A multi-sequences MRI deep framework study applied to glioma classfication
Glioma is one of the most important central nervous system tumors, ranked 15th in the most common cancer for men and women. Magnetic Resonance Imaging (MRI) represents a common tool for medical experts to the diagnosis of glioma. A set of multi-sequences from an MRI is selected according to the seve...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2022-04, Vol.81 (10), p.13563-13591 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13591 |
---|---|
container_issue | 10 |
container_start_page | 13563 |
container_title | Multimedia tools and applications |
container_volume | 81 |
creator | Coupet, Matthieu Urruty, Thierry Leelanupab, Teerapong Naudin, Mathieu Bourdon, Pascal Maloigne, Christine Fernandez Guillevin, Rémy |
description | Glioma is one of the most important central nervous system tumors, ranked 15th in the most common cancer for men and women. Magnetic Resonance Imaging (MRI) represents a common tool for medical experts to the diagnosis of glioma. A set of multi-sequences from an MRI is selected according to the severity of the pathology. Our proposed approach aims moreto create a computer-aided system that is capable of helping morethe expert diagnose the brain gliomas. moreWe propose a supervised learning regime based on a convolutional neural network based framework and transfer learning techniques. Our research morefocuses on the performance of different pre-trained deep learning models with respect to different MRI sequences. We highlight the best combinations of such model-MRI sequence couple for our specific task of classifying healthy brain against brain with glioma. moreWe also propose to visually analyze the extracted deep features for studying the existing relation of the MRI sequences and models. This interpretability analysis gives some hints for medical expert to understand the diagnosis made by the models. Our study is based on the well-known BraTS datasets including multi-sequence images and expert diagnosis. |
doi_str_mv | 10.1007/s11042-022-12316-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8882719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636887658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-9e6efea3ce976e58c517dd5eab60545e5a65eed6d819473df1073f0ac29d43803</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS0Eog_4AyyQJTZ0YfAjfmSDdFUBLboICcHacu3JrUsSBzsp6r_Hl5QCXbCy5fl8zswchJ4x-opRql8XxmjDCeWcMC6YIuwBOmRSC6I1Zw_rXRhKtKTsAB2VckUpU5I3j9GBkFxSIc0h-rDBw9LPkRT4vsDooeCPn89xAJhwl90AP1L-hsu8hBvspqmPEPCc8K6PaXDY966ULno3xzQ-QY861xd4enseo6_v3n45PSPbT-_PTzdb4iU1M2lBQQdOeGi1Amm8ZDoECe5CUdlIkE5JgKCCYW2jRegY1aKjzvM2NHUgcYzerLrTcjFA8DDO2fV2ynFw-cYmF-2_lTFe2l26tsYYrllbBU5Wgct73842W7t_o41ueLW9ZpV9eWuWU11Qme0Qi4e-dyOkpViuhDJGK2kq-uIeepWWPNZVVErKVtBqXym-Uj6nUjJ0dx0wavex2jVWW2O1v2K1-y6e_z3y3ZffOVZArECppXEH-Y_3f2R_AhsyrRM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655930827</pqid></control><display><type>article</type><title>A multi-sequences MRI deep framework study applied to glioma classfication</title><source>SpringerLink Journals - AutoHoldings</source><creator>Coupet, Matthieu ; Urruty, Thierry ; Leelanupab, Teerapong ; Naudin, Mathieu ; Bourdon, Pascal ; Maloigne, Christine Fernandez ; Guillevin, Rémy</creator><creatorcontrib>Coupet, Matthieu ; Urruty, Thierry ; Leelanupab, Teerapong ; Naudin, Mathieu ; Bourdon, Pascal ; Maloigne, Christine Fernandez ; Guillevin, Rémy</creatorcontrib><description>Glioma is one of the most important central nervous system tumors, ranked 15th in the most common cancer for men and women. Magnetic Resonance Imaging (MRI) represents a common tool for medical experts to the diagnosis of glioma. A set of multi-sequences from an MRI is selected according to the severity of the pathology. Our proposed approach aims moreto create a computer-aided system that is capable of helping morethe expert diagnose the brain gliomas. moreWe propose a supervised learning regime based on a convolutional neural network based framework and transfer learning techniques. Our research morefocuses on the performance of different pre-trained deep learning models with respect to different MRI sequences. We highlight the best combinations of such model-MRI sequence couple for our specific task of classifying healthy brain against brain with glioma. moreWe also propose to visually analyze the extracted deep features for studying the existing relation of the MRI sequences and models. This interpretability analysis gives some hints for medical expert to understand the diagnosis made by the models. Our study is based on the well-known BraTS datasets including multi-sequence images and expert diagnosis.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-022-12316-1</identifier><identifier>PMID: 35250358</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>1176: Artificial Intelligence and Deep Learning for Biomedical Applications ; Artificial neural networks ; Brain ; Central nervous system ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Deep learning ; Diagnosis ; Feature extraction ; Glioma ; Machine learning ; Magnetic resonance imaging ; Multimedia Information Systems ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2022-04, Vol.81 (10), p.13563-13591</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-9e6efea3ce976e58c517dd5eab60545e5a65eed6d819473df1073f0ac29d43803</citedby><cites>FETCH-LOGICAL-c508t-9e6efea3ce976e58c517dd5eab60545e5a65eed6d819473df1073f0ac29d43803</cites><orcidid>0000-0002-8117-0612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-022-12316-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-022-12316-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35250358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04742107$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Coupet, Matthieu</creatorcontrib><creatorcontrib>Urruty, Thierry</creatorcontrib><creatorcontrib>Leelanupab, Teerapong</creatorcontrib><creatorcontrib>Naudin, Mathieu</creatorcontrib><creatorcontrib>Bourdon, Pascal</creatorcontrib><creatorcontrib>Maloigne, Christine Fernandez</creatorcontrib><creatorcontrib>Guillevin, Rémy</creatorcontrib><title>A multi-sequences MRI deep framework study applied to glioma classfication</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><addtitle>Multimed Tools Appl</addtitle><description>Glioma is one of the most important central nervous system tumors, ranked 15th in the most common cancer for men and women. Magnetic Resonance Imaging (MRI) represents a common tool for medical experts to the diagnosis of glioma. A set of multi-sequences from an MRI is selected according to the severity of the pathology. Our proposed approach aims moreto create a computer-aided system that is capable of helping morethe expert diagnose the brain gliomas. moreWe propose a supervised learning regime based on a convolutional neural network based framework and transfer learning techniques. Our research morefocuses on the performance of different pre-trained deep learning models with respect to different MRI sequences. We highlight the best combinations of such model-MRI sequence couple for our specific task of classifying healthy brain against brain with glioma. moreWe also propose to visually analyze the extracted deep features for studying the existing relation of the MRI sequences and models. This interpretability analysis gives some hints for medical expert to understand the diagnosis made by the models. Our study is based on the well-known BraTS datasets including multi-sequence images and expert diagnosis.</description><subject>1176: Artificial Intelligence and Deep Learning for Biomedical Applications</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Central nervous system</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Feature extraction</subject><subject>Glioma</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Multimedia Information Systems</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtv1TAQhS0Eog_4AyyQJTZ0YfAjfmSDdFUBLboICcHacu3JrUsSBzsp6r_Hl5QCXbCy5fl8zswchJ4x-opRql8XxmjDCeWcMC6YIuwBOmRSC6I1Zw_rXRhKtKTsAB2VckUpU5I3j9GBkFxSIc0h-rDBw9LPkRT4vsDooeCPn89xAJhwl90AP1L-hsu8hBvspqmPEPCc8K6PaXDY966ULno3xzQ-QY861xd4enseo6_v3n45PSPbT-_PTzdb4iU1M2lBQQdOeGi1Amm8ZDoECe5CUdlIkE5JgKCCYW2jRegY1aKjzvM2NHUgcYzerLrTcjFA8DDO2fV2ynFw-cYmF-2_lTFe2l26tsYYrllbBU5Wgct73842W7t_o41ueLW9ZpV9eWuWU11Qme0Qi4e-dyOkpViuhDJGK2kq-uIeepWWPNZVVErKVtBqXym-Uj6nUjJ0dx0wavex2jVWW2O1v2K1-y6e_z3y3ZffOVZArECppXEH-Y_3f2R_AhsyrRM</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Coupet, Matthieu</creator><creator>Urruty, Thierry</creator><creator>Leelanupab, Teerapong</creator><creator>Naudin, Mathieu</creator><creator>Bourdon, Pascal</creator><creator>Maloigne, Christine Fernandez</creator><creator>Guillevin, Rémy</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8117-0612</orcidid></search><sort><creationdate>20220401</creationdate><title>A multi-sequences MRI deep framework study applied to glioma classfication</title><author>Coupet, Matthieu ; Urruty, Thierry ; Leelanupab, Teerapong ; Naudin, Mathieu ; Bourdon, Pascal ; Maloigne, Christine Fernandez ; Guillevin, Rémy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-9e6efea3ce976e58c517dd5eab60545e5a65eed6d819473df1073f0ac29d43803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>1176: Artificial Intelligence and Deep Learning for Biomedical Applications</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Central nervous system</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Feature extraction</topic><topic>Glioma</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Multimedia Information Systems</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coupet, Matthieu</creatorcontrib><creatorcontrib>Urruty, Thierry</creatorcontrib><creatorcontrib>Leelanupab, Teerapong</creatorcontrib><creatorcontrib>Naudin, Mathieu</creatorcontrib><creatorcontrib>Bourdon, Pascal</creatorcontrib><creatorcontrib>Maloigne, Christine Fernandez</creatorcontrib><creatorcontrib>Guillevin, Rémy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coupet, Matthieu</au><au>Urruty, Thierry</au><au>Leelanupab, Teerapong</au><au>Naudin, Mathieu</au><au>Bourdon, Pascal</au><au>Maloigne, Christine Fernandez</au><au>Guillevin, Rémy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-sequences MRI deep framework study applied to glioma classfication</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><addtitle>Multimed Tools Appl</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>81</volume><issue>10</issue><spage>13563</spage><epage>13591</epage><pages>13563-13591</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Glioma is one of the most important central nervous system tumors, ranked 15th in the most common cancer for men and women. Magnetic Resonance Imaging (MRI) represents a common tool for medical experts to the diagnosis of glioma. A set of multi-sequences from an MRI is selected according to the severity of the pathology. Our proposed approach aims moreto create a computer-aided system that is capable of helping morethe expert diagnose the brain gliomas. moreWe propose a supervised learning regime based on a convolutional neural network based framework and transfer learning techniques. Our research morefocuses on the performance of different pre-trained deep learning models with respect to different MRI sequences. We highlight the best combinations of such model-MRI sequence couple for our specific task of classifying healthy brain against brain with glioma. moreWe also propose to visually analyze the extracted deep features for studying the existing relation of the MRI sequences and models. This interpretability analysis gives some hints for medical expert to understand the diagnosis made by the models. Our study is based on the well-known BraTS datasets including multi-sequence images and expert diagnosis.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>35250358</pmid><doi>10.1007/s11042-022-12316-1</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-8117-0612</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2022-04, Vol.81 (10), p.13563-13591 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8882719 |
source | SpringerLink Journals - AutoHoldings |
subjects | 1176: Artificial Intelligence and Deep Learning for Biomedical Applications Artificial neural networks Brain Central nervous system Computer Communication Networks Computer Science Data Structures and Information Theory Deep learning Diagnosis Feature extraction Glioma Machine learning Magnetic resonance imaging Multimedia Information Systems Special Purpose and Application-Based Systems |
title | A multi-sequences MRI deep framework study applied to glioma classfication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A49%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-sequences%20MRI%20deep%20framework%20study%20applied%20to%20glioma%20classfication&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Coupet,%20Matthieu&rft.date=2022-04-01&rft.volume=81&rft.issue=10&rft.spage=13563&rft.epage=13591&rft.pages=13563-13591&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-022-12316-1&rft_dat=%3Cproquest_pubme%3E2636887658%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655930827&rft_id=info:pmid/35250358&rfr_iscdi=true |