Carbon Nanotube Devices for Quantum Technology
Carbon nanotubes, quintessentially one-dimensional quantum objects, possess a variety of electrical, optical, and mechanical properties that are suited for developing devices that operate on quantum mechanical principles. The states of one-dimensional electrons, excitons, and phonons in carbon nanot...
Gespeichert in:
Veröffentlicht in: | Materials 2022-02, Vol.15 (4), p.1535 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 1535 |
container_title | Materials |
container_volume | 15 |
creator | Baydin, Andrey Tay, Fuyang Fan, Jichao Manjappa, Manukumara Gao, Weilu Kono, Junichiro |
description | Carbon nanotubes, quintessentially one-dimensional quantum objects, possess a variety of electrical, optical, and mechanical properties that are suited for developing devices that operate on quantum mechanical principles. The states of one-dimensional electrons, excitons, and phonons in carbon nanotubes with exceptionally large quantization energies are promising for high-operating-temperature quantum devices. Here, we discuss recent progress in the development of carbon-nanotube-based devices for quantum technology, i.e., quantum mechanical strategies for revolutionizing computation, sensing, and communication. We cover fundamental properties of carbon nanotubes, their growth and purification methods, and methodologies for assembling them into architectures of ordered nanotubes that manifest macroscopic quantum properties. Most importantly, recent developments and proposals for quantum information processing devices based on individual and assembled nanotubes are reviewed. |
doi_str_mv | 10.3390/ma15041535 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8878677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2633926735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-c1bd8342c88950bac2bc2a2cadd55531eb76dc58adb60991728aba3ea54ee2cd3</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMottRu_AEy6EaE1jwmM8lGkPqEogh1HZJM2k6ZSWoyU-i_N7W1PnIXCdyPc3LvAeAUwSEhHF7XElGYIkroAegizrMB4ml6-OvdAf0QFjAeQhDD_Bh0CMWQxeqC4Uh65WzyIq1rWmWSO7MqtQnJ1PnkrZW2aetkYvTcusrN1ifgaCqrYPq7uwfeH-4no6fB-PXxeXQ7HuiUkGagkSoYSbFmjFOopMZKY4m1LApKKUFG5VmhKZOFyiDnKMdMKkmMpKkxWBekB262ustW1abQxjZeVmLpy1r6tXCyFH87tpyLmVsJxnKW5XkUON8KuNCUIuiyiTNoZ63RjUAspTyFEbrcuXj30ZrQiLoM2lSVtMa1QeAsrhhnOaERvfiHLlzrbdzBF4UIyeHG9WpLae9C8Ga6_zGCYhOX-Ikrwme_Z9yj3-GQT5DIjs0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633133707</pqid></control><display><type>article</type><title>Carbon Nanotube Devices for Quantum Technology</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Baydin, Andrey ; Tay, Fuyang ; Fan, Jichao ; Manjappa, Manukumara ; Gao, Weilu ; Kono, Junichiro</creator><creatorcontrib>Baydin, Andrey ; Tay, Fuyang ; Fan, Jichao ; Manjappa, Manukumara ; Gao, Weilu ; Kono, Junichiro ; Rice Univ., Houston, TX (United States)</creatorcontrib><description>Carbon nanotubes, quintessentially one-dimensional quantum objects, possess a variety of electrical, optical, and mechanical properties that are suited for developing devices that operate on quantum mechanical principles. The states of one-dimensional electrons, excitons, and phonons in carbon nanotubes with exceptionally large quantization energies are promising for high-operating-temperature quantum devices. Here, we discuss recent progress in the development of carbon-nanotube-based devices for quantum technology, i.e., quantum mechanical strategies for revolutionizing computation, sensing, and communication. We cover fundamental properties of carbon nanotubes, their growth and purification methods, and methodologies for assembling them into architectures of ordered nanotubes that manifest macroscopic quantum properties. Most importantly, recent developments and proposals for quantum information processing devices based on individual and assembled nanotubes are reviewed.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15041535</identifier><identifier>PMID: 35208080</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Carbon ; Carbon nanotubes ; Data processing ; Devices ; Eigenvalues ; Excitons ; Graphene ; Information processing ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Light ; MATERIALS SCIENCE ; Mechanical properties ; Optical properties ; Quantum computing ; Quantum dots ; Quantum mechanics ; Quantum phenomena ; quantum technology ; Review ; Semiconductors ; Spectrum analysis</subject><ispartof>Materials, 2022-02, Vol.15 (4), p.1535</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-c1bd8342c88950bac2bc2a2cadd55531eb76dc58adb60991728aba3ea54ee2cd3</citedby><cites>FETCH-LOGICAL-c433t-c1bd8342c88950bac2bc2a2cadd55531eb76dc58adb60991728aba3ea54ee2cd3</cites><orcidid>0000-0003-3964-1721 ; 0000-0002-2567-3506 ; 0000-0003-3139-034X ; 0000-0002-4195-0577 ; 0000-0003-0264-5104 ; 0000000339641721 ; 0000000302645104 ; 000000033139034X ; 0000000225673506 ; 0000000241950577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878677/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878677/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35208080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1845940$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Baydin, Andrey</creatorcontrib><creatorcontrib>Tay, Fuyang</creatorcontrib><creatorcontrib>Fan, Jichao</creatorcontrib><creatorcontrib>Manjappa, Manukumara</creatorcontrib><creatorcontrib>Gao, Weilu</creatorcontrib><creatorcontrib>Kono, Junichiro</creatorcontrib><creatorcontrib>Rice Univ., Houston, TX (United States)</creatorcontrib><title>Carbon Nanotube Devices for Quantum Technology</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Carbon nanotubes, quintessentially one-dimensional quantum objects, possess a variety of electrical, optical, and mechanical properties that are suited for developing devices that operate on quantum mechanical principles. The states of one-dimensional electrons, excitons, and phonons in carbon nanotubes with exceptionally large quantization energies are promising for high-operating-temperature quantum devices. Here, we discuss recent progress in the development of carbon-nanotube-based devices for quantum technology, i.e., quantum mechanical strategies for revolutionizing computation, sensing, and communication. We cover fundamental properties of carbon nanotubes, their growth and purification methods, and methodologies for assembling them into architectures of ordered nanotubes that manifest macroscopic quantum properties. Most importantly, recent developments and proposals for quantum information processing devices based on individual and assembled nanotubes are reviewed.</description><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Data processing</subject><subject>Devices</subject><subject>Eigenvalues</subject><subject>Excitons</subject><subject>Graphene</subject><subject>Information processing</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Light</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical properties</subject><subject>Optical properties</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>Quantum mechanics</subject><subject>Quantum phenomena</subject><subject>quantum technology</subject><subject>Review</subject><subject>Semiconductors</subject><subject>Spectrum analysis</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkUtLAzEUhYMottRu_AEy6EaE1jwmM8lGkPqEogh1HZJM2k6ZSWoyU-i_N7W1PnIXCdyPc3LvAeAUwSEhHF7XElGYIkroAegizrMB4ml6-OvdAf0QFjAeQhDD_Bh0CMWQxeqC4Uh65WzyIq1rWmWSO7MqtQnJ1PnkrZW2aetkYvTcusrN1ifgaCqrYPq7uwfeH-4no6fB-PXxeXQ7HuiUkGagkSoYSbFmjFOopMZKY4m1LApKKUFG5VmhKZOFyiDnKMdMKkmMpKkxWBekB262ustW1abQxjZeVmLpy1r6tXCyFH87tpyLmVsJxnKW5XkUON8KuNCUIuiyiTNoZ63RjUAspTyFEbrcuXj30ZrQiLoM2lSVtMa1QeAsrhhnOaERvfiHLlzrbdzBF4UIyeHG9WpLae9C8Ga6_zGCYhOX-Ikrwme_Z9yj3-GQT5DIjs0</recordid><startdate>20220218</startdate><enddate>20220218</enddate><creator>Baydin, Andrey</creator><creator>Tay, Fuyang</creator><creator>Fan, Jichao</creator><creator>Manjappa, Manukumara</creator><creator>Gao, Weilu</creator><creator>Kono, Junichiro</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3964-1721</orcidid><orcidid>https://orcid.org/0000-0002-2567-3506</orcidid><orcidid>https://orcid.org/0000-0003-3139-034X</orcidid><orcidid>https://orcid.org/0000-0002-4195-0577</orcidid><orcidid>https://orcid.org/0000-0003-0264-5104</orcidid><orcidid>https://orcid.org/0000000339641721</orcidid><orcidid>https://orcid.org/0000000302645104</orcidid><orcidid>https://orcid.org/000000033139034X</orcidid><orcidid>https://orcid.org/0000000225673506</orcidid><orcidid>https://orcid.org/0000000241950577</orcidid></search><sort><creationdate>20220218</creationdate><title>Carbon Nanotube Devices for Quantum Technology</title><author>Baydin, Andrey ; Tay, Fuyang ; Fan, Jichao ; Manjappa, Manukumara ; Gao, Weilu ; Kono, Junichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-c1bd8342c88950bac2bc2a2cadd55531eb76dc58adb60991728aba3ea54ee2cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Data processing</topic><topic>Devices</topic><topic>Eigenvalues</topic><topic>Excitons</topic><topic>Graphene</topic><topic>Information processing</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Light</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical properties</topic><topic>Optical properties</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>Quantum mechanics</topic><topic>Quantum phenomena</topic><topic>quantum technology</topic><topic>Review</topic><topic>Semiconductors</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baydin, Andrey</creatorcontrib><creatorcontrib>Tay, Fuyang</creatorcontrib><creatorcontrib>Fan, Jichao</creatorcontrib><creatorcontrib>Manjappa, Manukumara</creatorcontrib><creatorcontrib>Gao, Weilu</creatorcontrib><creatorcontrib>Kono, Junichiro</creatorcontrib><creatorcontrib>Rice Univ., Houston, TX (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baydin, Andrey</au><au>Tay, Fuyang</au><au>Fan, Jichao</au><au>Manjappa, Manukumara</au><au>Gao, Weilu</au><au>Kono, Junichiro</au><aucorp>Rice Univ., Houston, TX (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Nanotube Devices for Quantum Technology</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-02-18</date><risdate>2022</risdate><volume>15</volume><issue>4</issue><spage>1535</spage><pages>1535-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Carbon nanotubes, quintessentially one-dimensional quantum objects, possess a variety of electrical, optical, and mechanical properties that are suited for developing devices that operate on quantum mechanical principles. The states of one-dimensional electrons, excitons, and phonons in carbon nanotubes with exceptionally large quantization energies are promising for high-operating-temperature quantum devices. Here, we discuss recent progress in the development of carbon-nanotube-based devices for quantum technology, i.e., quantum mechanical strategies for revolutionizing computation, sensing, and communication. We cover fundamental properties of carbon nanotubes, their growth and purification methods, and methodologies for assembling them into architectures of ordered nanotubes that manifest macroscopic quantum properties. Most importantly, recent developments and proposals for quantum information processing devices based on individual and assembled nanotubes are reviewed.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35208080</pmid><doi>10.3390/ma15041535</doi><orcidid>https://orcid.org/0000-0003-3964-1721</orcidid><orcidid>https://orcid.org/0000-0002-2567-3506</orcidid><orcidid>https://orcid.org/0000-0003-3139-034X</orcidid><orcidid>https://orcid.org/0000-0002-4195-0577</orcidid><orcidid>https://orcid.org/0000-0003-0264-5104</orcidid><orcidid>https://orcid.org/0000000339641721</orcidid><orcidid>https://orcid.org/0000000302645104</orcidid><orcidid>https://orcid.org/000000033139034X</orcidid><orcidid>https://orcid.org/0000000225673506</orcidid><orcidid>https://orcid.org/0000000241950577</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-02, Vol.15 (4), p.1535 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8878677 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Carbon Carbon nanotubes Data processing Devices Eigenvalues Excitons Graphene Information processing INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Light MATERIALS SCIENCE Mechanical properties Optical properties Quantum computing Quantum dots Quantum mechanics Quantum phenomena quantum technology Review Semiconductors Spectrum analysis |
title | Carbon Nanotube Devices for Quantum Technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Nanotube%20Devices%20for%20Quantum%20Technology&rft.jtitle=Materials&rft.au=Baydin,%20Andrey&rft.aucorp=Rice%20Univ.,%20Houston,%20TX%20(United%20States)&rft.date=2022-02-18&rft.volume=15&rft.issue=4&rft.spage=1535&rft.pages=1535-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15041535&rft_dat=%3Cproquest_pubme%3E2633926735%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633133707&rft_id=info:pmid/35208080&rfr_iscdi=true |