Solvent-Impregnated Sorbents for Tantalum from Niobium Separation Using a Fixed-Bed Column
Reactor-grade niobium steel is used as a construction material for nuclear reactors. In this case, the presence of tantalum, which is characterized by a 20 times higher active cross section for capturing thermal neutrons than the cross section of niobium ( Ta: 21.3 barn), cannot exceed 100 ppm. Anal...
Gespeichert in:
Veröffentlicht in: | Materials 2022-02, Vol.15 (4), p.1513 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 1513 |
container_title | Materials |
container_volume | 15 |
creator | Turkowska, Magdalena Karoń, Krzysztof Milewski, Andrzej Jakóbik-Kolon, Agata |
description | Reactor-grade niobium steel is used as a construction material for nuclear reactors. In this case, the presence of tantalum, which is characterized by a 20 times higher active cross section for capturing thermal neutrons than the cross section of niobium (
Ta: 21.3 barn), cannot exceed 100 ppm. Analytical methods for quality and new separation method development control need very pure niobium matrices-niobium compounds with a low tantalum content, which are crucial for preparing matrix reference solutions or certified reference materials (CRMs). Therefore, in this paper, a new, efficient method for separating trace amounts of Ta(V) from Nb(V) using extraction chromatography with the use of sorbents impregnated with methyl isobutyl ketone MIBK solvent is proposed. Various types of MIBK-impregnated sorbents were used (AG
1-X8 Anion Exchange Resin, AMBERLITE™ IRC120 Na Ion Exchange Resin, SERVACEL
Cellulose Anion Exchangers DEAE 52, active carbons of various grain size, carbonized blackcurrant pomace, carbonized chokeberry pomace, bentonite, and polyurethane foam in lumps). The highest tantalum removal efficiency was determined using active coal-based materials (>97%). The separation effectivity of tantalum from niobium was also determined in dynamic studies using a fixed-bed column with MIBK-impregnated active carbon. Solutions of various Nb:Ta weight ratios (1:1, 100:1, 1000:1) were used. The most impressive result was obtaining 70 mL of high purity niobium solution of tantalum content 0.027 ppm (in relation to Nb) with 88.4% yield of niobium from a solution of Nb:Ta, weight ratio 1000:1 (purge factor equaled 35,000). It proves the presented system to be applicable for preparation of pure niobium compounds with very low contents of tantalum. |
doi_str_mv | 10.3390/ma15041513 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8875405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2633934429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-ea1d29c2bee176ee98a264b23f3a1114f035158e6b0e65bb34ec9a14c1c387223</originalsourceid><addsrcrecordid>eNpdkUtLxDAUhYMoKurGHyAFNyJUc_PoNBtBB18guhjduAlp53aMtMmYtIP-e-P7kc1Nbr57OMkhZBvoAeeKHnYGJBUggS-RdVCqyEEJsfxrv0a2YnykaXEOJVOrZI1LRksq6Tq5n_h2ga7PL7t5wJkzPU6ziQ9V6sWs8SG7Na437dBlTfBddm19ZdNhgnMTTG-9y-6idbPMZGf2Gaf5SZof-8S7TbLSmDbi1mfdIHdnp7fji_zq5vxyfHyV14IWfY4GpkzVrEKEUYGoSsMKUTHecAMAoqFcgiyxqCgWsqq4wFoZEDXUvBwxxjfI0YfufKg6nNbJeTCtngfbmfCivbH6742zD3rmF7osR1JQmQT2PgWCfxow9rqzsca2NQ79EDUr0k9zIZhK6O4_9NEPwaXnvVMggCuRqP0Pqg4-xoDNtxmg-i01_ZNagnd-2_9GvzLir-Tdkgg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633141394</pqid></control><display><type>article</type><title>Solvent-Impregnated Sorbents for Tantalum from Niobium Separation Using a Fixed-Bed Column</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Turkowska, Magdalena ; Karoń, Krzysztof ; Milewski, Andrzej ; Jakóbik-Kolon, Agata</creator><creatorcontrib>Turkowska, Magdalena ; Karoń, Krzysztof ; Milewski, Andrzej ; Jakóbik-Kolon, Agata</creatorcontrib><description>Reactor-grade niobium steel is used as a construction material for nuclear reactors. In this case, the presence of tantalum, which is characterized by a 20 times higher active cross section for capturing thermal neutrons than the cross section of niobium (
Ta: 21.3 barn), cannot exceed 100 ppm. Analytical methods for quality and new separation method development control need very pure niobium matrices-niobium compounds with a low tantalum content, which are crucial for preparing matrix reference solutions or certified reference materials (CRMs). Therefore, in this paper, a new, efficient method for separating trace amounts of Ta(V) from Nb(V) using extraction chromatography with the use of sorbents impregnated with methyl isobutyl ketone MIBK solvent is proposed. Various types of MIBK-impregnated sorbents were used (AG
1-X8 Anion Exchange Resin, AMBERLITE™ IRC120 Na Ion Exchange Resin, SERVACEL
Cellulose Anion Exchangers DEAE 52, active carbons of various grain size, carbonized blackcurrant pomace, carbonized chokeberry pomace, bentonite, and polyurethane foam in lumps). The highest tantalum removal efficiency was determined using active coal-based materials (>97%). The separation effectivity of tantalum from niobium was also determined in dynamic studies using a fixed-bed column with MIBK-impregnated active carbon. Solutions of various Nb:Ta weight ratios (1:1, 100:1, 1000:1) were used. The most impressive result was obtaining 70 mL of high purity niobium solution of tantalum content 0.027 ppm (in relation to Nb) with 88.4% yield of niobium from a solution of Nb:Ta, weight ratio 1000:1 (purge factor equaled 35,000). It proves the presented system to be applicable for preparation of pure niobium compounds with very low contents of tantalum.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15041513</identifier><identifier>PMID: 35208050</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acids ; Activated carbon ; Amberlite (trademark) ; Anion exchanging ; Bentonite ; Cellulosic resins ; Chromatography ; Construction materials ; Cross-sections ; Efficiency ; Fluorides ; Grain size ; Ion exchange ; Ion exchange resins ; Ion exchangers ; Ketones ; Methods ; Niobium compounds ; Nuclear reactors ; Polyurethane foam ; Reference materials ; Separation ; Solvents ; Sorbents ; Tantalum ; Thermal neutrons</subject><ispartof>Materials, 2022-02, Vol.15 (4), p.1513</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-ea1d29c2bee176ee98a264b23f3a1114f035158e6b0e65bb34ec9a14c1c387223</citedby><cites>FETCH-LOGICAL-c406t-ea1d29c2bee176ee98a264b23f3a1114f035158e6b0e65bb34ec9a14c1c387223</cites><orcidid>0000-0002-1875-3591 ; 0000-0002-4141-6892 ; 0000-0001-5258-9310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875405/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875405/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35208050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Turkowska, Magdalena</creatorcontrib><creatorcontrib>Karoń, Krzysztof</creatorcontrib><creatorcontrib>Milewski, Andrzej</creatorcontrib><creatorcontrib>Jakóbik-Kolon, Agata</creatorcontrib><title>Solvent-Impregnated Sorbents for Tantalum from Niobium Separation Using a Fixed-Bed Column</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Reactor-grade niobium steel is used as a construction material for nuclear reactors. In this case, the presence of tantalum, which is characterized by a 20 times higher active cross section for capturing thermal neutrons than the cross section of niobium (
Ta: 21.3 barn), cannot exceed 100 ppm. Analytical methods for quality and new separation method development control need very pure niobium matrices-niobium compounds with a low tantalum content, which are crucial for preparing matrix reference solutions or certified reference materials (CRMs). Therefore, in this paper, a new, efficient method for separating trace amounts of Ta(V) from Nb(V) using extraction chromatography with the use of sorbents impregnated with methyl isobutyl ketone MIBK solvent is proposed. Various types of MIBK-impregnated sorbents were used (AG
1-X8 Anion Exchange Resin, AMBERLITE™ IRC120 Na Ion Exchange Resin, SERVACEL
Cellulose Anion Exchangers DEAE 52, active carbons of various grain size, carbonized blackcurrant pomace, carbonized chokeberry pomace, bentonite, and polyurethane foam in lumps). The highest tantalum removal efficiency was determined using active coal-based materials (>97%). The separation effectivity of tantalum from niobium was also determined in dynamic studies using a fixed-bed column with MIBK-impregnated active carbon. Solutions of various Nb:Ta weight ratios (1:1, 100:1, 1000:1) were used. The most impressive result was obtaining 70 mL of high purity niobium solution of tantalum content 0.027 ppm (in relation to Nb) with 88.4% yield of niobium from a solution of Nb:Ta, weight ratio 1000:1 (purge factor equaled 35,000). It proves the presented system to be applicable for preparation of pure niobium compounds with very low contents of tantalum.</description><subject>Acids</subject><subject>Activated carbon</subject><subject>Amberlite (trademark)</subject><subject>Anion exchanging</subject><subject>Bentonite</subject><subject>Cellulosic resins</subject><subject>Chromatography</subject><subject>Construction materials</subject><subject>Cross-sections</subject><subject>Efficiency</subject><subject>Fluorides</subject><subject>Grain size</subject><subject>Ion exchange</subject><subject>Ion exchange resins</subject><subject>Ion exchangers</subject><subject>Ketones</subject><subject>Methods</subject><subject>Niobium compounds</subject><subject>Nuclear reactors</subject><subject>Polyurethane foam</subject><subject>Reference materials</subject><subject>Separation</subject><subject>Solvents</subject><subject>Sorbents</subject><subject>Tantalum</subject><subject>Thermal neutrons</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkUtLxDAUhYMoKurGHyAFNyJUc_PoNBtBB18guhjduAlp53aMtMmYtIP-e-P7kc1Nbr57OMkhZBvoAeeKHnYGJBUggS-RdVCqyEEJsfxrv0a2YnykaXEOJVOrZI1LRksq6Tq5n_h2ga7PL7t5wJkzPU6ziQ9V6sWs8SG7Na437dBlTfBddm19ZdNhgnMTTG-9y-6idbPMZGf2Gaf5SZof-8S7TbLSmDbi1mfdIHdnp7fji_zq5vxyfHyV14IWfY4GpkzVrEKEUYGoSsMKUTHecAMAoqFcgiyxqCgWsqq4wFoZEDXUvBwxxjfI0YfufKg6nNbJeTCtngfbmfCivbH6742zD3rmF7osR1JQmQT2PgWCfxow9rqzsca2NQ79EDUr0k9zIZhK6O4_9NEPwaXnvVMggCuRqP0Pqg4-xoDNtxmg-i01_ZNagnd-2_9GvzLir-Tdkgg</recordid><startdate>20220217</startdate><enddate>20220217</enddate><creator>Turkowska, Magdalena</creator><creator>Karoń, Krzysztof</creator><creator>Milewski, Andrzej</creator><creator>Jakóbik-Kolon, Agata</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1875-3591</orcidid><orcidid>https://orcid.org/0000-0002-4141-6892</orcidid><orcidid>https://orcid.org/0000-0001-5258-9310</orcidid></search><sort><creationdate>20220217</creationdate><title>Solvent-Impregnated Sorbents for Tantalum from Niobium Separation Using a Fixed-Bed Column</title><author>Turkowska, Magdalena ; Karoń, Krzysztof ; Milewski, Andrzej ; Jakóbik-Kolon, Agata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-ea1d29c2bee176ee98a264b23f3a1114f035158e6b0e65bb34ec9a14c1c387223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acids</topic><topic>Activated carbon</topic><topic>Amberlite (trademark)</topic><topic>Anion exchanging</topic><topic>Bentonite</topic><topic>Cellulosic resins</topic><topic>Chromatography</topic><topic>Construction materials</topic><topic>Cross-sections</topic><topic>Efficiency</topic><topic>Fluorides</topic><topic>Grain size</topic><topic>Ion exchange</topic><topic>Ion exchange resins</topic><topic>Ion exchangers</topic><topic>Ketones</topic><topic>Methods</topic><topic>Niobium compounds</topic><topic>Nuclear reactors</topic><topic>Polyurethane foam</topic><topic>Reference materials</topic><topic>Separation</topic><topic>Solvents</topic><topic>Sorbents</topic><topic>Tantalum</topic><topic>Thermal neutrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turkowska, Magdalena</creatorcontrib><creatorcontrib>Karoń, Krzysztof</creatorcontrib><creatorcontrib>Milewski, Andrzej</creatorcontrib><creatorcontrib>Jakóbik-Kolon, Agata</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turkowska, Magdalena</au><au>Karoń, Krzysztof</au><au>Milewski, Andrzej</au><au>Jakóbik-Kolon, Agata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvent-Impregnated Sorbents for Tantalum from Niobium Separation Using a Fixed-Bed Column</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-02-17</date><risdate>2022</risdate><volume>15</volume><issue>4</issue><spage>1513</spage><pages>1513-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Reactor-grade niobium steel is used as a construction material for nuclear reactors. In this case, the presence of tantalum, which is characterized by a 20 times higher active cross section for capturing thermal neutrons than the cross section of niobium (
Ta: 21.3 barn), cannot exceed 100 ppm. Analytical methods for quality and new separation method development control need very pure niobium matrices-niobium compounds with a low tantalum content, which are crucial for preparing matrix reference solutions or certified reference materials (CRMs). Therefore, in this paper, a new, efficient method for separating trace amounts of Ta(V) from Nb(V) using extraction chromatography with the use of sorbents impregnated with methyl isobutyl ketone MIBK solvent is proposed. Various types of MIBK-impregnated sorbents were used (AG
1-X8 Anion Exchange Resin, AMBERLITE™ IRC120 Na Ion Exchange Resin, SERVACEL
Cellulose Anion Exchangers DEAE 52, active carbons of various grain size, carbonized blackcurrant pomace, carbonized chokeberry pomace, bentonite, and polyurethane foam in lumps). The highest tantalum removal efficiency was determined using active coal-based materials (>97%). The separation effectivity of tantalum from niobium was also determined in dynamic studies using a fixed-bed column with MIBK-impregnated active carbon. Solutions of various Nb:Ta weight ratios (1:1, 100:1, 1000:1) were used. The most impressive result was obtaining 70 mL of high purity niobium solution of tantalum content 0.027 ppm (in relation to Nb) with 88.4% yield of niobium from a solution of Nb:Ta, weight ratio 1000:1 (purge factor equaled 35,000). It proves the presented system to be applicable for preparation of pure niobium compounds with very low contents of tantalum.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35208050</pmid><doi>10.3390/ma15041513</doi><orcidid>https://orcid.org/0000-0002-1875-3591</orcidid><orcidid>https://orcid.org/0000-0002-4141-6892</orcidid><orcidid>https://orcid.org/0000-0001-5258-9310</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-02, Vol.15 (4), p.1513 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8875405 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Acids Activated carbon Amberlite (trademark) Anion exchanging Bentonite Cellulosic resins Chromatography Construction materials Cross-sections Efficiency Fluorides Grain size Ion exchange Ion exchange resins Ion exchangers Ketones Methods Niobium compounds Nuclear reactors Polyurethane foam Reference materials Separation Solvents Sorbents Tantalum Thermal neutrons |
title | Solvent-Impregnated Sorbents for Tantalum from Niobium Separation Using a Fixed-Bed Column |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvent-Impregnated%20Sorbents%20for%20Tantalum%20from%20Niobium%20Separation%20Using%20a%20Fixed-Bed%20Column&rft.jtitle=Materials&rft.au=Turkowska,%20Magdalena&rft.date=2022-02-17&rft.volume=15&rft.issue=4&rft.spage=1513&rft.pages=1513-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15041513&rft_dat=%3Cproquest_pubme%3E2633934429%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633141394&rft_id=info:pmid/35208050&rfr_iscdi=true |