Solvent-Impregnated Sorbents for Tantalum from Niobium Separation Using a Fixed-Bed Column

Reactor-grade niobium steel is used as a construction material for nuclear reactors. In this case, the presence of tantalum, which is characterized by a 20 times higher active cross section for capturing thermal neutrons than the cross section of niobium ( Ta: 21.3 barn), cannot exceed 100 ppm. Anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-02, Vol.15 (4), p.1513
Hauptverfasser: Turkowska, Magdalena, Karoń, Krzysztof, Milewski, Andrzej, Jakóbik-Kolon, Agata
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 1513
container_title Materials
container_volume 15
creator Turkowska, Magdalena
Karoń, Krzysztof
Milewski, Andrzej
Jakóbik-Kolon, Agata
description Reactor-grade niobium steel is used as a construction material for nuclear reactors. In this case, the presence of tantalum, which is characterized by a 20 times higher active cross section for capturing thermal neutrons than the cross section of niobium ( Ta: 21.3 barn), cannot exceed 100 ppm. Analytical methods for quality and new separation method development control need very pure niobium matrices-niobium compounds with a low tantalum content, which are crucial for preparing matrix reference solutions or certified reference materials (CRMs). Therefore, in this paper, a new, efficient method for separating trace amounts of Ta(V) from Nb(V) using extraction chromatography with the use of sorbents impregnated with methyl isobutyl ketone MIBK solvent is proposed. Various types of MIBK-impregnated sorbents were used (AG 1-X8 Anion Exchange Resin, AMBERLITE™ IRC120 Na Ion Exchange Resin, SERVACEL Cellulose Anion Exchangers DEAE 52, active carbons of various grain size, carbonized blackcurrant pomace, carbonized chokeberry pomace, bentonite, and polyurethane foam in lumps). The highest tantalum removal efficiency was determined using active coal-based materials (>97%). The separation effectivity of tantalum from niobium was also determined in dynamic studies using a fixed-bed column with MIBK-impregnated active carbon. Solutions of various Nb:Ta weight ratios (1:1, 100:1, 1000:1) were used. The most impressive result was obtaining 70 mL of high purity niobium solution of tantalum content 0.027 ppm (in relation to Nb) with 88.4% yield of niobium from a solution of Nb:Ta, weight ratio 1000:1 (purge factor equaled 35,000). It proves the presented system to be applicable for preparation of pure niobium compounds with very low contents of tantalum.
doi_str_mv 10.3390/ma15041513
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8875405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2633934429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-ea1d29c2bee176ee98a264b23f3a1114f035158e6b0e65bb34ec9a14c1c387223</originalsourceid><addsrcrecordid>eNpdkUtLxDAUhYMoKurGHyAFNyJUc_PoNBtBB18guhjduAlp53aMtMmYtIP-e-P7kc1Nbr57OMkhZBvoAeeKHnYGJBUggS-RdVCqyEEJsfxrv0a2YnykaXEOJVOrZI1LRksq6Tq5n_h2ga7PL7t5wJkzPU6ziQ9V6sWs8SG7Na437dBlTfBddm19ZdNhgnMTTG-9y-6idbPMZGf2Gaf5SZof-8S7TbLSmDbi1mfdIHdnp7fji_zq5vxyfHyV14IWfY4GpkzVrEKEUYGoSsMKUTHecAMAoqFcgiyxqCgWsqq4wFoZEDXUvBwxxjfI0YfufKg6nNbJeTCtngfbmfCivbH6742zD3rmF7osR1JQmQT2PgWCfxow9rqzsca2NQ79EDUr0k9zIZhK6O4_9NEPwaXnvVMggCuRqP0Pqg4-xoDNtxmg-i01_ZNagnd-2_9GvzLir-Tdkgg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633141394</pqid></control><display><type>article</type><title>Solvent-Impregnated Sorbents for Tantalum from Niobium Separation Using a Fixed-Bed Column</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Turkowska, Magdalena ; Karoń, Krzysztof ; Milewski, Andrzej ; Jakóbik-Kolon, Agata</creator><creatorcontrib>Turkowska, Magdalena ; Karoń, Krzysztof ; Milewski, Andrzej ; Jakóbik-Kolon, Agata</creatorcontrib><description>Reactor-grade niobium steel is used as a construction material for nuclear reactors. In this case, the presence of tantalum, which is characterized by a 20 times higher active cross section for capturing thermal neutrons than the cross section of niobium ( Ta: 21.3 barn), cannot exceed 100 ppm. Analytical methods for quality and new separation method development control need very pure niobium matrices-niobium compounds with a low tantalum content, which are crucial for preparing matrix reference solutions or certified reference materials (CRMs). Therefore, in this paper, a new, efficient method for separating trace amounts of Ta(V) from Nb(V) using extraction chromatography with the use of sorbents impregnated with methyl isobutyl ketone MIBK solvent is proposed. Various types of MIBK-impregnated sorbents were used (AG 1-X8 Anion Exchange Resin, AMBERLITE™ IRC120 Na Ion Exchange Resin, SERVACEL Cellulose Anion Exchangers DEAE 52, active carbons of various grain size, carbonized blackcurrant pomace, carbonized chokeberry pomace, bentonite, and polyurethane foam in lumps). The highest tantalum removal efficiency was determined using active coal-based materials (&gt;97%). The separation effectivity of tantalum from niobium was also determined in dynamic studies using a fixed-bed column with MIBK-impregnated active carbon. Solutions of various Nb:Ta weight ratios (1:1, 100:1, 1000:1) were used. The most impressive result was obtaining 70 mL of high purity niobium solution of tantalum content 0.027 ppm (in relation to Nb) with 88.4% yield of niobium from a solution of Nb:Ta, weight ratio 1000:1 (purge factor equaled 35,000). It proves the presented system to be applicable for preparation of pure niobium compounds with very low contents of tantalum.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15041513</identifier><identifier>PMID: 35208050</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acids ; Activated carbon ; Amberlite (trademark) ; Anion exchanging ; Bentonite ; Cellulosic resins ; Chromatography ; Construction materials ; Cross-sections ; Efficiency ; Fluorides ; Grain size ; Ion exchange ; Ion exchange resins ; Ion exchangers ; Ketones ; Methods ; Niobium compounds ; Nuclear reactors ; Polyurethane foam ; Reference materials ; Separation ; Solvents ; Sorbents ; Tantalum ; Thermal neutrons</subject><ispartof>Materials, 2022-02, Vol.15 (4), p.1513</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-ea1d29c2bee176ee98a264b23f3a1114f035158e6b0e65bb34ec9a14c1c387223</citedby><cites>FETCH-LOGICAL-c406t-ea1d29c2bee176ee98a264b23f3a1114f035158e6b0e65bb34ec9a14c1c387223</cites><orcidid>0000-0002-1875-3591 ; 0000-0002-4141-6892 ; 0000-0001-5258-9310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875405/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875405/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35208050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Turkowska, Magdalena</creatorcontrib><creatorcontrib>Karoń, Krzysztof</creatorcontrib><creatorcontrib>Milewski, Andrzej</creatorcontrib><creatorcontrib>Jakóbik-Kolon, Agata</creatorcontrib><title>Solvent-Impregnated Sorbents for Tantalum from Niobium Separation Using a Fixed-Bed Column</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Reactor-grade niobium steel is used as a construction material for nuclear reactors. In this case, the presence of tantalum, which is characterized by a 20 times higher active cross section for capturing thermal neutrons than the cross section of niobium ( Ta: 21.3 barn), cannot exceed 100 ppm. Analytical methods for quality and new separation method development control need very pure niobium matrices-niobium compounds with a low tantalum content, which are crucial for preparing matrix reference solutions or certified reference materials (CRMs). Therefore, in this paper, a new, efficient method for separating trace amounts of Ta(V) from Nb(V) using extraction chromatography with the use of sorbents impregnated with methyl isobutyl ketone MIBK solvent is proposed. Various types of MIBK-impregnated sorbents were used (AG 1-X8 Anion Exchange Resin, AMBERLITE™ IRC120 Na Ion Exchange Resin, SERVACEL Cellulose Anion Exchangers DEAE 52, active carbons of various grain size, carbonized blackcurrant pomace, carbonized chokeberry pomace, bentonite, and polyurethane foam in lumps). The highest tantalum removal efficiency was determined using active coal-based materials (&gt;97%). The separation effectivity of tantalum from niobium was also determined in dynamic studies using a fixed-bed column with MIBK-impregnated active carbon. Solutions of various Nb:Ta weight ratios (1:1, 100:1, 1000:1) were used. The most impressive result was obtaining 70 mL of high purity niobium solution of tantalum content 0.027 ppm (in relation to Nb) with 88.4% yield of niobium from a solution of Nb:Ta, weight ratio 1000:1 (purge factor equaled 35,000). It proves the presented system to be applicable for preparation of pure niobium compounds with very low contents of tantalum.</description><subject>Acids</subject><subject>Activated carbon</subject><subject>Amberlite (trademark)</subject><subject>Anion exchanging</subject><subject>Bentonite</subject><subject>Cellulosic resins</subject><subject>Chromatography</subject><subject>Construction materials</subject><subject>Cross-sections</subject><subject>Efficiency</subject><subject>Fluorides</subject><subject>Grain size</subject><subject>Ion exchange</subject><subject>Ion exchange resins</subject><subject>Ion exchangers</subject><subject>Ketones</subject><subject>Methods</subject><subject>Niobium compounds</subject><subject>Nuclear reactors</subject><subject>Polyurethane foam</subject><subject>Reference materials</subject><subject>Separation</subject><subject>Solvents</subject><subject>Sorbents</subject><subject>Tantalum</subject><subject>Thermal neutrons</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkUtLxDAUhYMoKurGHyAFNyJUc_PoNBtBB18guhjduAlp53aMtMmYtIP-e-P7kc1Nbr57OMkhZBvoAeeKHnYGJBUggS-RdVCqyEEJsfxrv0a2YnykaXEOJVOrZI1LRksq6Tq5n_h2ga7PL7t5wJkzPU6ziQ9V6sWs8SG7Na437dBlTfBddm19ZdNhgnMTTG-9y-6idbPMZGf2Gaf5SZof-8S7TbLSmDbi1mfdIHdnp7fji_zq5vxyfHyV14IWfY4GpkzVrEKEUYGoSsMKUTHecAMAoqFcgiyxqCgWsqq4wFoZEDXUvBwxxjfI0YfufKg6nNbJeTCtngfbmfCivbH6742zD3rmF7osR1JQmQT2PgWCfxow9rqzsca2NQ79EDUr0k9zIZhK6O4_9NEPwaXnvVMggCuRqP0Pqg4-xoDNtxmg-i01_ZNagnd-2_9GvzLir-Tdkgg</recordid><startdate>20220217</startdate><enddate>20220217</enddate><creator>Turkowska, Magdalena</creator><creator>Karoń, Krzysztof</creator><creator>Milewski, Andrzej</creator><creator>Jakóbik-Kolon, Agata</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1875-3591</orcidid><orcidid>https://orcid.org/0000-0002-4141-6892</orcidid><orcidid>https://orcid.org/0000-0001-5258-9310</orcidid></search><sort><creationdate>20220217</creationdate><title>Solvent-Impregnated Sorbents for Tantalum from Niobium Separation Using a Fixed-Bed Column</title><author>Turkowska, Magdalena ; Karoń, Krzysztof ; Milewski, Andrzej ; Jakóbik-Kolon, Agata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-ea1d29c2bee176ee98a264b23f3a1114f035158e6b0e65bb34ec9a14c1c387223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acids</topic><topic>Activated carbon</topic><topic>Amberlite (trademark)</topic><topic>Anion exchanging</topic><topic>Bentonite</topic><topic>Cellulosic resins</topic><topic>Chromatography</topic><topic>Construction materials</topic><topic>Cross-sections</topic><topic>Efficiency</topic><topic>Fluorides</topic><topic>Grain size</topic><topic>Ion exchange</topic><topic>Ion exchange resins</topic><topic>Ion exchangers</topic><topic>Ketones</topic><topic>Methods</topic><topic>Niobium compounds</topic><topic>Nuclear reactors</topic><topic>Polyurethane foam</topic><topic>Reference materials</topic><topic>Separation</topic><topic>Solvents</topic><topic>Sorbents</topic><topic>Tantalum</topic><topic>Thermal neutrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turkowska, Magdalena</creatorcontrib><creatorcontrib>Karoń, Krzysztof</creatorcontrib><creatorcontrib>Milewski, Andrzej</creatorcontrib><creatorcontrib>Jakóbik-Kolon, Agata</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turkowska, Magdalena</au><au>Karoń, Krzysztof</au><au>Milewski, Andrzej</au><au>Jakóbik-Kolon, Agata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvent-Impregnated Sorbents for Tantalum from Niobium Separation Using a Fixed-Bed Column</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-02-17</date><risdate>2022</risdate><volume>15</volume><issue>4</issue><spage>1513</spage><pages>1513-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Reactor-grade niobium steel is used as a construction material for nuclear reactors. In this case, the presence of tantalum, which is characterized by a 20 times higher active cross section for capturing thermal neutrons than the cross section of niobium ( Ta: 21.3 barn), cannot exceed 100 ppm. Analytical methods for quality and new separation method development control need very pure niobium matrices-niobium compounds with a low tantalum content, which are crucial for preparing matrix reference solutions or certified reference materials (CRMs). Therefore, in this paper, a new, efficient method for separating trace amounts of Ta(V) from Nb(V) using extraction chromatography with the use of sorbents impregnated with methyl isobutyl ketone MIBK solvent is proposed. Various types of MIBK-impregnated sorbents were used (AG 1-X8 Anion Exchange Resin, AMBERLITE™ IRC120 Na Ion Exchange Resin, SERVACEL Cellulose Anion Exchangers DEAE 52, active carbons of various grain size, carbonized blackcurrant pomace, carbonized chokeberry pomace, bentonite, and polyurethane foam in lumps). The highest tantalum removal efficiency was determined using active coal-based materials (&gt;97%). The separation effectivity of tantalum from niobium was also determined in dynamic studies using a fixed-bed column with MIBK-impregnated active carbon. Solutions of various Nb:Ta weight ratios (1:1, 100:1, 1000:1) were used. The most impressive result was obtaining 70 mL of high purity niobium solution of tantalum content 0.027 ppm (in relation to Nb) with 88.4% yield of niobium from a solution of Nb:Ta, weight ratio 1000:1 (purge factor equaled 35,000). It proves the presented system to be applicable for preparation of pure niobium compounds with very low contents of tantalum.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35208050</pmid><doi>10.3390/ma15041513</doi><orcidid>https://orcid.org/0000-0002-1875-3591</orcidid><orcidid>https://orcid.org/0000-0002-4141-6892</orcidid><orcidid>https://orcid.org/0000-0001-5258-9310</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-02, Vol.15 (4), p.1513
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8875405
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Acids
Activated carbon
Amberlite (trademark)
Anion exchanging
Bentonite
Cellulosic resins
Chromatography
Construction materials
Cross-sections
Efficiency
Fluorides
Grain size
Ion exchange
Ion exchange resins
Ion exchangers
Ketones
Methods
Niobium compounds
Nuclear reactors
Polyurethane foam
Reference materials
Separation
Solvents
Sorbents
Tantalum
Thermal neutrons
title Solvent-Impregnated Sorbents for Tantalum from Niobium Separation Using a Fixed-Bed Column
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvent-Impregnated%20Sorbents%20for%20Tantalum%20from%20Niobium%20Separation%20Using%20a%20Fixed-Bed%20Column&rft.jtitle=Materials&rft.au=Turkowska,%20Magdalena&rft.date=2022-02-17&rft.volume=15&rft.issue=4&rft.spage=1513&rft.pages=1513-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15041513&rft_dat=%3Cproquest_pubme%3E2633934429%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633141394&rft_id=info:pmid/35208050&rfr_iscdi=true