has opposite influences on psbA and psaE expression. Its reduction induces accumulation of psaE transcripts, and its oxidation induces accumulation of psbA mRNAs.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><pmid>11299378</pmid><doi>10.1104/pp.125.4.1988</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2001-04, Vol.125 (4), p.1988-2000
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_88854
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects Accumulation
Biological and medical sciences
Charge carriers
Colors
Cyanobacteria
Cyanobacteria - drug effects
Cyanobacteria - genetics
Cyanobacteria - radiation effects
Diuron - pharmacology
Electron Transport - drug effects
Electron Transport - radiation effects
Electron transport chain
Environmental Stress and Adaptation
Fluorescence
Fundamental and applied biological sciences. Psychology
Gene expression regulation
Gene Expression Regulation, Bacterial - drug effects
Gene Expression Regulation, Bacterial - radiation effects
Genes
Light
Light quality
Lighting
Messenger RNA
Metabolism
Oxidation-Reduction
Photoreceptors
Photosynthesis, respiration. Anabolism, catabolism
Photosynthetic Reaction Center Complex Proteins - genetics
Photosystem I Protein Complex
Photosystem II Protein Complex
Phycobilisomes
Plant physiology and development
Plants
RNA, Messenger - genetics
Transcription, Genetic - radiation effects
Wavelengths
title Regulation of psbA and psaE Expression by Light Quality in Synechocystis Species PCC 6803. A Redox Control Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T04%3A41%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20psbA%20and%20psaE%20Expression%20by%20Light%20Quality%20in%20Synechocystis%20Species%20PCC%206803.%20A%20Redox%20Control%20Mechanism&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=EL%20BISSATI,%20Kamal&rft.date=2001-04-01&rft.volume=125&rft.issue=4&rft.spage=1988&rft.epage=2000&rft.pages=1988-2000&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.125.4.1988&rft_dat=%3Cjstor_pubme%3E4279829%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218635524&rft_id=info:pmid/11299378&rft_jstor_id=4279829&rfr_iscdi=true