Carbon Nanotube Devices for Quantum Technology

Carbon nanotubes, quintessentially one-dimensional quantum objects, possess a variety of electrical, optical, and mechanical properties that are suited for developing devices that operate on quantum mechanical principles. The states of one-dimensional electrons, excitons, and phonons in carbon nanot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-02, Vol.15 (4), p.1535
Hauptverfasser: Baydin, Andrey, Tay, Fuyang, Fan, Jichao, Manjappa, Manukumara, Gao, Weilu, Kono, Junichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 1535
container_title Materials
container_volume 15
creator Baydin, Andrey
Tay, Fuyang
Fan, Jichao
Manjappa, Manukumara
Gao, Weilu
Kono, Junichiro
description Carbon nanotubes, quintessentially one-dimensional quantum objects, possess a variety of electrical, optical, and mechanical properties that are suited for developing devices that operate on quantum mechanical principles. The states of one-dimensional electrons, excitons, and phonons in carbon nanotubes with exceptionally large quantization energies are promising for high-operating-temperature quantum devices. Here, we discuss recent progress in the development of carbon-nanotube-based devices for quantum technology, i.e., quantum mechanical strategies for revolutionizing computation, sensing, and communication. We cover fundamental properties of carbon nanotubes, their growth and purification methods, and methodologies for assembling them into architectures of ordered nanotubes that manifest macroscopic quantum properties. Most importantly, recent developments and proposals for quantum information processing devices based on individual and assembled nanotubes are reviewed.
doi_str_mv 10.3390/ma15041535
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8878677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2633926735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-c1bd8342c88950bac2bc2a2cadd55531eb76dc58adb60991728aba3ea54ee2cd3</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMottRu_AEy6EaE1jwmM8lGkPqEogh1HZJM2k6ZSWoyU-i_N7W1PnIXCdyPc3LvAeAUwSEhHF7XElGYIkroAegizrMB4ml6-OvdAf0QFjAeQhDD_Bh0CMWQxeqC4Uh65WzyIq1rWmWSO7MqtQnJ1PnkrZW2aetkYvTcusrN1ifgaCqrYPq7uwfeH-4no6fB-PXxeXQ7HuiUkGagkSoYSbFmjFOopMZKY4m1LApKKUFG5VmhKZOFyiDnKMdMKkmMpKkxWBekB262ustW1abQxjZeVmLpy1r6tXCyFH87tpyLmVsJxnKW5XkUON8KuNCUIuiyiTNoZ63RjUAspTyFEbrcuXj30ZrQiLoM2lSVtMa1QeAsrhhnOaERvfiHLlzrbdzBF4UIyeHG9WpLae9C8Ga6_zGCYhOX-Ikrwme_Z9yj3-GQT5DIjs0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633133707</pqid></control><display><type>article</type><title>Carbon Nanotube Devices for Quantum Technology</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Baydin, Andrey ; Tay, Fuyang ; Fan, Jichao ; Manjappa, Manukumara ; Gao, Weilu ; Kono, Junichiro</creator><creatorcontrib>Baydin, Andrey ; Tay, Fuyang ; Fan, Jichao ; Manjappa, Manukumara ; Gao, Weilu ; Kono, Junichiro ; Rice Univ., Houston, TX (United States)</creatorcontrib><description>Carbon nanotubes, quintessentially one-dimensional quantum objects, possess a variety of electrical, optical, and mechanical properties that are suited for developing devices that operate on quantum mechanical principles. The states of one-dimensional electrons, excitons, and phonons in carbon nanotubes with exceptionally large quantization energies are promising for high-operating-temperature quantum devices. Here, we discuss recent progress in the development of carbon-nanotube-based devices for quantum technology, i.e., quantum mechanical strategies for revolutionizing computation, sensing, and communication. We cover fundamental properties of carbon nanotubes, their growth and purification methods, and methodologies for assembling them into architectures of ordered nanotubes that manifest macroscopic quantum properties. Most importantly, recent developments and proposals for quantum information processing devices based on individual and assembled nanotubes are reviewed.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15041535</identifier><identifier>PMID: 35208080</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Carbon ; Carbon nanotubes ; Data processing ; Devices ; Eigenvalues ; Excitons ; Graphene ; Information processing ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Light ; MATERIALS SCIENCE ; Mechanical properties ; Optical properties ; Quantum computing ; Quantum dots ; Quantum mechanics ; Quantum phenomena ; quantum technology ; Review ; Semiconductors ; Spectrum analysis</subject><ispartof>Materials, 2022-02, Vol.15 (4), p.1535</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-c1bd8342c88950bac2bc2a2cadd55531eb76dc58adb60991728aba3ea54ee2cd3</citedby><cites>FETCH-LOGICAL-c433t-c1bd8342c88950bac2bc2a2cadd55531eb76dc58adb60991728aba3ea54ee2cd3</cites><orcidid>0000-0003-3964-1721 ; 0000-0002-2567-3506 ; 0000-0003-3139-034X ; 0000-0002-4195-0577 ; 0000-0003-0264-5104 ; 0000000339641721 ; 0000000302645104 ; 000000033139034X ; 0000000225673506 ; 0000000241950577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878677/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878677/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35208080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1845940$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Baydin, Andrey</creatorcontrib><creatorcontrib>Tay, Fuyang</creatorcontrib><creatorcontrib>Fan, Jichao</creatorcontrib><creatorcontrib>Manjappa, Manukumara</creatorcontrib><creatorcontrib>Gao, Weilu</creatorcontrib><creatorcontrib>Kono, Junichiro</creatorcontrib><creatorcontrib>Rice Univ., Houston, TX (United States)</creatorcontrib><title>Carbon Nanotube Devices for Quantum Technology</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Carbon nanotubes, quintessentially one-dimensional quantum objects, possess a variety of electrical, optical, and mechanical properties that are suited for developing devices that operate on quantum mechanical principles. The states of one-dimensional electrons, excitons, and phonons in carbon nanotubes with exceptionally large quantization energies are promising for high-operating-temperature quantum devices. Here, we discuss recent progress in the development of carbon-nanotube-based devices for quantum technology, i.e., quantum mechanical strategies for revolutionizing computation, sensing, and communication. We cover fundamental properties of carbon nanotubes, their growth and purification methods, and methodologies for assembling them into architectures of ordered nanotubes that manifest macroscopic quantum properties. Most importantly, recent developments and proposals for quantum information processing devices based on individual and assembled nanotubes are reviewed.</description><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Data processing</subject><subject>Devices</subject><subject>Eigenvalues</subject><subject>Excitons</subject><subject>Graphene</subject><subject>Information processing</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Light</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical properties</subject><subject>Optical properties</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>Quantum mechanics</subject><subject>Quantum phenomena</subject><subject>quantum technology</subject><subject>Review</subject><subject>Semiconductors</subject><subject>Spectrum analysis</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkUtLAzEUhYMottRu_AEy6EaE1jwmM8lGkPqEogh1HZJM2k6ZSWoyU-i_N7W1PnIXCdyPc3LvAeAUwSEhHF7XElGYIkroAegizrMB4ml6-OvdAf0QFjAeQhDD_Bh0CMWQxeqC4Uh65WzyIq1rWmWSO7MqtQnJ1PnkrZW2aetkYvTcusrN1ifgaCqrYPq7uwfeH-4no6fB-PXxeXQ7HuiUkGagkSoYSbFmjFOopMZKY4m1LApKKUFG5VmhKZOFyiDnKMdMKkmMpKkxWBekB262ustW1abQxjZeVmLpy1r6tXCyFH87tpyLmVsJxnKW5XkUON8KuNCUIuiyiTNoZ63RjUAspTyFEbrcuXj30ZrQiLoM2lSVtMa1QeAsrhhnOaERvfiHLlzrbdzBF4UIyeHG9WpLae9C8Ga6_zGCYhOX-Ikrwme_Z9yj3-GQT5DIjs0</recordid><startdate>20220218</startdate><enddate>20220218</enddate><creator>Baydin, Andrey</creator><creator>Tay, Fuyang</creator><creator>Fan, Jichao</creator><creator>Manjappa, Manukumara</creator><creator>Gao, Weilu</creator><creator>Kono, Junichiro</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3964-1721</orcidid><orcidid>https://orcid.org/0000-0002-2567-3506</orcidid><orcidid>https://orcid.org/0000-0003-3139-034X</orcidid><orcidid>https://orcid.org/0000-0002-4195-0577</orcidid><orcidid>https://orcid.org/0000-0003-0264-5104</orcidid><orcidid>https://orcid.org/0000000339641721</orcidid><orcidid>https://orcid.org/0000000302645104</orcidid><orcidid>https://orcid.org/000000033139034X</orcidid><orcidid>https://orcid.org/0000000225673506</orcidid><orcidid>https://orcid.org/0000000241950577</orcidid></search><sort><creationdate>20220218</creationdate><title>Carbon Nanotube Devices for Quantum Technology</title><author>Baydin, Andrey ; Tay, Fuyang ; Fan, Jichao ; Manjappa, Manukumara ; Gao, Weilu ; Kono, Junichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-c1bd8342c88950bac2bc2a2cadd55531eb76dc58adb60991728aba3ea54ee2cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Data processing</topic><topic>Devices</topic><topic>Eigenvalues</topic><topic>Excitons</topic><topic>Graphene</topic><topic>Information processing</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Light</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical properties</topic><topic>Optical properties</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>Quantum mechanics</topic><topic>Quantum phenomena</topic><topic>quantum technology</topic><topic>Review</topic><topic>Semiconductors</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baydin, Andrey</creatorcontrib><creatorcontrib>Tay, Fuyang</creatorcontrib><creatorcontrib>Fan, Jichao</creatorcontrib><creatorcontrib>Manjappa, Manukumara</creatorcontrib><creatorcontrib>Gao, Weilu</creatorcontrib><creatorcontrib>Kono, Junichiro</creatorcontrib><creatorcontrib>Rice Univ., Houston, TX (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baydin, Andrey</au><au>Tay, Fuyang</au><au>Fan, Jichao</au><au>Manjappa, Manukumara</au><au>Gao, Weilu</au><au>Kono, Junichiro</au><aucorp>Rice Univ., Houston, TX (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Nanotube Devices for Quantum Technology</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-02-18</date><risdate>2022</risdate><volume>15</volume><issue>4</issue><spage>1535</spage><pages>1535-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Carbon nanotubes, quintessentially one-dimensional quantum objects, possess a variety of electrical, optical, and mechanical properties that are suited for developing devices that operate on quantum mechanical principles. The states of one-dimensional electrons, excitons, and phonons in carbon nanotubes with exceptionally large quantization energies are promising for high-operating-temperature quantum devices. Here, we discuss recent progress in the development of carbon-nanotube-based devices for quantum technology, i.e., quantum mechanical strategies for revolutionizing computation, sensing, and communication. We cover fundamental properties of carbon nanotubes, their growth and purification methods, and methodologies for assembling them into architectures of ordered nanotubes that manifest macroscopic quantum properties. Most importantly, recent developments and proposals for quantum information processing devices based on individual and assembled nanotubes are reviewed.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35208080</pmid><doi>10.3390/ma15041535</doi><orcidid>https://orcid.org/0000-0003-3964-1721</orcidid><orcidid>https://orcid.org/0000-0002-2567-3506</orcidid><orcidid>https://orcid.org/0000-0003-3139-034X</orcidid><orcidid>https://orcid.org/0000-0002-4195-0577</orcidid><orcidid>https://orcid.org/0000-0003-0264-5104</orcidid><orcidid>https://orcid.org/0000000339641721</orcidid><orcidid>https://orcid.org/0000000302645104</orcidid><orcidid>https://orcid.org/000000033139034X</orcidid><orcidid>https://orcid.org/0000000225673506</orcidid><orcidid>https://orcid.org/0000000241950577</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-02, Vol.15 (4), p.1535
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8878677
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Carbon
Carbon nanotubes
Data processing
Devices
Eigenvalues
Excitons
Graphene
Information processing
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Light
MATERIALS SCIENCE
Mechanical properties
Optical properties
Quantum computing
Quantum dots
Quantum mechanics
Quantum phenomena
quantum technology
Review
Semiconductors
Spectrum analysis
title Carbon Nanotube Devices for Quantum Technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Nanotube%20Devices%20for%20Quantum%20Technology&rft.jtitle=Materials&rft.au=Baydin,%20Andrey&rft.aucorp=Rice%20Univ.,%20Houston,%20TX%20(United%20States)&rft.date=2022-02-18&rft.volume=15&rft.issue=4&rft.spage=1535&rft.pages=1535-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15041535&rft_dat=%3Cproquest_pubme%3E2633926735%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633133707&rft_id=info:pmid/35208080&rfr_iscdi=true