Prognosis Stratification Tools in Early-Stage Endometrial Cancer: Could We Improve Their Accuracy?
There are three prognostic stratification tools used for endometrial cancer: ESMO-ESGO-ESTRO 2016, ProMisE, and ESGO-ESTRO-ESP 2020. However, these methods are not sufficiently accurate to address prognosis. The aim of this study was to investigate whether the integration of molecular classification...
Gespeichert in:
Veröffentlicht in: | Cancers 2022-02, Vol.14 (4), p.912 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 912 |
container_title | Cancers |
container_volume | 14 |
creator | Ramon-Patino, Jorge Luis Ruz-Caracuel, Ignacio Heredia-Soto, Victoria Garcia de la Calle, Luis Eduardo Zagidullin, Bulat Wang, Yinyin Berjon, Alberto Lopez-Janeiro, Alvaro Miguel, Maria Escudero, Javier Gallego, Alejandro Castelo, Beatriz Yebenes, Laura Hernandez, Alicia Feliu, Jaime Pelaez-García, Alberto Tang, Jing Hardisson, David Mendiola, Marta Redondo, Andres |
description | There are three prognostic stratification tools used for endometrial cancer: ESMO-ESGO-ESTRO 2016, ProMisE, and ESGO-ESTRO-ESP 2020. However, these methods are not sufficiently accurate to address prognosis. The aim of this study was to investigate whether the integration of molecular classification and other biomarkers could be used to improve the prognosis stratification in early-stage endometrial cancer. Relapse-free and overall survival of each classifier were analyzed, and the c-index was employed to assess accuracy. Other biomarkers were explored to improve the precision of risk classifiers. We analyzed 293 patients. A comparison between the three classifiers showed an improved accuracy in ESGO-ESTRO-ESP 2020 when RFS was evaluated (c-index = 0.78), although we did not find broad differences between intermediate prognostic groups. Prognosis of these patients was better stratified with the incorporation of
status to the 2020 classifier (c-index 0.81), with statistically significant and clinically relevant differences in 5-year RFS: 93.9% for low risk, 79.1% for intermediate merged group/
wild type, and 42.7% for high risk (including patients with
mutation). The incorporation of molecular classification in risk stratification resulted in better discriminatory capability, which could be improved even further with the addition of
mutational evaluation. |
doi_str_mv | 10.3390/cancers14040912 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8869938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2632364861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-b19e879dee1da060b70b40488b73347bff784539d62a2d8340b528dfb5f074a33</originalsourceid><addsrcrecordid>eNpdkc1LHTEUxYO0qFjX3ZWAm25G8zX56EKRx7MKQgu-0mVIMplnZCZ5JjPC---N1Yp6F7kX8su5ORwAvmJ0TKlCJ85E53PBDDGkMNkB-wQJ0nCu2Kc38x44LOUO1aIUCy52wR5tCWo5x_vA_s5pHVMJBd5M2UyhD66eKcJVSkOBIcKlycO2uZnM2sNl7NLopxzMABf_1v-AizQPHfzr4dW4yenBw9WtDxmeOzdn47ZnX8Dn3gzFH770A_DnYrlaXDbXv35eLc6vG8cInhqLlZdCdd7jziCOrEC2OpPSCkqZsH0vJGup6jgxpJOUIdsS2fW27ZFghtIDcPqsu5nt6DvnYzU06E0Oo8lbnUzQ729iuNXr9KCl5EpRWQW-vwjkdD_7MukxFOeHwUSf5qIJp1Qqjrmq6NEH9C7NOVZ7TxShnEmOK3XyTLmcSsm-f_0MRvopQv0hwvri21sPr_z_wOgjnAaYtQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632364861</pqid></control><display><type>article</type><title>Prognosis Stratification Tools in Early-Stage Endometrial Cancer: Could We Improve Their Accuracy?</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ramon-Patino, Jorge Luis ; Ruz-Caracuel, Ignacio ; Heredia-Soto, Victoria ; Garcia de la Calle, Luis Eduardo ; Zagidullin, Bulat ; Wang, Yinyin ; Berjon, Alberto ; Lopez-Janeiro, Alvaro ; Miguel, Maria ; Escudero, Javier ; Gallego, Alejandro ; Castelo, Beatriz ; Yebenes, Laura ; Hernandez, Alicia ; Feliu, Jaime ; Pelaez-García, Alberto ; Tang, Jing ; Hardisson, David ; Mendiola, Marta ; Redondo, Andres</creator><creatorcontrib>Ramon-Patino, Jorge Luis ; Ruz-Caracuel, Ignacio ; Heredia-Soto, Victoria ; Garcia de la Calle, Luis Eduardo ; Zagidullin, Bulat ; Wang, Yinyin ; Berjon, Alberto ; Lopez-Janeiro, Alvaro ; Miguel, Maria ; Escudero, Javier ; Gallego, Alejandro ; Castelo, Beatriz ; Yebenes, Laura ; Hernandez, Alicia ; Feliu, Jaime ; Pelaez-García, Alberto ; Tang, Jing ; Hardisson, David ; Mendiola, Marta ; Redondo, Andres</creatorcontrib><description>There are three prognostic stratification tools used for endometrial cancer: ESMO-ESGO-ESTRO 2016, ProMisE, and ESGO-ESTRO-ESP 2020. However, these methods are not sufficiently accurate to address prognosis. The aim of this study was to investigate whether the integration of molecular classification and other biomarkers could be used to improve the prognosis stratification in early-stage endometrial cancer. Relapse-free and overall survival of each classifier were analyzed, and the c-index was employed to assess accuracy. Other biomarkers were explored to improve the precision of risk classifiers. We analyzed 293 patients. A comparison between the three classifiers showed an improved accuracy in ESGO-ESTRO-ESP 2020 when RFS was evaluated (c-index = 0.78), although we did not find broad differences between intermediate prognostic groups. Prognosis of these patients was better stratified with the incorporation of
status to the 2020 classifier (c-index 0.81), with statistically significant and clinically relevant differences in 5-year RFS: 93.9% for low risk, 79.1% for intermediate merged group/
wild type, and 42.7% for high risk (including patients with
mutation). The incorporation of molecular classification in risk stratification resulted in better discriminatory capability, which could be improved even further with the addition of
mutational evaluation.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers14040912</identifier><identifier>PMID: 35205661</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Biomarkers ; Cancer ; Classification ; Endometrial cancer ; Endometrium ; Gynecology ; Malignancy ; Medical prognosis ; Mutation ; Oncology ; Prognosis ; Statistical analysis ; Surgery ; Tumors ; Values</subject><ispartof>Cancers, 2022-02, Vol.14 (4), p.912</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-b19e879dee1da060b70b40488b73347bff784539d62a2d8340b528dfb5f074a33</citedby><cites>FETCH-LOGICAL-c421t-b19e879dee1da060b70b40488b73347bff784539d62a2d8340b528dfb5f074a33</cites><orcidid>0000-0002-5401-3216 ; 0000-0002-7257-5642 ; 0000-0002-2298-4683 ; 0000-0001-7480-7710 ; 0000-0002-3467-106X ; 0000-0003-4867-1420 ; 0000-0002-2183-3699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869938/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869938/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35205661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramon-Patino, Jorge Luis</creatorcontrib><creatorcontrib>Ruz-Caracuel, Ignacio</creatorcontrib><creatorcontrib>Heredia-Soto, Victoria</creatorcontrib><creatorcontrib>Garcia de la Calle, Luis Eduardo</creatorcontrib><creatorcontrib>Zagidullin, Bulat</creatorcontrib><creatorcontrib>Wang, Yinyin</creatorcontrib><creatorcontrib>Berjon, Alberto</creatorcontrib><creatorcontrib>Lopez-Janeiro, Alvaro</creatorcontrib><creatorcontrib>Miguel, Maria</creatorcontrib><creatorcontrib>Escudero, Javier</creatorcontrib><creatorcontrib>Gallego, Alejandro</creatorcontrib><creatorcontrib>Castelo, Beatriz</creatorcontrib><creatorcontrib>Yebenes, Laura</creatorcontrib><creatorcontrib>Hernandez, Alicia</creatorcontrib><creatorcontrib>Feliu, Jaime</creatorcontrib><creatorcontrib>Pelaez-García, Alberto</creatorcontrib><creatorcontrib>Tang, Jing</creatorcontrib><creatorcontrib>Hardisson, David</creatorcontrib><creatorcontrib>Mendiola, Marta</creatorcontrib><creatorcontrib>Redondo, Andres</creatorcontrib><title>Prognosis Stratification Tools in Early-Stage Endometrial Cancer: Could We Improve Their Accuracy?</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>There are three prognostic stratification tools used for endometrial cancer: ESMO-ESGO-ESTRO 2016, ProMisE, and ESGO-ESTRO-ESP 2020. However, these methods are not sufficiently accurate to address prognosis. The aim of this study was to investigate whether the integration of molecular classification and other biomarkers could be used to improve the prognosis stratification in early-stage endometrial cancer. Relapse-free and overall survival of each classifier were analyzed, and the c-index was employed to assess accuracy. Other biomarkers were explored to improve the precision of risk classifiers. We analyzed 293 patients. A comparison between the three classifiers showed an improved accuracy in ESGO-ESTRO-ESP 2020 when RFS was evaluated (c-index = 0.78), although we did not find broad differences between intermediate prognostic groups. Prognosis of these patients was better stratified with the incorporation of
status to the 2020 classifier (c-index 0.81), with statistically significant and clinically relevant differences in 5-year RFS: 93.9% for low risk, 79.1% for intermediate merged group/
wild type, and 42.7% for high risk (including patients with
mutation). The incorporation of molecular classification in risk stratification resulted in better discriminatory capability, which could be improved even further with the addition of
mutational evaluation.</description><subject>Accuracy</subject><subject>Biomarkers</subject><subject>Cancer</subject><subject>Classification</subject><subject>Endometrial cancer</subject><subject>Endometrium</subject><subject>Gynecology</subject><subject>Malignancy</subject><subject>Medical prognosis</subject><subject>Mutation</subject><subject>Oncology</subject><subject>Prognosis</subject><subject>Statistical analysis</subject><subject>Surgery</subject><subject>Tumors</subject><subject>Values</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc1LHTEUxYO0qFjX3ZWAm25G8zX56EKRx7MKQgu-0mVIMplnZCZ5JjPC---N1Yp6F7kX8su5ORwAvmJ0TKlCJ85E53PBDDGkMNkB-wQJ0nCu2Kc38x44LOUO1aIUCy52wR5tCWo5x_vA_s5pHVMJBd5M2UyhD66eKcJVSkOBIcKlycO2uZnM2sNl7NLopxzMABf_1v-AizQPHfzr4dW4yenBw9WtDxmeOzdn47ZnX8Dn3gzFH770A_DnYrlaXDbXv35eLc6vG8cInhqLlZdCdd7jziCOrEC2OpPSCkqZsH0vJGup6jgxpJOUIdsS2fW27ZFghtIDcPqsu5nt6DvnYzU06E0Oo8lbnUzQ729iuNXr9KCl5EpRWQW-vwjkdD_7MukxFOeHwUSf5qIJp1Qqjrmq6NEH9C7NOVZ7TxShnEmOK3XyTLmcSsm-f_0MRvopQv0hwvri21sPr_z_wOgjnAaYtQ</recordid><startdate>20220212</startdate><enddate>20220212</enddate><creator>Ramon-Patino, Jorge Luis</creator><creator>Ruz-Caracuel, Ignacio</creator><creator>Heredia-Soto, Victoria</creator><creator>Garcia de la Calle, Luis Eduardo</creator><creator>Zagidullin, Bulat</creator><creator>Wang, Yinyin</creator><creator>Berjon, Alberto</creator><creator>Lopez-Janeiro, Alvaro</creator><creator>Miguel, Maria</creator><creator>Escudero, Javier</creator><creator>Gallego, Alejandro</creator><creator>Castelo, Beatriz</creator><creator>Yebenes, Laura</creator><creator>Hernandez, Alicia</creator><creator>Feliu, Jaime</creator><creator>Pelaez-García, Alberto</creator><creator>Tang, Jing</creator><creator>Hardisson, David</creator><creator>Mendiola, Marta</creator><creator>Redondo, Andres</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5401-3216</orcidid><orcidid>https://orcid.org/0000-0002-7257-5642</orcidid><orcidid>https://orcid.org/0000-0002-2298-4683</orcidid><orcidid>https://orcid.org/0000-0001-7480-7710</orcidid><orcidid>https://orcid.org/0000-0002-3467-106X</orcidid><orcidid>https://orcid.org/0000-0003-4867-1420</orcidid><orcidid>https://orcid.org/0000-0002-2183-3699</orcidid></search><sort><creationdate>20220212</creationdate><title>Prognosis Stratification Tools in Early-Stage Endometrial Cancer: Could We Improve Their Accuracy?</title><author>Ramon-Patino, Jorge Luis ; Ruz-Caracuel, Ignacio ; Heredia-Soto, Victoria ; Garcia de la Calle, Luis Eduardo ; Zagidullin, Bulat ; Wang, Yinyin ; Berjon, Alberto ; Lopez-Janeiro, Alvaro ; Miguel, Maria ; Escudero, Javier ; Gallego, Alejandro ; Castelo, Beatriz ; Yebenes, Laura ; Hernandez, Alicia ; Feliu, Jaime ; Pelaez-García, Alberto ; Tang, Jing ; Hardisson, David ; Mendiola, Marta ; Redondo, Andres</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-b19e879dee1da060b70b40488b73347bff784539d62a2d8340b528dfb5f074a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Biomarkers</topic><topic>Cancer</topic><topic>Classification</topic><topic>Endometrial cancer</topic><topic>Endometrium</topic><topic>Gynecology</topic><topic>Malignancy</topic><topic>Medical prognosis</topic><topic>Mutation</topic><topic>Oncology</topic><topic>Prognosis</topic><topic>Statistical analysis</topic><topic>Surgery</topic><topic>Tumors</topic><topic>Values</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramon-Patino, Jorge Luis</creatorcontrib><creatorcontrib>Ruz-Caracuel, Ignacio</creatorcontrib><creatorcontrib>Heredia-Soto, Victoria</creatorcontrib><creatorcontrib>Garcia de la Calle, Luis Eduardo</creatorcontrib><creatorcontrib>Zagidullin, Bulat</creatorcontrib><creatorcontrib>Wang, Yinyin</creatorcontrib><creatorcontrib>Berjon, Alberto</creatorcontrib><creatorcontrib>Lopez-Janeiro, Alvaro</creatorcontrib><creatorcontrib>Miguel, Maria</creatorcontrib><creatorcontrib>Escudero, Javier</creatorcontrib><creatorcontrib>Gallego, Alejandro</creatorcontrib><creatorcontrib>Castelo, Beatriz</creatorcontrib><creatorcontrib>Yebenes, Laura</creatorcontrib><creatorcontrib>Hernandez, Alicia</creatorcontrib><creatorcontrib>Feliu, Jaime</creatorcontrib><creatorcontrib>Pelaez-García, Alberto</creatorcontrib><creatorcontrib>Tang, Jing</creatorcontrib><creatorcontrib>Hardisson, David</creatorcontrib><creatorcontrib>Mendiola, Marta</creatorcontrib><creatorcontrib>Redondo, Andres</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramon-Patino, Jorge Luis</au><au>Ruz-Caracuel, Ignacio</au><au>Heredia-Soto, Victoria</au><au>Garcia de la Calle, Luis Eduardo</au><au>Zagidullin, Bulat</au><au>Wang, Yinyin</au><au>Berjon, Alberto</au><au>Lopez-Janeiro, Alvaro</au><au>Miguel, Maria</au><au>Escudero, Javier</au><au>Gallego, Alejandro</au><au>Castelo, Beatriz</au><au>Yebenes, Laura</au><au>Hernandez, Alicia</au><au>Feliu, Jaime</au><au>Pelaez-García, Alberto</au><au>Tang, Jing</au><au>Hardisson, David</au><au>Mendiola, Marta</au><au>Redondo, Andres</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prognosis Stratification Tools in Early-Stage Endometrial Cancer: Could We Improve Their Accuracy?</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2022-02-12</date><risdate>2022</risdate><volume>14</volume><issue>4</issue><spage>912</spage><pages>912-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>There are three prognostic stratification tools used for endometrial cancer: ESMO-ESGO-ESTRO 2016, ProMisE, and ESGO-ESTRO-ESP 2020. However, these methods are not sufficiently accurate to address prognosis. The aim of this study was to investigate whether the integration of molecular classification and other biomarkers could be used to improve the prognosis stratification in early-stage endometrial cancer. Relapse-free and overall survival of each classifier were analyzed, and the c-index was employed to assess accuracy. Other biomarkers were explored to improve the precision of risk classifiers. We analyzed 293 patients. A comparison between the three classifiers showed an improved accuracy in ESGO-ESTRO-ESP 2020 when RFS was evaluated (c-index = 0.78), although we did not find broad differences between intermediate prognostic groups. Prognosis of these patients was better stratified with the incorporation of
status to the 2020 classifier (c-index 0.81), with statistically significant and clinically relevant differences in 5-year RFS: 93.9% for low risk, 79.1% for intermediate merged group/
wild type, and 42.7% for high risk (including patients with
mutation). The incorporation of molecular classification in risk stratification resulted in better discriminatory capability, which could be improved even further with the addition of
mutational evaluation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35205661</pmid><doi>10.3390/cancers14040912</doi><orcidid>https://orcid.org/0000-0002-5401-3216</orcidid><orcidid>https://orcid.org/0000-0002-7257-5642</orcidid><orcidid>https://orcid.org/0000-0002-2298-4683</orcidid><orcidid>https://orcid.org/0000-0001-7480-7710</orcidid><orcidid>https://orcid.org/0000-0002-3467-106X</orcidid><orcidid>https://orcid.org/0000-0003-4867-1420</orcidid><orcidid>https://orcid.org/0000-0002-2183-3699</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6694 |
ispartof | Cancers, 2022-02, Vol.14 (4), p.912 |
issn | 2072-6694 2072-6694 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8869938 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Accuracy Biomarkers Cancer Classification Endometrial cancer Endometrium Gynecology Malignancy Medical prognosis Mutation Oncology Prognosis Statistical analysis Surgery Tumors Values |
title | Prognosis Stratification Tools in Early-Stage Endometrial Cancer: Could We Improve Their Accuracy? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A37%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prognosis%20Stratification%20Tools%20in%20Early-Stage%20Endometrial%20Cancer:%20Could%20We%20Improve%20Their%20Accuracy?&rft.jtitle=Cancers&rft.au=Ramon-Patino,%20Jorge%20Luis&rft.date=2022-02-12&rft.volume=14&rft.issue=4&rft.spage=912&rft.pages=912-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers14040912&rft_dat=%3Cproquest_pubme%3E2632364861%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2632364861&rft_id=info:pmid/35205661&rfr_iscdi=true |