Genetic analysis of cancer drivers reveals cohesin and CTCF as suppressors of PD-L1
Immune evasion is a significant contributor to tumor evolution, and the immunoinhibitory axis PD-1/PD-L1 is a frequent mechanism employed to escape tumor immune surveillance. To identify cancer drivers involved in immune evasion, we performed a CRISPR-Cas9 screen of tumor suppressor genes regulating...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2022-02, Vol.119 (7), p.1-10 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | Oreskovic, Ena Wheeler, Emily C. Mengwasser, Kristen E. Fujimura, Eric Martin, Timothy D. Tothova, Zuzana Elledge, Stephen J. |
description | Immune evasion is a significant contributor to tumor evolution, and the immunoinhibitory axis PD-1/PD-L1 is a frequent mechanism employed to escape tumor immune surveillance. To identify cancer drivers involved in immune evasion, we performed a CRISPR-Cas9 screen of tumor suppressor genes regulating the basal and interferon (IFN)-inducible cell surface levels of PD-L1. Multiple regulators of PD-L1 were identified, including IRF2, ARID2, KMT2D, and AAMP. We also identified CTCF and the cohesin complex proteins, known regulators of chromatin architecture and transcription, among the most potent negative regulators of PD-L1 cell surface expression. Additionally, loss of the cohesin subunit RAD21 was shown to up-regulate PD-L2 and MHC-I surface expression. PD-L1 and MHC-I suppression by cohesin were shown to be conserved in mammary epithelial and myeloid cells. Comprehensive examination of the transcriptional effect of STAG2 deficiency in epithelial and myeloid cells revealed an activation of strong IFN and NF-κB expression signatures. Inhibition of JAK-STAT or NF-κB pathways did not result in rescue of PD-L1 up-regulation in RAD21-deficient cells, suggesting more complex or combinatorial mechanisms at play. Discovery of the PD-L1 and IFN up-regulation in cohesin-mutant cells expands our understanding of the biology of cohesin-deficient cells as well as molecular regulation of the PD-L1 molecule. |
doi_str_mv | 10.1073/pnas.2120540119 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8851563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27118611</jstor_id><sourcerecordid>27118611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-9be82878acb49bca14305a49a46fc3ab400902c8be2a0330441e00cbc2f605b63</originalsourceid><addsrcrecordid>eNpd0U1v1DAQBmALUdGlcOYEisSFS9rxV2JfkKqFlkorgUQ5W453QrPKxsGTrNR_j5ctC-3Jh3lmNJ6XsTcczjnU8mIcPJ0LLkAr4Nw-YwsOlpeVsvCcLQBEXRol1Cl7SbQBAKsNvGCnUnNltTYL9v0aB5y6UPjB9_fUURHbIvghYCrWqdthoiLhDn1PRYh3SN2Q6bpY3i6vCk8FzeOYkCimP53fPpUr_oqdtNnj64f3jP24-ny7_FKuvl7fLC9XZVBKTqVt0AhTGx8aZZvguZKgvbJeVW2QvlF5XRDBNCg8SAlKcQQITRBtBbqp5Bn7eJg7zs0W1wGHKfnejanb-nTvou_c48rQ3bmfceeM0VxXMg_48DAgxV8z0uS2HQXsez9gnMmJShhhaylMpu-f0E2cU77ZXuW9M1E2q4uDCikSJWyPy3Bw-8DcPjD3L7Dc8e7_Pxz934QyeHsAG5piOtZFzbmpOJe_ATN2mpo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630528349</pqid></control><display><type>article</type><title>Genetic analysis of cancer drivers reveals cohesin and CTCF as suppressors of PD-L1</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Oreskovic, Ena ; Wheeler, Emily C. ; Mengwasser, Kristen E. ; Fujimura, Eric ; Martin, Timothy D. ; Tothova, Zuzana ; Elledge, Stephen J.</creator><creatorcontrib>Oreskovic, Ena ; Wheeler, Emily C. ; Mengwasser, Kristen E. ; Fujimura, Eric ; Martin, Timothy D. ; Tothova, Zuzana ; Elledge, Stephen J.</creatorcontrib><description>Immune evasion is a significant contributor to tumor evolution, and the immunoinhibitory axis PD-1/PD-L1 is a frequent mechanism employed to escape tumor immune surveillance. To identify cancer drivers involved in immune evasion, we performed a CRISPR-Cas9 screen of tumor suppressor genes regulating the basal and interferon (IFN)-inducible cell surface levels of PD-L1. Multiple regulators of PD-L1 were identified, including IRF2, ARID2, KMT2D, and AAMP. We also identified CTCF and the cohesin complex proteins, known regulators of chromatin architecture and transcription, among the most potent negative regulators of PD-L1 cell surface expression. Additionally, loss of the cohesin subunit RAD21 was shown to up-regulate PD-L2 and MHC-I surface expression. PD-L1 and MHC-I suppression by cohesin were shown to be conserved in mammary epithelial and myeloid cells. Comprehensive examination of the transcriptional effect of STAG2 deficiency in epithelial and myeloid cells revealed an activation of strong IFN and NF-κB expression signatures. Inhibition of JAK-STAT or NF-κB pathways did not result in rescue of PD-L1 up-regulation in RAD21-deficient cells, suggesting more complex or combinatorial mechanisms at play. Discovery of the PD-L1 and IFN up-regulation in cohesin-mutant cells expands our understanding of the biology of cohesin-deficient cells as well as molecular regulation of the PD-L1 molecule.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2120540119</identifier><identifier>PMID: 35149558</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>B7-H1 Antigen - genetics ; B7-H1 Antigen - metabolism ; Biological Sciences ; Cancer ; CCCTC-Binding Factor - genetics ; CCCTC-Binding Factor - metabolism ; Cell activation ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Line ; Cell surface ; Chromatin ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; Cohesin ; Cohesins ; Cohesion ; Combinatorial analysis ; CRISPR ; Gene Expression Regulation, Neoplastic - physiology ; Genetic analysis ; Humans ; Immunosurveillance ; Interferon ; Janus Kinases - genetics ; Janus Kinases - metabolism ; Major histocompatibility complex ; Myeloid cells ; Neoplasms - metabolism ; NF-kappa B - genetics ; NF-kappa B - metabolism ; NF-κB protein ; PD-1 protein ; PD-L1 protein ; STAT Transcription Factors - genetics ; STAT Transcription Factors - metabolism ; Suppressors ; Transcription ; Tumor suppressor genes ; Tumors ; Up-Regulation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-02, Vol.119 (7), p.1-10</ispartof><rights>Copyright © 2022 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Feb 15, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-9be82878acb49bca14305a49a46fc3ab400902c8be2a0330441e00cbc2f605b63</citedby><cites>FETCH-LOGICAL-c443t-9be82878acb49bca14305a49a46fc3ab400902c8be2a0330441e00cbc2f605b63</cites><orcidid>0000-0001-7923-6283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851563/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851563/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35149558$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oreskovic, Ena</creatorcontrib><creatorcontrib>Wheeler, Emily C.</creatorcontrib><creatorcontrib>Mengwasser, Kristen E.</creatorcontrib><creatorcontrib>Fujimura, Eric</creatorcontrib><creatorcontrib>Martin, Timothy D.</creatorcontrib><creatorcontrib>Tothova, Zuzana</creatorcontrib><creatorcontrib>Elledge, Stephen J.</creatorcontrib><title>Genetic analysis of cancer drivers reveals cohesin and CTCF as suppressors of PD-L1</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Immune evasion is a significant contributor to tumor evolution, and the immunoinhibitory axis PD-1/PD-L1 is a frequent mechanism employed to escape tumor immune surveillance. To identify cancer drivers involved in immune evasion, we performed a CRISPR-Cas9 screen of tumor suppressor genes regulating the basal and interferon (IFN)-inducible cell surface levels of PD-L1. Multiple regulators of PD-L1 were identified, including IRF2, ARID2, KMT2D, and AAMP. We also identified CTCF and the cohesin complex proteins, known regulators of chromatin architecture and transcription, among the most potent negative regulators of PD-L1 cell surface expression. Additionally, loss of the cohesin subunit RAD21 was shown to up-regulate PD-L2 and MHC-I surface expression. PD-L1 and MHC-I suppression by cohesin were shown to be conserved in mammary epithelial and myeloid cells. Comprehensive examination of the transcriptional effect of STAG2 deficiency in epithelial and myeloid cells revealed an activation of strong IFN and NF-κB expression signatures. Inhibition of JAK-STAT or NF-κB pathways did not result in rescue of PD-L1 up-regulation in RAD21-deficient cells, suggesting more complex or combinatorial mechanisms at play. Discovery of the PD-L1 and IFN up-regulation in cohesin-mutant cells expands our understanding of the biology of cohesin-deficient cells as well as molecular regulation of the PD-L1 molecule.</description><subject>B7-H1 Antigen - genetics</subject><subject>B7-H1 Antigen - metabolism</subject><subject>Biological Sciences</subject><subject>Cancer</subject><subject>CCCTC-Binding Factor - genetics</subject><subject>CCCTC-Binding Factor - metabolism</subject><subject>Cell activation</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Line</subject><subject>Cell surface</subject><subject>Chromatin</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Cohesin</subject><subject>Cohesins</subject><subject>Cohesion</subject><subject>Combinatorial analysis</subject><subject>CRISPR</subject><subject>Gene Expression Regulation, Neoplastic - physiology</subject><subject>Genetic analysis</subject><subject>Humans</subject><subject>Immunosurveillance</subject><subject>Interferon</subject><subject>Janus Kinases - genetics</subject><subject>Janus Kinases - metabolism</subject><subject>Major histocompatibility complex</subject><subject>Myeloid cells</subject><subject>Neoplasms - metabolism</subject><subject>NF-kappa B - genetics</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB protein</subject><subject>PD-1 protein</subject><subject>PD-L1 protein</subject><subject>STAT Transcription Factors - genetics</subject><subject>STAT Transcription Factors - metabolism</subject><subject>Suppressors</subject><subject>Transcription</subject><subject>Tumor suppressor genes</subject><subject>Tumors</subject><subject>Up-Regulation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0U1v1DAQBmALUdGlcOYEisSFS9rxV2JfkKqFlkorgUQ5W453QrPKxsGTrNR_j5ctC-3Jh3lmNJ6XsTcczjnU8mIcPJ0LLkAr4Nw-YwsOlpeVsvCcLQBEXRol1Cl7SbQBAKsNvGCnUnNltTYL9v0aB5y6UPjB9_fUURHbIvghYCrWqdthoiLhDn1PRYh3SN2Q6bpY3i6vCk8FzeOYkCimP53fPpUr_oqdtNnj64f3jP24-ny7_FKuvl7fLC9XZVBKTqVt0AhTGx8aZZvguZKgvbJeVW2QvlF5XRDBNCg8SAlKcQQITRBtBbqp5Bn7eJg7zs0W1wGHKfnejanb-nTvou_c48rQ3bmfceeM0VxXMg_48DAgxV8z0uS2HQXsez9gnMmJShhhaylMpu-f0E2cU77ZXuW9M1E2q4uDCikSJWyPy3Bw-8DcPjD3L7Dc8e7_Pxz934QyeHsAG5piOtZFzbmpOJe_ATN2mpo</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Oreskovic, Ena</creator><creator>Wheeler, Emily C.</creator><creator>Mengwasser, Kristen E.</creator><creator>Fujimura, Eric</creator><creator>Martin, Timothy D.</creator><creator>Tothova, Zuzana</creator><creator>Elledge, Stephen J.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7923-6283</orcidid></search><sort><creationdate>20220215</creationdate><title>Genetic analysis of cancer drivers reveals cohesin and CTCF as suppressors of PD-L1</title><author>Oreskovic, Ena ; Wheeler, Emily C. ; Mengwasser, Kristen E. ; Fujimura, Eric ; Martin, Timothy D. ; Tothova, Zuzana ; Elledge, Stephen J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-9be82878acb49bca14305a49a46fc3ab400902c8be2a0330441e00cbc2f605b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>B7-H1 Antigen - genetics</topic><topic>B7-H1 Antigen - metabolism</topic><topic>Biological Sciences</topic><topic>Cancer</topic><topic>CCCTC-Binding Factor - genetics</topic><topic>CCCTC-Binding Factor - metabolism</topic><topic>Cell activation</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Line</topic><topic>Cell surface</topic><topic>Chromatin</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Cohesin</topic><topic>Cohesins</topic><topic>Cohesion</topic><topic>Combinatorial analysis</topic><topic>CRISPR</topic><topic>Gene Expression Regulation, Neoplastic - physiology</topic><topic>Genetic analysis</topic><topic>Humans</topic><topic>Immunosurveillance</topic><topic>Interferon</topic><topic>Janus Kinases - genetics</topic><topic>Janus Kinases - metabolism</topic><topic>Major histocompatibility complex</topic><topic>Myeloid cells</topic><topic>Neoplasms - metabolism</topic><topic>NF-kappa B - genetics</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB protein</topic><topic>PD-1 protein</topic><topic>PD-L1 protein</topic><topic>STAT Transcription Factors - genetics</topic><topic>STAT Transcription Factors - metabolism</topic><topic>Suppressors</topic><topic>Transcription</topic><topic>Tumor suppressor genes</topic><topic>Tumors</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oreskovic, Ena</creatorcontrib><creatorcontrib>Wheeler, Emily C.</creatorcontrib><creatorcontrib>Mengwasser, Kristen E.</creatorcontrib><creatorcontrib>Fujimura, Eric</creatorcontrib><creatorcontrib>Martin, Timothy D.</creatorcontrib><creatorcontrib>Tothova, Zuzana</creatorcontrib><creatorcontrib>Elledge, Stephen J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oreskovic, Ena</au><au>Wheeler, Emily C.</au><au>Mengwasser, Kristen E.</au><au>Fujimura, Eric</au><au>Martin, Timothy D.</au><au>Tothova, Zuzana</au><au>Elledge, Stephen J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic analysis of cancer drivers reveals cohesin and CTCF as suppressors of PD-L1</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-02-15</date><risdate>2022</risdate><volume>119</volume><issue>7</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Immune evasion is a significant contributor to tumor evolution, and the immunoinhibitory axis PD-1/PD-L1 is a frequent mechanism employed to escape tumor immune surveillance. To identify cancer drivers involved in immune evasion, we performed a CRISPR-Cas9 screen of tumor suppressor genes regulating the basal and interferon (IFN)-inducible cell surface levels of PD-L1. Multiple regulators of PD-L1 were identified, including IRF2, ARID2, KMT2D, and AAMP. We also identified CTCF and the cohesin complex proteins, known regulators of chromatin architecture and transcription, among the most potent negative regulators of PD-L1 cell surface expression. Additionally, loss of the cohesin subunit RAD21 was shown to up-regulate PD-L2 and MHC-I surface expression. PD-L1 and MHC-I suppression by cohesin were shown to be conserved in mammary epithelial and myeloid cells. Comprehensive examination of the transcriptional effect of STAG2 deficiency in epithelial and myeloid cells revealed an activation of strong IFN and NF-κB expression signatures. Inhibition of JAK-STAT or NF-κB pathways did not result in rescue of PD-L1 up-regulation in RAD21-deficient cells, suggesting more complex or combinatorial mechanisms at play. Discovery of the PD-L1 and IFN up-regulation in cohesin-mutant cells expands our understanding of the biology of cohesin-deficient cells as well as molecular regulation of the PD-L1 molecule.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>35149558</pmid><doi>10.1073/pnas.2120540119</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7923-6283</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-02, Vol.119 (7), p.1-10 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8851563 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | B7-H1 Antigen - genetics B7-H1 Antigen - metabolism Biological Sciences Cancer CCCTC-Binding Factor - genetics CCCTC-Binding Factor - metabolism Cell activation Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell Line Cell surface Chromatin Chromosomal Proteins, Non-Histone - genetics Chromosomal Proteins, Non-Histone - metabolism Cohesin Cohesins Cohesion Combinatorial analysis CRISPR Gene Expression Regulation, Neoplastic - physiology Genetic analysis Humans Immunosurveillance Interferon Janus Kinases - genetics Janus Kinases - metabolism Major histocompatibility complex Myeloid cells Neoplasms - metabolism NF-kappa B - genetics NF-kappa B - metabolism NF-κB protein PD-1 protein PD-L1 protein STAT Transcription Factors - genetics STAT Transcription Factors - metabolism Suppressors Transcription Tumor suppressor genes Tumors Up-Regulation |
title | Genetic analysis of cancer drivers reveals cohesin and CTCF as suppressors of PD-L1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A32%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20analysis%20of%20cancer%20drivers%20reveals%20cohesin%20and%20CTCF%20as%20suppressors%20of%20PD-L1&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Oreskovic,%20Ena&rft.date=2022-02-15&rft.volume=119&rft.issue=7&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2120540119&rft_dat=%3Cjstor_pubme%3E27118611%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2630528349&rft_id=info:pmid/35149558&rft_jstor_id=27118611&rfr_iscdi=true |