A multi-sequences MRI deep framework study applied to glioma classfication

Glioma is one of the most important central nervous system tumors, ranked 15th in the most common cancer for men and women. Magnetic Resonance Imaging (MRI) represents a common tool for medical experts to the diagnosis of glioma. A set of multi-sequences from an MRI is selected according to the seve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2022-04, Vol.81 (10), p.13563-13591
Hauptverfasser: Coupet, Matthieu, Urruty, Thierry, Leelanupab, Teerapong, Naudin, Mathieu, Bourdon, Pascal, Maloigne, Christine Fernandez, Guillevin, Rémy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13591
container_issue 10
container_start_page 13563
container_title Multimedia tools and applications
container_volume 81
creator Coupet, Matthieu
Urruty, Thierry
Leelanupab, Teerapong
Naudin, Mathieu
Bourdon, Pascal
Maloigne, Christine Fernandez
Guillevin, Rémy
description Glioma is one of the most important central nervous system tumors, ranked 15th in the most common cancer for men and women. Magnetic Resonance Imaging (MRI) represents a common tool for medical experts to the diagnosis of glioma. A set of multi-sequences from an MRI is selected according to the severity of the pathology. Our proposed approach aims moreto create a computer-aided system that is capable of helping morethe expert diagnose the brain gliomas. moreWe propose a supervised learning regime based on a convolutional neural network based framework and transfer learning techniques. Our research morefocuses on the performance of different pre-trained deep learning models with respect to different MRI sequences. We highlight the best combinations of such model-MRI sequence couple for our specific task of classifying healthy brain against brain with glioma. moreWe also propose to visually analyze the extracted deep features for studying the existing relation of the MRI sequences and models. This interpretability analysis gives some hints for medical expert to understand the diagnosis made by the models. Our study is based on the well-known BraTS datasets including multi-sequence images and expert diagnosis.
doi_str_mv 10.1007/s11042-022-12316-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8882719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636887658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-9e6efea3ce976e58c517dd5eab60545e5a65eed6d819473df1073f0ac29d43803</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS0Eog_4AyyQJTZ0YfAjfmSDdFUBLboICcHacu3JrUsSBzsp6r_Hl5QCXbCy5fl8zswchJ4x-opRql8XxmjDCeWcMC6YIuwBOmRSC6I1Zw_rXRhKtKTsAB2VckUpU5I3j9GBkFxSIc0h-rDBw9LPkRT4vsDooeCPn89xAJhwl90AP1L-hsu8hBvspqmPEPCc8K6PaXDY966ULno3xzQ-QY861xd4enseo6_v3n45PSPbT-_PTzdb4iU1M2lBQQdOeGi1Amm8ZDoECe5CUdlIkE5JgKCCYW2jRegY1aKjzvM2NHUgcYzerLrTcjFA8DDO2fV2ynFw-cYmF-2_lTFe2l26tsYYrllbBU5Wgct73842W7t_o41ueLW9ZpV9eWuWU11Qme0Qi4e-dyOkpViuhDJGK2kq-uIeepWWPNZVVErKVtBqXym-Uj6nUjJ0dx0wavex2jVWW2O1v2K1-y6e_z3y3ZffOVZArECppXEH-Y_3f2R_AhsyrRM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655930827</pqid></control><display><type>article</type><title>A multi-sequences MRI deep framework study applied to glioma classfication</title><source>SpringerLink Journals - AutoHoldings</source><creator>Coupet, Matthieu ; Urruty, Thierry ; Leelanupab, Teerapong ; Naudin, Mathieu ; Bourdon, Pascal ; Maloigne, Christine Fernandez ; Guillevin, Rémy</creator><creatorcontrib>Coupet, Matthieu ; Urruty, Thierry ; Leelanupab, Teerapong ; Naudin, Mathieu ; Bourdon, Pascal ; Maloigne, Christine Fernandez ; Guillevin, Rémy</creatorcontrib><description>Glioma is one of the most important central nervous system tumors, ranked 15th in the most common cancer for men and women. Magnetic Resonance Imaging (MRI) represents a common tool for medical experts to the diagnosis of glioma. A set of multi-sequences from an MRI is selected according to the severity of the pathology. Our proposed approach aims moreto create a computer-aided system that is capable of helping morethe expert diagnose the brain gliomas. moreWe propose a supervised learning regime based on a convolutional neural network based framework and transfer learning techniques. Our research morefocuses on the performance of different pre-trained deep learning models with respect to different MRI sequences. We highlight the best combinations of such model-MRI sequence couple for our specific task of classifying healthy brain against brain with glioma. moreWe also propose to visually analyze the extracted deep features for studying the existing relation of the MRI sequences and models. This interpretability analysis gives some hints for medical expert to understand the diagnosis made by the models. Our study is based on the well-known BraTS datasets including multi-sequence images and expert diagnosis.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-022-12316-1</identifier><identifier>PMID: 35250358</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>1176: Artificial Intelligence and Deep Learning for Biomedical Applications ; Artificial neural networks ; Brain ; Central nervous system ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Deep learning ; Diagnosis ; Feature extraction ; Glioma ; Machine learning ; Magnetic resonance imaging ; Multimedia Information Systems ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2022-04, Vol.81 (10), p.13563-13591</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-9e6efea3ce976e58c517dd5eab60545e5a65eed6d819473df1073f0ac29d43803</citedby><cites>FETCH-LOGICAL-c508t-9e6efea3ce976e58c517dd5eab60545e5a65eed6d819473df1073f0ac29d43803</cites><orcidid>0000-0002-8117-0612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-022-12316-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-022-12316-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35250358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04742107$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Coupet, Matthieu</creatorcontrib><creatorcontrib>Urruty, Thierry</creatorcontrib><creatorcontrib>Leelanupab, Teerapong</creatorcontrib><creatorcontrib>Naudin, Mathieu</creatorcontrib><creatorcontrib>Bourdon, Pascal</creatorcontrib><creatorcontrib>Maloigne, Christine Fernandez</creatorcontrib><creatorcontrib>Guillevin, Rémy</creatorcontrib><title>A multi-sequences MRI deep framework study applied to glioma classfication</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><addtitle>Multimed Tools Appl</addtitle><description>Glioma is one of the most important central nervous system tumors, ranked 15th in the most common cancer for men and women. Magnetic Resonance Imaging (MRI) represents a common tool for medical experts to the diagnosis of glioma. A set of multi-sequences from an MRI is selected according to the severity of the pathology. Our proposed approach aims moreto create a computer-aided system that is capable of helping morethe expert diagnose the brain gliomas. moreWe propose a supervised learning regime based on a convolutional neural network based framework and transfer learning techniques. Our research morefocuses on the performance of different pre-trained deep learning models with respect to different MRI sequences. We highlight the best combinations of such model-MRI sequence couple for our specific task of classifying healthy brain against brain with glioma. moreWe also propose to visually analyze the extracted deep features for studying the existing relation of the MRI sequences and models. This interpretability analysis gives some hints for medical expert to understand the diagnosis made by the models. Our study is based on the well-known BraTS datasets including multi-sequence images and expert diagnosis.</description><subject>1176: Artificial Intelligence and Deep Learning for Biomedical Applications</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Central nervous system</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Feature extraction</subject><subject>Glioma</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Multimedia Information Systems</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtv1TAQhS0Eog_4AyyQJTZ0YfAjfmSDdFUBLboICcHacu3JrUsSBzsp6r_Hl5QCXbCy5fl8zswchJ4x-opRql8XxmjDCeWcMC6YIuwBOmRSC6I1Zw_rXRhKtKTsAB2VckUpU5I3j9GBkFxSIc0h-rDBw9LPkRT4vsDooeCPn89xAJhwl90AP1L-hsu8hBvspqmPEPCc8K6PaXDY966ULno3xzQ-QY861xd4enseo6_v3n45PSPbT-_PTzdb4iU1M2lBQQdOeGi1Amm8ZDoECe5CUdlIkE5JgKCCYW2jRegY1aKjzvM2NHUgcYzerLrTcjFA8DDO2fV2ynFw-cYmF-2_lTFe2l26tsYYrllbBU5Wgct73842W7t_o41ueLW9ZpV9eWuWU11Qme0Qi4e-dyOkpViuhDJGK2kq-uIeepWWPNZVVErKVtBqXym-Uj6nUjJ0dx0wavex2jVWW2O1v2K1-y6e_z3y3ZffOVZArECppXEH-Y_3f2R_AhsyrRM</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Coupet, Matthieu</creator><creator>Urruty, Thierry</creator><creator>Leelanupab, Teerapong</creator><creator>Naudin, Mathieu</creator><creator>Bourdon, Pascal</creator><creator>Maloigne, Christine Fernandez</creator><creator>Guillevin, Rémy</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8117-0612</orcidid></search><sort><creationdate>20220401</creationdate><title>A multi-sequences MRI deep framework study applied to glioma classfication</title><author>Coupet, Matthieu ; Urruty, Thierry ; Leelanupab, Teerapong ; Naudin, Mathieu ; Bourdon, Pascal ; Maloigne, Christine Fernandez ; Guillevin, Rémy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-9e6efea3ce976e58c517dd5eab60545e5a65eed6d819473df1073f0ac29d43803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>1176: Artificial Intelligence and Deep Learning for Biomedical Applications</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Central nervous system</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Feature extraction</topic><topic>Glioma</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Multimedia Information Systems</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coupet, Matthieu</creatorcontrib><creatorcontrib>Urruty, Thierry</creatorcontrib><creatorcontrib>Leelanupab, Teerapong</creatorcontrib><creatorcontrib>Naudin, Mathieu</creatorcontrib><creatorcontrib>Bourdon, Pascal</creatorcontrib><creatorcontrib>Maloigne, Christine Fernandez</creatorcontrib><creatorcontrib>Guillevin, Rémy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coupet, Matthieu</au><au>Urruty, Thierry</au><au>Leelanupab, Teerapong</au><au>Naudin, Mathieu</au><au>Bourdon, Pascal</au><au>Maloigne, Christine Fernandez</au><au>Guillevin, Rémy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-sequences MRI deep framework study applied to glioma classfication</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><addtitle>Multimed Tools Appl</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>81</volume><issue>10</issue><spage>13563</spage><epage>13591</epage><pages>13563-13591</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Glioma is one of the most important central nervous system tumors, ranked 15th in the most common cancer for men and women. Magnetic Resonance Imaging (MRI) represents a common tool for medical experts to the diagnosis of glioma. A set of multi-sequences from an MRI is selected according to the severity of the pathology. Our proposed approach aims moreto create a computer-aided system that is capable of helping morethe expert diagnose the brain gliomas. moreWe propose a supervised learning regime based on a convolutional neural network based framework and transfer learning techniques. Our research morefocuses on the performance of different pre-trained deep learning models with respect to different MRI sequences. We highlight the best combinations of such model-MRI sequence couple for our specific task of classifying healthy brain against brain with glioma. moreWe also propose to visually analyze the extracted deep features for studying the existing relation of the MRI sequences and models. This interpretability analysis gives some hints for medical expert to understand the diagnosis made by the models. Our study is based on the well-known BraTS datasets including multi-sequence images and expert diagnosis.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>35250358</pmid><doi>10.1007/s11042-022-12316-1</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-8117-0612</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2022-04, Vol.81 (10), p.13563-13591
issn 1380-7501
1573-7721
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8882719
source SpringerLink Journals - AutoHoldings
subjects 1176: Artificial Intelligence and Deep Learning for Biomedical Applications
Artificial neural networks
Brain
Central nervous system
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep learning
Diagnosis
Feature extraction
Glioma
Machine learning
Magnetic resonance imaging
Multimedia Information Systems
Special Purpose and Application-Based Systems
title A multi-sequences MRI deep framework study applied to glioma classfication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A49%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-sequences%20MRI%20deep%20framework%20study%20applied%20to%20glioma%20classfication&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Coupet,%20Matthieu&rft.date=2022-04-01&rft.volume=81&rft.issue=10&rft.spage=13563&rft.epage=13591&rft.pages=13563-13591&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-022-12316-1&rft_dat=%3Cproquest_pubme%3E2636887658%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655930827&rft_id=info:pmid/35250358&rfr_iscdi=true