Non-vernalization requirement in Chinese kale caused by loss of BoFLC and low expressions of its paralogs

Key message We identified the loss of BoFLC   gene as the cause of non-vernalization requirement in B. oleracea . Our developed codominant marker of BoFLC gene can be used for breeding program of B. oleracea crops . Many species of the Brassicaceae family, including some Brassica crops, require vern...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2022-02, Vol.135 (2), p.473-483
Hauptverfasser: Tang, Qiwei, Kuang, Hanhui, Yu, Changchun, An, Guanghui, Tao, Rong, Zhang, Weiyi, Jia, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 483
container_issue 2
container_start_page 473
container_title Theoretical and applied genetics
container_volume 135
creator Tang, Qiwei
Kuang, Hanhui
Yu, Changchun
An, Guanghui
Tao, Rong
Zhang, Weiyi
Jia, Yue
description Key message We identified the loss of BoFLC   gene as the cause of non-vernalization requirement in B. oleracea . Our developed codominant marker of BoFLC gene can be used for breeding program of B. oleracea crops . Many species of the Brassicaceae family, including some Brassica crops, require vernalization to avoid pre-winter flowering. Vernalization is an unfavorable trait for Chinese kale ( Brassica oleracea var. chinensis Lei ), a stem vegetable, and therefore it has been lost during its domestication/breeding process. To reveal the genetics of vernalization variation, we constructed an F 2 population through crossing a Chinese kale (a non-vernalization crop) with a kale (a vernalization crop). Using bulked segregant analysis (BSA) and RNA-seq, we identified one major quantitative trait locus (QTL) controlling vernalization and fine-mapped it to a region spanning 80 kb. Synteny analysis and PCR-based sequencing results revealed that compared to that of the kale parent, the candidate region of the Chinese kale parent lost a 9,325-bp fragment containing FLC homolog ( BoFLC ). In addition to the BoFLC gene, there are four other FLC homologs in the genome of B. oleracea , including Bo3g005470 , Bo3g024250 , Bo9g173370, and Bo9g173400 . The qPCR analysis showed that the BoFLC had the highest expression among the five members of the FLC family. Considering the low expression levels of the four paralogs of BoFLC , we speculate that its paralogs cannot compensate the function of the lost BoFLC, therefore the presence/absence (PA) polymorphism of BoFLC determines the vernalization variation. Based on the PA polymorphism of BoFLC , we designed a codominant marker for the vernalization trait, which can be used for breeding programs of B. oleracea crops.
doi_str_mv 10.1007/s00122-021-03977-x
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8866342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A694791132</galeid><sourcerecordid>A694791132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-c8e8ccd59914f6492254ac4f80418a2f49c245107d6e93a82493687a7d1823cc3</originalsourceid><addsrcrecordid>eNp9kktv1DAUhS0EokPhD7BAltjAIsWvxPYGqR1RqDQqEo-15To3qUvGntpJmfLr8XT6YBBCXljy_e659vFB6CUlB5QQ-S4TQhmrCKMV4VrKav0IzajgrGJMsMdoRoggVS1rtoee5XxBCGE14U_RHheSNqJRM-RPY6iuIAU7-F929DHgBJeTT7CEMGIf8PzcB8iAf9gBsLNThhafXeMh5oxjh4_i8WKObWjLyU8M61WCnIvMTdGPGa9sskPs83P0pLNDhhe3-z76fvzh2_xTtfj88WR-uKhcI-hYOQXKubbWmoquEZqxWlgnOkUEVZZ1Qjsmakpk24DmVjGheaOklS1VjDvH99H7re5qOltC68ozygXMKvmlTdcmWm92K8Gfmz5eGaWahgtWBN7cCqR4OUEezdJnB8NgA8QpG1br4r6Wghf09V_oRZw2Xhaq4YwwLah8oPpiofGhi2Wu24iaw0YLqSnlm7EH_6DKamHpXQzQ-XK-0_B2p6EwI6zHvnxRNidfv-yybMu6VP4tQXfvByVmEyazDZMpYTI3YTLr0vTqTyfvW-7SUwC-BXIphR7Sw_P_I_sb2hjTOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632029417</pqid></control><display><type>article</type><title>Non-vernalization requirement in Chinese kale caused by loss of BoFLC and low expressions of its paralogs</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Tang, Qiwei ; Kuang, Hanhui ; Yu, Changchun ; An, Guanghui ; Tao, Rong ; Zhang, Weiyi ; Jia, Yue</creator><creatorcontrib>Tang, Qiwei ; Kuang, Hanhui ; Yu, Changchun ; An, Guanghui ; Tao, Rong ; Zhang, Weiyi ; Jia, Yue</creatorcontrib><description>Key message We identified the loss of BoFLC   gene as the cause of non-vernalization requirement in B. oleracea . Our developed codominant marker of BoFLC gene can be used for breeding program of B. oleracea crops . Many species of the Brassicaceae family, including some Brassica crops, require vernalization to avoid pre-winter flowering. Vernalization is an unfavorable trait for Chinese kale ( Brassica oleracea var. chinensis Lei ), a stem vegetable, and therefore it has been lost during its domestication/breeding process. To reveal the genetics of vernalization variation, we constructed an F 2 population through crossing a Chinese kale (a non-vernalization crop) with a kale (a vernalization crop). Using bulked segregant analysis (BSA) and RNA-seq, we identified one major quantitative trait locus (QTL) controlling vernalization and fine-mapped it to a region spanning 80 kb. Synteny analysis and PCR-based sequencing results revealed that compared to that of the kale parent, the candidate region of the Chinese kale parent lost a 9,325-bp fragment containing FLC homolog ( BoFLC ). In addition to the BoFLC gene, there are four other FLC homologs in the genome of B. oleracea , including Bo3g005470 , Bo3g024250 , Bo9g173370, and Bo9g173400 . The qPCR analysis showed that the BoFLC had the highest expression among the five members of the FLC family. Considering the low expression levels of the four paralogs of BoFLC , we speculate that its paralogs cannot compensate the function of the lost BoFLC, therefore the presence/absence (PA) polymorphism of BoFLC determines the vernalization variation. Based on the PA polymorphism of BoFLC , we designed a codominant marker for the vernalization trait, which can be used for breeding programs of B. oleracea crops.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-021-03977-x</identifier><identifier>PMID: 34716468</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural research ; Agriculture ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Brassica - genetics ; Brassica alboglabra ; China ; Crops ; Domestication ; Flowering ; Flowers - genetics ; Gene expression ; Genetic aspects ; Genetic diversity ; Genetic variation ; Genomes ; Kale ; Life Sciences ; Original ; Original Article ; Physiological aspects ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Polymorphism ; Quantitative Trait Loci ; Synteny ; Vegetables ; Vernalization</subject><ispartof>Theoretical and applied genetics, 2022-02, Vol.135 (2), p.473-483</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c641t-c8e8ccd59914f6492254ac4f80418a2f49c245107d6e93a82493687a7d1823cc3</citedby><cites>FETCH-LOGICAL-c641t-c8e8ccd59914f6492254ac4f80418a2f49c245107d6e93a82493687a7d1823cc3</cites><orcidid>0000-0001-9154-0982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-021-03977-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-021-03977-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34716468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Qiwei</creatorcontrib><creatorcontrib>Kuang, Hanhui</creatorcontrib><creatorcontrib>Yu, Changchun</creatorcontrib><creatorcontrib>An, Guanghui</creatorcontrib><creatorcontrib>Tao, Rong</creatorcontrib><creatorcontrib>Zhang, Weiyi</creatorcontrib><creatorcontrib>Jia, Yue</creatorcontrib><title>Non-vernalization requirement in Chinese kale caused by loss of BoFLC and low expressions of its paralogs</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message We identified the loss of BoFLC   gene as the cause of non-vernalization requirement in B. oleracea . Our developed codominant marker of BoFLC gene can be used for breeding program of B. oleracea crops . Many species of the Brassicaceae family, including some Brassica crops, require vernalization to avoid pre-winter flowering. Vernalization is an unfavorable trait for Chinese kale ( Brassica oleracea var. chinensis Lei ), a stem vegetable, and therefore it has been lost during its domestication/breeding process. To reveal the genetics of vernalization variation, we constructed an F 2 population through crossing a Chinese kale (a non-vernalization crop) with a kale (a vernalization crop). Using bulked segregant analysis (BSA) and RNA-seq, we identified one major quantitative trait locus (QTL) controlling vernalization and fine-mapped it to a region spanning 80 kb. Synteny analysis and PCR-based sequencing results revealed that compared to that of the kale parent, the candidate region of the Chinese kale parent lost a 9,325-bp fragment containing FLC homolog ( BoFLC ). In addition to the BoFLC gene, there are four other FLC homologs in the genome of B. oleracea , including Bo3g005470 , Bo3g024250 , Bo9g173370, and Bo9g173400 . The qPCR analysis showed that the BoFLC had the highest expression among the five members of the FLC family. Considering the low expression levels of the four paralogs of BoFLC , we speculate that its paralogs cannot compensate the function of the lost BoFLC, therefore the presence/absence (PA) polymorphism of BoFLC determines the vernalization variation. Based on the PA polymorphism of BoFLC , we designed a codominant marker for the vernalization trait, which can be used for breeding programs of B. oleracea crops.</description><subject>Agricultural research</subject><subject>Agriculture</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Brassica - genetics</subject><subject>Brassica alboglabra</subject><subject>China</subject><subject>Crops</subject><subject>Domestication</subject><subject>Flowering</subject><subject>Flowers - genetics</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic variation</subject><subject>Genomes</subject><subject>Kale</subject><subject>Life Sciences</subject><subject>Original</subject><subject>Original Article</subject><subject>Physiological aspects</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Polymorphism</subject><subject>Quantitative Trait Loci</subject><subject>Synteny</subject><subject>Vegetables</subject><subject>Vernalization</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kktv1DAUhS0EokPhD7BAltjAIsWvxPYGqR1RqDQqEo-15To3qUvGntpJmfLr8XT6YBBCXljy_e659vFB6CUlB5QQ-S4TQhmrCKMV4VrKav0IzajgrGJMsMdoRoggVS1rtoee5XxBCGE14U_RHheSNqJRM-RPY6iuIAU7-F929DHgBJeTT7CEMGIf8PzcB8iAf9gBsLNThhafXeMh5oxjh4_i8WKObWjLyU8M61WCnIvMTdGPGa9sskPs83P0pLNDhhe3-z76fvzh2_xTtfj88WR-uKhcI-hYOQXKubbWmoquEZqxWlgnOkUEVZZ1Qjsmakpk24DmVjGheaOklS1VjDvH99H7re5qOltC68ozygXMKvmlTdcmWm92K8Gfmz5eGaWahgtWBN7cCqR4OUEezdJnB8NgA8QpG1br4r6Wghf09V_oRZw2Xhaq4YwwLah8oPpiofGhi2Wu24iaw0YLqSnlm7EH_6DKamHpXQzQ-XK-0_B2p6EwI6zHvnxRNidfv-yybMu6VP4tQXfvByVmEyazDZMpYTI3YTLr0vTqTyfvW-7SUwC-BXIphR7Sw_P_I_sb2hjTOA</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Tang, Qiwei</creator><creator>Kuang, Hanhui</creator><creator>Yu, Changchun</creator><creator>An, Guanghui</creator><creator>Tao, Rong</creator><creator>Zhang, Weiyi</creator><creator>Jia, Yue</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9154-0982</orcidid></search><sort><creationdate>20220201</creationdate><title>Non-vernalization requirement in Chinese kale caused by loss of BoFLC and low expressions of its paralogs</title><author>Tang, Qiwei ; Kuang, Hanhui ; Yu, Changchun ; An, Guanghui ; Tao, Rong ; Zhang, Weiyi ; Jia, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-c8e8ccd59914f6492254ac4f80418a2f49c245107d6e93a82493687a7d1823cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural research</topic><topic>Agriculture</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Brassica - genetics</topic><topic>Brassica alboglabra</topic><topic>China</topic><topic>Crops</topic><topic>Domestication</topic><topic>Flowering</topic><topic>Flowers - genetics</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic variation</topic><topic>Genomes</topic><topic>Kale</topic><topic>Life Sciences</topic><topic>Original</topic><topic>Original Article</topic><topic>Physiological aspects</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Polymorphism</topic><topic>Quantitative Trait Loci</topic><topic>Synteny</topic><topic>Vegetables</topic><topic>Vernalization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Qiwei</creatorcontrib><creatorcontrib>Kuang, Hanhui</creatorcontrib><creatorcontrib>Yu, Changchun</creatorcontrib><creatorcontrib>An, Guanghui</creatorcontrib><creatorcontrib>Tao, Rong</creatorcontrib><creatorcontrib>Zhang, Weiyi</creatorcontrib><creatorcontrib>Jia, Yue</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Qiwei</au><au>Kuang, Hanhui</au><au>Yu, Changchun</au><au>An, Guanghui</au><au>Tao, Rong</au><au>Zhang, Weiyi</au><au>Jia, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-vernalization requirement in Chinese kale caused by loss of BoFLC and low expressions of its paralogs</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>135</volume><issue>2</issue><spage>473</spage><epage>483</epage><pages>473-483</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message We identified the loss of BoFLC   gene as the cause of non-vernalization requirement in B. oleracea . Our developed codominant marker of BoFLC gene can be used for breeding program of B. oleracea crops . Many species of the Brassicaceae family, including some Brassica crops, require vernalization to avoid pre-winter flowering. Vernalization is an unfavorable trait for Chinese kale ( Brassica oleracea var. chinensis Lei ), a stem vegetable, and therefore it has been lost during its domestication/breeding process. To reveal the genetics of vernalization variation, we constructed an F 2 population through crossing a Chinese kale (a non-vernalization crop) with a kale (a vernalization crop). Using bulked segregant analysis (BSA) and RNA-seq, we identified one major quantitative trait locus (QTL) controlling vernalization and fine-mapped it to a region spanning 80 kb. Synteny analysis and PCR-based sequencing results revealed that compared to that of the kale parent, the candidate region of the Chinese kale parent lost a 9,325-bp fragment containing FLC homolog ( BoFLC ). In addition to the BoFLC gene, there are four other FLC homologs in the genome of B. oleracea , including Bo3g005470 , Bo3g024250 , Bo9g173370, and Bo9g173400 . The qPCR analysis showed that the BoFLC had the highest expression among the five members of the FLC family. Considering the low expression levels of the four paralogs of BoFLC , we speculate that its paralogs cannot compensate the function of the lost BoFLC, therefore the presence/absence (PA) polymorphism of BoFLC determines the vernalization variation. Based on the PA polymorphism of BoFLC , we designed a codominant marker for the vernalization trait, which can be used for breeding programs of B. oleracea crops.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34716468</pmid><doi>10.1007/s00122-021-03977-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9154-0982</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2022-02, Vol.135 (2), p.473-483
issn 0040-5752
1432-2242
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8866342
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Agricultural research
Agriculture
Biochemistry
Biomedical and Life Sciences
Biotechnology
Brassica - genetics
Brassica alboglabra
China
Crops
Domestication
Flowering
Flowers - genetics
Gene expression
Genetic aspects
Genetic diversity
Genetic variation
Genomes
Kale
Life Sciences
Original
Original Article
Physiological aspects
Plant Biochemistry
Plant Breeding
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Polymorphism
Quantitative Trait Loci
Synteny
Vegetables
Vernalization
title Non-vernalization requirement in Chinese kale caused by loss of BoFLC and low expressions of its paralogs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T19%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-vernalization%20requirement%20in%20Chinese%20kale%20caused%20by%20loss%20of%20BoFLC%20and%20low%20expressions%20of%20its%20paralogs&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Tang,%20Qiwei&rft.date=2022-02-01&rft.volume=135&rft.issue=2&rft.spage=473&rft.epage=483&rft.pages=473-483&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-021-03977-x&rft_dat=%3Cgale_pubme%3EA694791132%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2632029417&rft_id=info:pmid/34716468&rft_galeid=A694791132&rfr_iscdi=true