Non-vernalization requirement in Chinese kale caused by loss of BoFLC and low expressions of its paralogs
Key message We identified the loss of BoFLC gene as the cause of non-vernalization requirement in B. oleracea . Our developed codominant marker of BoFLC gene can be used for breeding program of B. oleracea crops . Many species of the Brassicaceae family, including some Brassica crops, require vern...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 2022-02, Vol.135 (2), p.473-483 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 483 |
---|---|
container_issue | 2 |
container_start_page | 473 |
container_title | Theoretical and applied genetics |
container_volume | 135 |
creator | Tang, Qiwei Kuang, Hanhui Yu, Changchun An, Guanghui Tao, Rong Zhang, Weiyi Jia, Yue |
description | Key message
We identified the loss of
BoFLC
gene as the cause of non-vernalization requirement in
B. oleracea
.
Our developed codominant marker of
BoFLC
gene can be used for breeding program of
B. oleracea
crops
.
Many species of the Brassicaceae family, including some Brassica crops, require vernalization to avoid pre-winter flowering. Vernalization is an unfavorable trait for Chinese kale (
Brassica oleracea
var.
chinensis Lei
), a stem vegetable, and therefore it has been lost during its domestication/breeding process. To reveal the genetics of vernalization variation, we constructed an F
2
population through crossing a Chinese kale (a non-vernalization crop) with a kale (a vernalization crop). Using bulked segregant analysis (BSA) and RNA-seq, we identified one major quantitative trait locus (QTL) controlling vernalization and fine-mapped it to a region spanning 80 kb. Synteny analysis and PCR-based sequencing results revealed that compared to that of the kale parent, the candidate region of the Chinese kale parent lost a 9,325-bp fragment containing
FLC
homolog (
BoFLC
). In addition to the
BoFLC
gene, there are four other
FLC
homologs in the genome of
B. oleracea
, including
Bo3g005470
,
Bo3g024250
,
Bo9g173370,
and
Bo9g173400
. The qPCR analysis showed that the
BoFLC
had the highest expression among the five members of the
FLC
family. Considering the low expression levels of the four paralogs of
BoFLC
, we speculate that its paralogs cannot compensate the function of the lost
BoFLC,
therefore the presence/absence (PA) polymorphism of
BoFLC
determines the vernalization variation. Based on the PA polymorphism of
BoFLC
, we designed a codominant marker for the vernalization trait, which can be used for breeding programs of
B. oleracea
crops. |
doi_str_mv | 10.1007/s00122-021-03977-x |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8866342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A694791132</galeid><sourcerecordid>A694791132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-c8e8ccd59914f6492254ac4f80418a2f49c245107d6e93a82493687a7d1823cc3</originalsourceid><addsrcrecordid>eNp9kktv1DAUhS0EokPhD7BAltjAIsWvxPYGqR1RqDQqEo-15To3qUvGntpJmfLr8XT6YBBCXljy_e659vFB6CUlB5QQ-S4TQhmrCKMV4VrKav0IzajgrGJMsMdoRoggVS1rtoee5XxBCGE14U_RHheSNqJRM-RPY6iuIAU7-F929DHgBJeTT7CEMGIf8PzcB8iAf9gBsLNThhafXeMh5oxjh4_i8WKObWjLyU8M61WCnIvMTdGPGa9sskPs83P0pLNDhhe3-z76fvzh2_xTtfj88WR-uKhcI-hYOQXKubbWmoquEZqxWlgnOkUEVZZ1Qjsmakpk24DmVjGheaOklS1VjDvH99H7re5qOltC68ozygXMKvmlTdcmWm92K8Gfmz5eGaWahgtWBN7cCqR4OUEezdJnB8NgA8QpG1br4r6Wghf09V_oRZw2Xhaq4YwwLah8oPpiofGhi2Wu24iaw0YLqSnlm7EH_6DKamHpXQzQ-XK-0_B2p6EwI6zHvnxRNidfv-yybMu6VP4tQXfvByVmEyazDZMpYTI3YTLr0vTqTyfvW-7SUwC-BXIphR7Sw_P_I_sb2hjTOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632029417</pqid></control><display><type>article</type><title>Non-vernalization requirement in Chinese kale caused by loss of BoFLC and low expressions of its paralogs</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Tang, Qiwei ; Kuang, Hanhui ; Yu, Changchun ; An, Guanghui ; Tao, Rong ; Zhang, Weiyi ; Jia, Yue</creator><creatorcontrib>Tang, Qiwei ; Kuang, Hanhui ; Yu, Changchun ; An, Guanghui ; Tao, Rong ; Zhang, Weiyi ; Jia, Yue</creatorcontrib><description>Key message
We identified the loss of
BoFLC
gene as the cause of non-vernalization requirement in
B. oleracea
.
Our developed codominant marker of
BoFLC
gene can be used for breeding program of
B. oleracea
crops
.
Many species of the Brassicaceae family, including some Brassica crops, require vernalization to avoid pre-winter flowering. Vernalization is an unfavorable trait for Chinese kale (
Brassica oleracea
var.
chinensis Lei
), a stem vegetable, and therefore it has been lost during its domestication/breeding process. To reveal the genetics of vernalization variation, we constructed an F
2
population through crossing a Chinese kale (a non-vernalization crop) with a kale (a vernalization crop). Using bulked segregant analysis (BSA) and RNA-seq, we identified one major quantitative trait locus (QTL) controlling vernalization and fine-mapped it to a region spanning 80 kb. Synteny analysis and PCR-based sequencing results revealed that compared to that of the kale parent, the candidate region of the Chinese kale parent lost a 9,325-bp fragment containing
FLC
homolog (
BoFLC
). In addition to the
BoFLC
gene, there are four other
FLC
homologs in the genome of
B. oleracea
, including
Bo3g005470
,
Bo3g024250
,
Bo9g173370,
and
Bo9g173400
. The qPCR analysis showed that the
BoFLC
had the highest expression among the five members of the
FLC
family. Considering the low expression levels of the four paralogs of
BoFLC
, we speculate that its paralogs cannot compensate the function of the lost
BoFLC,
therefore the presence/absence (PA) polymorphism of
BoFLC
determines the vernalization variation. Based on the PA polymorphism of
BoFLC
, we designed a codominant marker for the vernalization trait, which can be used for breeding programs of
B. oleracea
crops.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-021-03977-x</identifier><identifier>PMID: 34716468</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural research ; Agriculture ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Brassica - genetics ; Brassica alboglabra ; China ; Crops ; Domestication ; Flowering ; Flowers - genetics ; Gene expression ; Genetic aspects ; Genetic diversity ; Genetic variation ; Genomes ; Kale ; Life Sciences ; Original ; Original Article ; Physiological aspects ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Polymorphism ; Quantitative Trait Loci ; Synteny ; Vegetables ; Vernalization</subject><ispartof>Theoretical and applied genetics, 2022-02, Vol.135 (2), p.473-483</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c641t-c8e8ccd59914f6492254ac4f80418a2f49c245107d6e93a82493687a7d1823cc3</citedby><cites>FETCH-LOGICAL-c641t-c8e8ccd59914f6492254ac4f80418a2f49c245107d6e93a82493687a7d1823cc3</cites><orcidid>0000-0001-9154-0982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-021-03977-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-021-03977-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34716468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Qiwei</creatorcontrib><creatorcontrib>Kuang, Hanhui</creatorcontrib><creatorcontrib>Yu, Changchun</creatorcontrib><creatorcontrib>An, Guanghui</creatorcontrib><creatorcontrib>Tao, Rong</creatorcontrib><creatorcontrib>Zhang, Weiyi</creatorcontrib><creatorcontrib>Jia, Yue</creatorcontrib><title>Non-vernalization requirement in Chinese kale caused by loss of BoFLC and low expressions of its paralogs</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message
We identified the loss of
BoFLC
gene as the cause of non-vernalization requirement in
B. oleracea
.
Our developed codominant marker of
BoFLC
gene can be used for breeding program of
B. oleracea
crops
.
Many species of the Brassicaceae family, including some Brassica crops, require vernalization to avoid pre-winter flowering. Vernalization is an unfavorable trait for Chinese kale (
Brassica oleracea
var.
chinensis Lei
), a stem vegetable, and therefore it has been lost during its domestication/breeding process. To reveal the genetics of vernalization variation, we constructed an F
2
population through crossing a Chinese kale (a non-vernalization crop) with a kale (a vernalization crop). Using bulked segregant analysis (BSA) and RNA-seq, we identified one major quantitative trait locus (QTL) controlling vernalization and fine-mapped it to a region spanning 80 kb. Synteny analysis and PCR-based sequencing results revealed that compared to that of the kale parent, the candidate region of the Chinese kale parent lost a 9,325-bp fragment containing
FLC
homolog (
BoFLC
). In addition to the
BoFLC
gene, there are four other
FLC
homologs in the genome of
B. oleracea
, including
Bo3g005470
,
Bo3g024250
,
Bo9g173370,
and
Bo9g173400
. The qPCR analysis showed that the
BoFLC
had the highest expression among the five members of the
FLC
family. Considering the low expression levels of the four paralogs of
BoFLC
, we speculate that its paralogs cannot compensate the function of the lost
BoFLC,
therefore the presence/absence (PA) polymorphism of
BoFLC
determines the vernalization variation. Based on the PA polymorphism of
BoFLC
, we designed a codominant marker for the vernalization trait, which can be used for breeding programs of
B. oleracea
crops.</description><subject>Agricultural research</subject><subject>Agriculture</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Brassica - genetics</subject><subject>Brassica alboglabra</subject><subject>China</subject><subject>Crops</subject><subject>Domestication</subject><subject>Flowering</subject><subject>Flowers - genetics</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic variation</subject><subject>Genomes</subject><subject>Kale</subject><subject>Life Sciences</subject><subject>Original</subject><subject>Original Article</subject><subject>Physiological aspects</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Polymorphism</subject><subject>Quantitative Trait Loci</subject><subject>Synteny</subject><subject>Vegetables</subject><subject>Vernalization</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kktv1DAUhS0EokPhD7BAltjAIsWvxPYGqR1RqDQqEo-15To3qUvGntpJmfLr8XT6YBBCXljy_e659vFB6CUlB5QQ-S4TQhmrCKMV4VrKav0IzajgrGJMsMdoRoggVS1rtoee5XxBCGE14U_RHheSNqJRM-RPY6iuIAU7-F929DHgBJeTT7CEMGIf8PzcB8iAf9gBsLNThhafXeMh5oxjh4_i8WKObWjLyU8M61WCnIvMTdGPGa9sskPs83P0pLNDhhe3-z76fvzh2_xTtfj88WR-uKhcI-hYOQXKubbWmoquEZqxWlgnOkUEVZZ1Qjsmakpk24DmVjGheaOklS1VjDvH99H7re5qOltC68ozygXMKvmlTdcmWm92K8Gfmz5eGaWahgtWBN7cCqR4OUEezdJnB8NgA8QpG1br4r6Wghf09V_oRZw2Xhaq4YwwLah8oPpiofGhi2Wu24iaw0YLqSnlm7EH_6DKamHpXQzQ-XK-0_B2p6EwI6zHvnxRNidfv-yybMu6VP4tQXfvByVmEyazDZMpYTI3YTLr0vTqTyfvW-7SUwC-BXIphR7Sw_P_I_sb2hjTOA</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Tang, Qiwei</creator><creator>Kuang, Hanhui</creator><creator>Yu, Changchun</creator><creator>An, Guanghui</creator><creator>Tao, Rong</creator><creator>Zhang, Weiyi</creator><creator>Jia, Yue</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9154-0982</orcidid></search><sort><creationdate>20220201</creationdate><title>Non-vernalization requirement in Chinese kale caused by loss of BoFLC and low expressions of its paralogs</title><author>Tang, Qiwei ; Kuang, Hanhui ; Yu, Changchun ; An, Guanghui ; Tao, Rong ; Zhang, Weiyi ; Jia, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-c8e8ccd59914f6492254ac4f80418a2f49c245107d6e93a82493687a7d1823cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural research</topic><topic>Agriculture</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Brassica - genetics</topic><topic>Brassica alboglabra</topic><topic>China</topic><topic>Crops</topic><topic>Domestication</topic><topic>Flowering</topic><topic>Flowers - genetics</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic variation</topic><topic>Genomes</topic><topic>Kale</topic><topic>Life Sciences</topic><topic>Original</topic><topic>Original Article</topic><topic>Physiological aspects</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Polymorphism</topic><topic>Quantitative Trait Loci</topic><topic>Synteny</topic><topic>Vegetables</topic><topic>Vernalization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Qiwei</creatorcontrib><creatorcontrib>Kuang, Hanhui</creatorcontrib><creatorcontrib>Yu, Changchun</creatorcontrib><creatorcontrib>An, Guanghui</creatorcontrib><creatorcontrib>Tao, Rong</creatorcontrib><creatorcontrib>Zhang, Weiyi</creatorcontrib><creatorcontrib>Jia, Yue</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Qiwei</au><au>Kuang, Hanhui</au><au>Yu, Changchun</au><au>An, Guanghui</au><au>Tao, Rong</au><au>Zhang, Weiyi</au><au>Jia, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-vernalization requirement in Chinese kale caused by loss of BoFLC and low expressions of its paralogs</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>135</volume><issue>2</issue><spage>473</spage><epage>483</epage><pages>473-483</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message
We identified the loss of
BoFLC
gene as the cause of non-vernalization requirement in
B. oleracea
.
Our developed codominant marker of
BoFLC
gene can be used for breeding program of
B. oleracea
crops
.
Many species of the Brassicaceae family, including some Brassica crops, require vernalization to avoid pre-winter flowering. Vernalization is an unfavorable trait for Chinese kale (
Brassica oleracea
var.
chinensis Lei
), a stem vegetable, and therefore it has been lost during its domestication/breeding process. To reveal the genetics of vernalization variation, we constructed an F
2
population through crossing a Chinese kale (a non-vernalization crop) with a kale (a vernalization crop). Using bulked segregant analysis (BSA) and RNA-seq, we identified one major quantitative trait locus (QTL) controlling vernalization and fine-mapped it to a region spanning 80 kb. Synteny analysis and PCR-based sequencing results revealed that compared to that of the kale parent, the candidate region of the Chinese kale parent lost a 9,325-bp fragment containing
FLC
homolog (
BoFLC
). In addition to the
BoFLC
gene, there are four other
FLC
homologs in the genome of
B. oleracea
, including
Bo3g005470
,
Bo3g024250
,
Bo9g173370,
and
Bo9g173400
. The qPCR analysis showed that the
BoFLC
had the highest expression among the five members of the
FLC
family. Considering the low expression levels of the four paralogs of
BoFLC
, we speculate that its paralogs cannot compensate the function of the lost
BoFLC,
therefore the presence/absence (PA) polymorphism of
BoFLC
determines the vernalization variation. Based on the PA polymorphism of
BoFLC
, we designed a codominant marker for the vernalization trait, which can be used for breeding programs of
B. oleracea
crops.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34716468</pmid><doi>10.1007/s00122-021-03977-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9154-0982</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2022-02, Vol.135 (2), p.473-483 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8866342 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Agricultural research Agriculture Biochemistry Biomedical and Life Sciences Biotechnology Brassica - genetics Brassica alboglabra China Crops Domestication Flowering Flowers - genetics Gene expression Genetic aspects Genetic diversity Genetic variation Genomes Kale Life Sciences Original Original Article Physiological aspects Plant Biochemistry Plant Breeding Plant Breeding/Biotechnology Plant Genetics and Genomics Polymorphism Quantitative Trait Loci Synteny Vegetables Vernalization |
title | Non-vernalization requirement in Chinese kale caused by loss of BoFLC and low expressions of its paralogs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T19%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-vernalization%20requirement%20in%20Chinese%20kale%20caused%20by%20loss%20of%20BoFLC%20and%20low%20expressions%20of%20its%20paralogs&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Tang,%20Qiwei&rft.date=2022-02-01&rft.volume=135&rft.issue=2&rft.spage=473&rft.epage=483&rft.pages=473-483&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-021-03977-x&rft_dat=%3Cgale_pubme%3EA694791132%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2632029417&rft_id=info:pmid/34716468&rft_galeid=A694791132&rfr_iscdi=true |