Biocompatible surface functionalization architecture for a diamond quantum sensor

Quantum metrology enables some of the most precise measurements. In the life sciences, diamond-based quantum sensing has led to a new class of biophysical sensors and diagnostic devices that are being investigated as a platform for cancer screening and ultrasensitive immunoassays. However, a broader...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2022-02, Vol.119 (8), p.1-7
Hauptverfasser: Xie, Mouzhe, Yu, Xiaofei, Rodgers, Lila V. H., Xu, Daohong, Chi-Durán, Ignacio, Toros, Adrien, Quack, Niels, de Leon, Nathalie P., Maurer, Peter C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 8
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 119
creator Xie, Mouzhe
Yu, Xiaofei
Rodgers, Lila V. H.
Xu, Daohong
Chi-Durán, Ignacio
Toros, Adrien
Quack, Niels
de Leon, Nathalie P.
Maurer, Peter C.
description Quantum metrology enables some of the most precise measurements. In the life sciences, diamond-based quantum sensing has led to a new class of biophysical sensors and diagnostic devices that are being investigated as a platform for cancer screening and ultrasensitive immunoassays. However, a broader application in the life sciences based on nanoscale NMR spectroscopy has been hampered by the need to interface highly sensitive quantum bit (qubit) sensors with their biological targets. Here, we demonstrate an approach that combines quantum engineering with single-molecule biophysics to immobilize individual proteins and DNA molecules on the surface of a bulk diamond crystal that hosts coherent nitrogen vacancy qubit sensors. Our thin (sub–5 nm) functionalization architecture provides precise control over the biomolecule adsorption density and results in near-surface qubit coherence approaching 100 μs. The developed architecture remains chemically stable under physiological conditions for over 5 d, making our technique compatible with most biophysical and biomedical applications.
doi_str_mv 10.1073/pnas.2114186119
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8872777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27118648</jstor_id><sourcerecordid>27118648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-6e6edd5587ba7326eb65039d20e54e15816371786c393d0f772b048073553ba63</originalsourceid><addsrcrecordid>eNpdkc1rFTEUxYNY7Gt17UoZdONm2pvvzEbQUq1QEEHXIZPJ-PKYSV6TjKB_vRlffX6sEji_nHtPDkJPMVxgkPRyH0y-IBgzrATG3QO0wdDhVrAOHqINAJGtYoSdorOcdwDQcQWP0CnluKOdwBv06a2PNs57U3w_uSYvaTTWNeMSbPExmMn_MOulMclufXG2LKnKMTWmGbyZYxiau8WEssxNdiHH9BidjGbK7sn9eY6-vLv-fHXT3n58_-HqzW1rmYTSCifcMHCuZG8kJcL1ggPtBgKOM4e5woJKLJWwtKMDjFKSHpiqoTmnvRH0HL0--O6XfnaDdaEkM-l98rNJ33U0Xv-rBL_VX-M3rZQkUspq8OJgEHPxOts13dbGEGpIjRUTwNcpr-6npHi3uFz07LN102SCi0vWRFCCmSKSVfTlf-guLql-4S-KAQHApFKXB8qmmHNy43FjDHrtVK-d6j-d1hfP_w565H-XWIFnB2CXS0xHnUhcHZiiPwHidKbe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634020012</pqid></control><display><type>article</type><title>Biocompatible surface functionalization architecture for a diamond quantum sensor</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Xie, Mouzhe ; Yu, Xiaofei ; Rodgers, Lila V. H. ; Xu, Daohong ; Chi-Durán, Ignacio ; Toros, Adrien ; Quack, Niels ; de Leon, Nathalie P. ; Maurer, Peter C.</creator><creatorcontrib>Xie, Mouzhe ; Yu, Xiaofei ; Rodgers, Lila V. H. ; Xu, Daohong ; Chi-Durán, Ignacio ; Toros, Adrien ; Quack, Niels ; de Leon, Nathalie P. ; Maurer, Peter C. ; University of Chicago, IL (United States)</creatorcontrib><description>Quantum metrology enables some of the most precise measurements. In the life sciences, diamond-based quantum sensing has led to a new class of biophysical sensors and diagnostic devices that are being investigated as a platform for cancer screening and ultrasensitive immunoassays. However, a broader application in the life sciences based on nanoscale NMR spectroscopy has been hampered by the need to interface highly sensitive quantum bit (qubit) sensors with their biological targets. Here, we demonstrate an approach that combines quantum engineering with single-molecule biophysics to immobilize individual proteins and DNA molecules on the surface of a bulk diamond crystal that hosts coherent nitrogen vacancy qubit sensors. Our thin (sub–5 nm) functionalization architecture provides precise control over the biomolecule adsorption density and results in near-surface qubit coherence approaching 100 μs. The developed architecture remains chemically stable under physiological conditions for over 5 d, making our technique compatible with most biophysical and biomedical applications.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2114186119</identifier><identifier>PMID: 35193961</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biocompatibility ; biocompatible functionalization ; Biomedical materials ; Biomolecules ; Biophysics ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Cancer screening ; Diamond - chemistry ; diamond surface modification ; Diamonds ; Immunoassays ; Lattice vacancies ; Life sciences ; Magnetic resonance spectroscopy ; Magnetic Resonance Spectroscopy - methods ; Medical screening ; Nanoparticles - chemistry ; NANOSCIENCE AND NANOTECHNOLOGY ; Nanotechnology - methods ; Nitrogen - chemistry ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; NV center ; Physical Sciences ; quantum sensing ; Quantum sensors ; Qubits (quantum computing) ; Sensors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-02, Vol.119 (8), p.1-7</ispartof><rights>Copyright © 2022 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Feb 22, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-6e6edd5587ba7326eb65039d20e54e15816371786c393d0f772b048073553ba63</citedby><cites>FETCH-LOGICAL-c470t-6e6edd5587ba7326eb65039d20e54e15816371786c393d0f772b048073553ba63</cites><orcidid>0000-0003-2174-2671 ; 0000-0001-5189-0929 ; 0000-0002-2960-644X ; 0000-0001-9033-5135 ; 0000-0002-3327-2825 ; 0000000151890929 ; 0000000321742671 ; 000000022960644X ; 0000000190335135 ; 0000000233272825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872777/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872777/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35193961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1846056$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Mouzhe</creatorcontrib><creatorcontrib>Yu, Xiaofei</creatorcontrib><creatorcontrib>Rodgers, Lila V. H.</creatorcontrib><creatorcontrib>Xu, Daohong</creatorcontrib><creatorcontrib>Chi-Durán, Ignacio</creatorcontrib><creatorcontrib>Toros, Adrien</creatorcontrib><creatorcontrib>Quack, Niels</creatorcontrib><creatorcontrib>de Leon, Nathalie P.</creatorcontrib><creatorcontrib>Maurer, Peter C.</creatorcontrib><creatorcontrib>University of Chicago, IL (United States)</creatorcontrib><title>Biocompatible surface functionalization architecture for a diamond quantum sensor</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Quantum metrology enables some of the most precise measurements. In the life sciences, diamond-based quantum sensing has led to a new class of biophysical sensors and diagnostic devices that are being investigated as a platform for cancer screening and ultrasensitive immunoassays. However, a broader application in the life sciences based on nanoscale NMR spectroscopy has been hampered by the need to interface highly sensitive quantum bit (qubit) sensors with their biological targets. Here, we demonstrate an approach that combines quantum engineering with single-molecule biophysics to immobilize individual proteins and DNA molecules on the surface of a bulk diamond crystal that hosts coherent nitrogen vacancy qubit sensors. Our thin (sub–5 nm) functionalization architecture provides precise control over the biomolecule adsorption density and results in near-surface qubit coherence approaching 100 μs. The developed architecture remains chemically stable under physiological conditions for over 5 d, making our technique compatible with most biophysical and biomedical applications.</description><subject>Biocompatibility</subject><subject>biocompatible functionalization</subject><subject>Biomedical materials</subject><subject>Biomolecules</subject><subject>Biophysics</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Cancer screening</subject><subject>Diamond - chemistry</subject><subject>diamond surface modification</subject><subject>Diamonds</subject><subject>Immunoassays</subject><subject>Lattice vacancies</subject><subject>Life sciences</subject><subject>Magnetic resonance spectroscopy</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Medical screening</subject><subject>Nanoparticles - chemistry</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Nanotechnology - methods</subject><subject>Nitrogen - chemistry</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>NV center</subject><subject>Physical Sciences</subject><subject>quantum sensing</subject><subject>Quantum sensors</subject><subject>Qubits (quantum computing)</subject><subject>Sensors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1rFTEUxYNY7Gt17UoZdONm2pvvzEbQUq1QEEHXIZPJ-PKYSV6TjKB_vRlffX6sEji_nHtPDkJPMVxgkPRyH0y-IBgzrATG3QO0wdDhVrAOHqINAJGtYoSdorOcdwDQcQWP0CnluKOdwBv06a2PNs57U3w_uSYvaTTWNeMSbPExmMn_MOulMclufXG2LKnKMTWmGbyZYxiau8WEssxNdiHH9BidjGbK7sn9eY6-vLv-fHXT3n58_-HqzW1rmYTSCifcMHCuZG8kJcL1ggPtBgKOM4e5woJKLJWwtKMDjFKSHpiqoTmnvRH0HL0--O6XfnaDdaEkM-l98rNJ33U0Xv-rBL_VX-M3rZQkUspq8OJgEHPxOts13dbGEGpIjRUTwNcpr-6npHi3uFz07LN102SCi0vWRFCCmSKSVfTlf-guLql-4S-KAQHApFKXB8qmmHNy43FjDHrtVK-d6j-d1hfP_w565H-XWIFnB2CXS0xHnUhcHZiiPwHidKbe</recordid><startdate>20220222</startdate><enddate>20220222</enddate><creator>Xie, Mouzhe</creator><creator>Yu, Xiaofei</creator><creator>Rodgers, Lila V. H.</creator><creator>Xu, Daohong</creator><creator>Chi-Durán, Ignacio</creator><creator>Toros, Adrien</creator><creator>Quack, Niels</creator><creator>de Leon, Nathalie P.</creator><creator>Maurer, Peter C.</creator><general>National Academy of Sciences</general><general>Proceedings of the National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2174-2671</orcidid><orcidid>https://orcid.org/0000-0001-5189-0929</orcidid><orcidid>https://orcid.org/0000-0002-2960-644X</orcidid><orcidid>https://orcid.org/0000-0001-9033-5135</orcidid><orcidid>https://orcid.org/0000-0002-3327-2825</orcidid><orcidid>https://orcid.org/0000000151890929</orcidid><orcidid>https://orcid.org/0000000321742671</orcidid><orcidid>https://orcid.org/000000022960644X</orcidid><orcidid>https://orcid.org/0000000190335135</orcidid><orcidid>https://orcid.org/0000000233272825</orcidid></search><sort><creationdate>20220222</creationdate><title>Biocompatible surface functionalization architecture for a diamond quantum sensor</title><author>Xie, Mouzhe ; Yu, Xiaofei ; Rodgers, Lila V. H. ; Xu, Daohong ; Chi-Durán, Ignacio ; Toros, Adrien ; Quack, Niels ; de Leon, Nathalie P. ; Maurer, Peter C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-6e6edd5587ba7326eb65039d20e54e15816371786c393d0f772b048073553ba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biocompatibility</topic><topic>biocompatible functionalization</topic><topic>Biomedical materials</topic><topic>Biomolecules</topic><topic>Biophysics</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Cancer screening</topic><topic>Diamond - chemistry</topic><topic>diamond surface modification</topic><topic>Diamonds</topic><topic>Immunoassays</topic><topic>Lattice vacancies</topic><topic>Life sciences</topic><topic>Magnetic resonance spectroscopy</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Medical screening</topic><topic>Nanoparticles - chemistry</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Nanotechnology - methods</topic><topic>Nitrogen - chemistry</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>NV center</topic><topic>Physical Sciences</topic><topic>quantum sensing</topic><topic>Quantum sensors</topic><topic>Qubits (quantum computing)</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Mouzhe</creatorcontrib><creatorcontrib>Yu, Xiaofei</creatorcontrib><creatorcontrib>Rodgers, Lila V. H.</creatorcontrib><creatorcontrib>Xu, Daohong</creatorcontrib><creatorcontrib>Chi-Durán, Ignacio</creatorcontrib><creatorcontrib>Toros, Adrien</creatorcontrib><creatorcontrib>Quack, Niels</creatorcontrib><creatorcontrib>de Leon, Nathalie P.</creatorcontrib><creatorcontrib>Maurer, Peter C.</creatorcontrib><creatorcontrib>University of Chicago, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Mouzhe</au><au>Yu, Xiaofei</au><au>Rodgers, Lila V. H.</au><au>Xu, Daohong</au><au>Chi-Durán, Ignacio</au><au>Toros, Adrien</au><au>Quack, Niels</au><au>de Leon, Nathalie P.</au><au>Maurer, Peter C.</au><aucorp>University of Chicago, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biocompatible surface functionalization architecture for a diamond quantum sensor</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-02-22</date><risdate>2022</risdate><volume>119</volume><issue>8</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Quantum metrology enables some of the most precise measurements. In the life sciences, diamond-based quantum sensing has led to a new class of biophysical sensors and diagnostic devices that are being investigated as a platform for cancer screening and ultrasensitive immunoassays. However, a broader application in the life sciences based on nanoscale NMR spectroscopy has been hampered by the need to interface highly sensitive quantum bit (qubit) sensors with their biological targets. Here, we demonstrate an approach that combines quantum engineering with single-molecule biophysics to immobilize individual proteins and DNA molecules on the surface of a bulk diamond crystal that hosts coherent nitrogen vacancy qubit sensors. Our thin (sub–5 nm) functionalization architecture provides precise control over the biomolecule adsorption density and results in near-surface qubit coherence approaching 100 μs. The developed architecture remains chemically stable under physiological conditions for over 5 d, making our technique compatible with most biophysical and biomedical applications.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>35193961</pmid><doi>10.1073/pnas.2114186119</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2174-2671</orcidid><orcidid>https://orcid.org/0000-0001-5189-0929</orcidid><orcidid>https://orcid.org/0000-0002-2960-644X</orcidid><orcidid>https://orcid.org/0000-0001-9033-5135</orcidid><orcidid>https://orcid.org/0000-0002-3327-2825</orcidid><orcidid>https://orcid.org/0000000151890929</orcidid><orcidid>https://orcid.org/0000000321742671</orcidid><orcidid>https://orcid.org/000000022960644X</orcidid><orcidid>https://orcid.org/0000000190335135</orcidid><orcidid>https://orcid.org/0000000233272825</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2022-02, Vol.119 (8), p.1-7
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8872777
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biocompatibility
biocompatible functionalization
Biomedical materials
Biomolecules
Biophysics
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Cancer screening
Diamond - chemistry
diamond surface modification
Diamonds
Immunoassays
Lattice vacancies
Life sciences
Magnetic resonance spectroscopy
Magnetic Resonance Spectroscopy - methods
Medical screening
Nanoparticles - chemistry
NANOSCIENCE AND NANOTECHNOLOGY
Nanotechnology - methods
Nitrogen - chemistry
NMR
NMR spectroscopy
Nuclear magnetic resonance
NV center
Physical Sciences
quantum sensing
Quantum sensors
Qubits (quantum computing)
Sensors
title Biocompatible surface functionalization architecture for a diamond quantum sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biocompatible%20surface%20functionalization%20architecture%20for%20a%20diamond%20quantum%20sensor&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Xie,%20Mouzhe&rft.aucorp=University%20of%20Chicago,%20IL%20(United%20States)&rft.date=2022-02-22&rft.volume=119&rft.issue=8&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2114186119&rft_dat=%3Cjstor_pubme%3E27118648%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634020012&rft_id=info:pmid/35193961&rft_jstor_id=27118648&rfr_iscdi=true