Biocompatible surface functionalization architecture for a diamond quantum sensor
Quantum metrology enables some of the most precise measurements. In the life sciences, diamond-based quantum sensing has led to a new class of biophysical sensors and diagnostic devices that are being investigated as a platform for cancer screening and ultrasensitive immunoassays. However, a broader...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2022-02, Vol.119 (8), p.1-7 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | Xie, Mouzhe Yu, Xiaofei Rodgers, Lila V. H. Xu, Daohong Chi-Durán, Ignacio Toros, Adrien Quack, Niels de Leon, Nathalie P. Maurer, Peter C. |
description | Quantum metrology enables some of the most precise measurements. In the life sciences, diamond-based quantum sensing has led to a new class of biophysical sensors and diagnostic devices that are being investigated as a platform for cancer screening and ultrasensitive immunoassays. However, a broader application in the life sciences based on nanoscale NMR spectroscopy has been hampered by the need to interface highly sensitive quantum bit (qubit) sensors with their biological targets. Here, we demonstrate an approach that combines quantum engineering with single-molecule biophysics to immobilize individual proteins and DNA molecules on the surface of a bulk diamond crystal that hosts coherent nitrogen vacancy qubit sensors. Our thin (sub–5 nm) functionalization architecture provides precise control over the biomolecule adsorption density and results in near-surface qubit coherence approaching 100 μs. The developed architecture remains chemically stable under physiological conditions for over 5 d, making our technique compatible with most biophysical and biomedical applications. |
doi_str_mv | 10.1073/pnas.2114186119 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8872777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27118648</jstor_id><sourcerecordid>27118648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-6e6edd5587ba7326eb65039d20e54e15816371786c393d0f772b048073553ba63</originalsourceid><addsrcrecordid>eNpdkc1rFTEUxYNY7Gt17UoZdONm2pvvzEbQUq1QEEHXIZPJ-PKYSV6TjKB_vRlffX6sEji_nHtPDkJPMVxgkPRyH0y-IBgzrATG3QO0wdDhVrAOHqINAJGtYoSdorOcdwDQcQWP0CnluKOdwBv06a2PNs57U3w_uSYvaTTWNeMSbPExmMn_MOulMclufXG2LKnKMTWmGbyZYxiau8WEssxNdiHH9BidjGbK7sn9eY6-vLv-fHXT3n58_-HqzW1rmYTSCifcMHCuZG8kJcL1ggPtBgKOM4e5woJKLJWwtKMDjFKSHpiqoTmnvRH0HL0--O6XfnaDdaEkM-l98rNJ33U0Xv-rBL_VX-M3rZQkUspq8OJgEHPxOts13dbGEGpIjRUTwNcpr-6npHi3uFz07LN102SCi0vWRFCCmSKSVfTlf-guLql-4S-KAQHApFKXB8qmmHNy43FjDHrtVK-d6j-d1hfP_w565H-XWIFnB2CXS0xHnUhcHZiiPwHidKbe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634020012</pqid></control><display><type>article</type><title>Biocompatible surface functionalization architecture for a diamond quantum sensor</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Xie, Mouzhe ; Yu, Xiaofei ; Rodgers, Lila V. H. ; Xu, Daohong ; Chi-Durán, Ignacio ; Toros, Adrien ; Quack, Niels ; de Leon, Nathalie P. ; Maurer, Peter C.</creator><creatorcontrib>Xie, Mouzhe ; Yu, Xiaofei ; Rodgers, Lila V. H. ; Xu, Daohong ; Chi-Durán, Ignacio ; Toros, Adrien ; Quack, Niels ; de Leon, Nathalie P. ; Maurer, Peter C. ; University of Chicago, IL (United States)</creatorcontrib><description>Quantum metrology enables some of the most precise measurements. In the life sciences, diamond-based quantum sensing has led to a new class of biophysical sensors and diagnostic devices that are being investigated as a platform for cancer screening and ultrasensitive immunoassays. However, a broader application in the life sciences based on nanoscale NMR spectroscopy has been hampered by the need to interface highly sensitive quantum bit (qubit) sensors with their biological targets. Here, we demonstrate an approach that combines quantum engineering with single-molecule biophysics to immobilize individual proteins and DNA molecules on the surface of a bulk diamond crystal that hosts coherent nitrogen vacancy qubit sensors. Our thin (sub–5 nm) functionalization architecture provides precise control over the biomolecule adsorption density and results in near-surface qubit coherence approaching 100 μs. The developed architecture remains chemically stable under physiological conditions for over 5 d, making our technique compatible with most biophysical and biomedical applications.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2114186119</identifier><identifier>PMID: 35193961</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biocompatibility ; biocompatible functionalization ; Biomedical materials ; Biomolecules ; Biophysics ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Cancer screening ; Diamond - chemistry ; diamond surface modification ; Diamonds ; Immunoassays ; Lattice vacancies ; Life sciences ; Magnetic resonance spectroscopy ; Magnetic Resonance Spectroscopy - methods ; Medical screening ; Nanoparticles - chemistry ; NANOSCIENCE AND NANOTECHNOLOGY ; Nanotechnology - methods ; Nitrogen - chemistry ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; NV center ; Physical Sciences ; quantum sensing ; Quantum sensors ; Qubits (quantum computing) ; Sensors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-02, Vol.119 (8), p.1-7</ispartof><rights>Copyright © 2022 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Feb 22, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-6e6edd5587ba7326eb65039d20e54e15816371786c393d0f772b048073553ba63</citedby><cites>FETCH-LOGICAL-c470t-6e6edd5587ba7326eb65039d20e54e15816371786c393d0f772b048073553ba63</cites><orcidid>0000-0003-2174-2671 ; 0000-0001-5189-0929 ; 0000-0002-2960-644X ; 0000-0001-9033-5135 ; 0000-0002-3327-2825 ; 0000000151890929 ; 0000000321742671 ; 000000022960644X ; 0000000190335135 ; 0000000233272825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872777/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872777/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35193961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1846056$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Mouzhe</creatorcontrib><creatorcontrib>Yu, Xiaofei</creatorcontrib><creatorcontrib>Rodgers, Lila V. H.</creatorcontrib><creatorcontrib>Xu, Daohong</creatorcontrib><creatorcontrib>Chi-Durán, Ignacio</creatorcontrib><creatorcontrib>Toros, Adrien</creatorcontrib><creatorcontrib>Quack, Niels</creatorcontrib><creatorcontrib>de Leon, Nathalie P.</creatorcontrib><creatorcontrib>Maurer, Peter C.</creatorcontrib><creatorcontrib>University of Chicago, IL (United States)</creatorcontrib><title>Biocompatible surface functionalization architecture for a diamond quantum sensor</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Quantum metrology enables some of the most precise measurements. In the life sciences, diamond-based quantum sensing has led to a new class of biophysical sensors and diagnostic devices that are being investigated as a platform for cancer screening and ultrasensitive immunoassays. However, a broader application in the life sciences based on nanoscale NMR spectroscopy has been hampered by the need to interface highly sensitive quantum bit (qubit) sensors with their biological targets. Here, we demonstrate an approach that combines quantum engineering with single-molecule biophysics to immobilize individual proteins and DNA molecules on the surface of a bulk diamond crystal that hosts coherent nitrogen vacancy qubit sensors. Our thin (sub–5 nm) functionalization architecture provides precise control over the biomolecule adsorption density and results in near-surface qubit coherence approaching 100 μs. The developed architecture remains chemically stable under physiological conditions for over 5 d, making our technique compatible with most biophysical and biomedical applications.</description><subject>Biocompatibility</subject><subject>biocompatible functionalization</subject><subject>Biomedical materials</subject><subject>Biomolecules</subject><subject>Biophysics</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Cancer screening</subject><subject>Diamond - chemistry</subject><subject>diamond surface modification</subject><subject>Diamonds</subject><subject>Immunoassays</subject><subject>Lattice vacancies</subject><subject>Life sciences</subject><subject>Magnetic resonance spectroscopy</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Medical screening</subject><subject>Nanoparticles - chemistry</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Nanotechnology - methods</subject><subject>Nitrogen - chemistry</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>NV center</subject><subject>Physical Sciences</subject><subject>quantum sensing</subject><subject>Quantum sensors</subject><subject>Qubits (quantum computing)</subject><subject>Sensors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1rFTEUxYNY7Gt17UoZdONm2pvvzEbQUq1QEEHXIZPJ-PKYSV6TjKB_vRlffX6sEji_nHtPDkJPMVxgkPRyH0y-IBgzrATG3QO0wdDhVrAOHqINAJGtYoSdorOcdwDQcQWP0CnluKOdwBv06a2PNs57U3w_uSYvaTTWNeMSbPExmMn_MOulMclufXG2LKnKMTWmGbyZYxiau8WEssxNdiHH9BidjGbK7sn9eY6-vLv-fHXT3n58_-HqzW1rmYTSCifcMHCuZG8kJcL1ggPtBgKOM4e5woJKLJWwtKMDjFKSHpiqoTmnvRH0HL0--O6XfnaDdaEkM-l98rNJ33U0Xv-rBL_VX-M3rZQkUspq8OJgEHPxOts13dbGEGpIjRUTwNcpr-6npHi3uFz07LN102SCi0vWRFCCmSKSVfTlf-guLql-4S-KAQHApFKXB8qmmHNy43FjDHrtVK-d6j-d1hfP_w565H-XWIFnB2CXS0xHnUhcHZiiPwHidKbe</recordid><startdate>20220222</startdate><enddate>20220222</enddate><creator>Xie, Mouzhe</creator><creator>Yu, Xiaofei</creator><creator>Rodgers, Lila V. H.</creator><creator>Xu, Daohong</creator><creator>Chi-Durán, Ignacio</creator><creator>Toros, Adrien</creator><creator>Quack, Niels</creator><creator>de Leon, Nathalie P.</creator><creator>Maurer, Peter C.</creator><general>National Academy of Sciences</general><general>Proceedings of the National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2174-2671</orcidid><orcidid>https://orcid.org/0000-0001-5189-0929</orcidid><orcidid>https://orcid.org/0000-0002-2960-644X</orcidid><orcidid>https://orcid.org/0000-0001-9033-5135</orcidid><orcidid>https://orcid.org/0000-0002-3327-2825</orcidid><orcidid>https://orcid.org/0000000151890929</orcidid><orcidid>https://orcid.org/0000000321742671</orcidid><orcidid>https://orcid.org/000000022960644X</orcidid><orcidid>https://orcid.org/0000000190335135</orcidid><orcidid>https://orcid.org/0000000233272825</orcidid></search><sort><creationdate>20220222</creationdate><title>Biocompatible surface functionalization architecture for a diamond quantum sensor</title><author>Xie, Mouzhe ; Yu, Xiaofei ; Rodgers, Lila V. H. ; Xu, Daohong ; Chi-Durán, Ignacio ; Toros, Adrien ; Quack, Niels ; de Leon, Nathalie P. ; Maurer, Peter C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-6e6edd5587ba7326eb65039d20e54e15816371786c393d0f772b048073553ba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biocompatibility</topic><topic>biocompatible functionalization</topic><topic>Biomedical materials</topic><topic>Biomolecules</topic><topic>Biophysics</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Cancer screening</topic><topic>Diamond - chemistry</topic><topic>diamond surface modification</topic><topic>Diamonds</topic><topic>Immunoassays</topic><topic>Lattice vacancies</topic><topic>Life sciences</topic><topic>Magnetic resonance spectroscopy</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Medical screening</topic><topic>Nanoparticles - chemistry</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Nanotechnology - methods</topic><topic>Nitrogen - chemistry</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>NV center</topic><topic>Physical Sciences</topic><topic>quantum sensing</topic><topic>Quantum sensors</topic><topic>Qubits (quantum computing)</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Mouzhe</creatorcontrib><creatorcontrib>Yu, Xiaofei</creatorcontrib><creatorcontrib>Rodgers, Lila V. H.</creatorcontrib><creatorcontrib>Xu, Daohong</creatorcontrib><creatorcontrib>Chi-Durán, Ignacio</creatorcontrib><creatorcontrib>Toros, Adrien</creatorcontrib><creatorcontrib>Quack, Niels</creatorcontrib><creatorcontrib>de Leon, Nathalie P.</creatorcontrib><creatorcontrib>Maurer, Peter C.</creatorcontrib><creatorcontrib>University of Chicago, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Mouzhe</au><au>Yu, Xiaofei</au><au>Rodgers, Lila V. H.</au><au>Xu, Daohong</au><au>Chi-Durán, Ignacio</au><au>Toros, Adrien</au><au>Quack, Niels</au><au>de Leon, Nathalie P.</au><au>Maurer, Peter C.</au><aucorp>University of Chicago, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biocompatible surface functionalization architecture for a diamond quantum sensor</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-02-22</date><risdate>2022</risdate><volume>119</volume><issue>8</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Quantum metrology enables some of the most precise measurements. In the life sciences, diamond-based quantum sensing has led to a new class of biophysical sensors and diagnostic devices that are being investigated as a platform for cancer screening and ultrasensitive immunoassays. However, a broader application in the life sciences based on nanoscale NMR spectroscopy has been hampered by the need to interface highly sensitive quantum bit (qubit) sensors with their biological targets. Here, we demonstrate an approach that combines quantum engineering with single-molecule biophysics to immobilize individual proteins and DNA molecules on the surface of a bulk diamond crystal that hosts coherent nitrogen vacancy qubit sensors. Our thin (sub–5 nm) functionalization architecture provides precise control over the biomolecule adsorption density and results in near-surface qubit coherence approaching 100 μs. The developed architecture remains chemically stable under physiological conditions for over 5 d, making our technique compatible with most biophysical and biomedical applications.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>35193961</pmid><doi>10.1073/pnas.2114186119</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2174-2671</orcidid><orcidid>https://orcid.org/0000-0001-5189-0929</orcidid><orcidid>https://orcid.org/0000-0002-2960-644X</orcidid><orcidid>https://orcid.org/0000-0001-9033-5135</orcidid><orcidid>https://orcid.org/0000-0002-3327-2825</orcidid><orcidid>https://orcid.org/0000000151890929</orcidid><orcidid>https://orcid.org/0000000321742671</orcidid><orcidid>https://orcid.org/000000022960644X</orcidid><orcidid>https://orcid.org/0000000190335135</orcidid><orcidid>https://orcid.org/0000000233272825</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-02, Vol.119 (8), p.1-7 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8872777 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biocompatibility biocompatible functionalization Biomedical materials Biomolecules Biophysics Biosensing Techniques - instrumentation Biosensing Techniques - methods Cancer screening Diamond - chemistry diamond surface modification Diamonds Immunoassays Lattice vacancies Life sciences Magnetic resonance spectroscopy Magnetic Resonance Spectroscopy - methods Medical screening Nanoparticles - chemistry NANOSCIENCE AND NANOTECHNOLOGY Nanotechnology - methods Nitrogen - chemistry NMR NMR spectroscopy Nuclear magnetic resonance NV center Physical Sciences quantum sensing Quantum sensors Qubits (quantum computing) Sensors |
title | Biocompatible surface functionalization architecture for a diamond quantum sensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biocompatible%20surface%20functionalization%20architecture%20for%20a%20diamond%20quantum%20sensor&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Xie,%20Mouzhe&rft.aucorp=University%20of%20Chicago,%20IL%20(United%20States)&rft.date=2022-02-22&rft.volume=119&rft.issue=8&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2114186119&rft_dat=%3Cjstor_pubme%3E27118648%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634020012&rft_id=info:pmid/35193961&rft_jstor_id=27118648&rfr_iscdi=true |