Genetic analysis of cancer drivers reveals cohesin and CTCF as suppressors of PD-L1

Immune evasion is a significant contributor to tumor evolution, and the immunoinhibitory axis PD-1/PD-L1 is a frequent mechanism employed to escape tumor immune surveillance. To identify cancer drivers involved in immune evasion, we performed a CRISPR-Cas9 screen of tumor suppressor genes regulating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2022-02, Vol.119 (7), p.1-10
Hauptverfasser: Oreskovic, Ena, Wheeler, Emily C., Mengwasser, Kristen E., Fujimura, Eric, Martin, Timothy D., Tothova, Zuzana, Elledge, Stephen J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 7
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 119
creator Oreskovic, Ena
Wheeler, Emily C.
Mengwasser, Kristen E.
Fujimura, Eric
Martin, Timothy D.
Tothova, Zuzana
Elledge, Stephen J.
description Immune evasion is a significant contributor to tumor evolution, and the immunoinhibitory axis PD-1/PD-L1 is a frequent mechanism employed to escape tumor immune surveillance. To identify cancer drivers involved in immune evasion, we performed a CRISPR-Cas9 screen of tumor suppressor genes regulating the basal and interferon (IFN)-inducible cell surface levels of PD-L1. Multiple regulators of PD-L1 were identified, including IRF2, ARID2, KMT2D, and AAMP. We also identified CTCF and the cohesin complex proteins, known regulators of chromatin architecture and transcription, among the most potent negative regulators of PD-L1 cell surface expression. Additionally, loss of the cohesin subunit RAD21 was shown to up-regulate PD-L2 and MHC-I surface expression. PD-L1 and MHC-I suppression by cohesin were shown to be conserved in mammary epithelial and myeloid cells. Comprehensive examination of the transcriptional effect of STAG2 deficiency in epithelial and myeloid cells revealed an activation of strong IFN and NF-κB expression signatures. Inhibition of JAK-STAT or NF-κB pathways did not result in rescue of PD-L1 up-regulation in RAD21-deficient cells, suggesting more complex or combinatorial mechanisms at play. Discovery of the PD-L1 and IFN up-regulation in cohesin-mutant cells expands our understanding of the biology of cohesin-deficient cells as well as molecular regulation of the PD-L1 molecule.
doi_str_mv 10.1073/pnas.2120540119
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8851563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27118611</jstor_id><sourcerecordid>27118611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-9be82878acb49bca14305a49a46fc3ab400902c8be2a0330441e00cbc2f605b63</originalsourceid><addsrcrecordid>eNpd0U1v1DAQBmALUdGlcOYEisSFS9rxV2JfkKqFlkorgUQ5W453QrPKxsGTrNR_j5ctC-3Jh3lmNJ6XsTcczjnU8mIcPJ0LLkAr4Nw-YwsOlpeVsvCcLQBEXRol1Cl7SbQBAKsNvGCnUnNltTYL9v0aB5y6UPjB9_fUURHbIvghYCrWqdthoiLhDn1PRYh3SN2Q6bpY3i6vCk8FzeOYkCimP53fPpUr_oqdtNnj64f3jP24-ny7_FKuvl7fLC9XZVBKTqVt0AhTGx8aZZvguZKgvbJeVW2QvlF5XRDBNCg8SAlKcQQITRBtBbqp5Bn7eJg7zs0W1wGHKfnejanb-nTvou_c48rQ3bmfceeM0VxXMg_48DAgxV8z0uS2HQXsez9gnMmJShhhaylMpu-f0E2cU77ZXuW9M1E2q4uDCikSJWyPy3Bw-8DcPjD3L7Dc8e7_Pxz934QyeHsAG5piOtZFzbmpOJe_ATN2mpo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630528349</pqid></control><display><type>article</type><title>Genetic analysis of cancer drivers reveals cohesin and CTCF as suppressors of PD-L1</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Oreskovic, Ena ; Wheeler, Emily C. ; Mengwasser, Kristen E. ; Fujimura, Eric ; Martin, Timothy D. ; Tothova, Zuzana ; Elledge, Stephen J.</creator><creatorcontrib>Oreskovic, Ena ; Wheeler, Emily C. ; Mengwasser, Kristen E. ; Fujimura, Eric ; Martin, Timothy D. ; Tothova, Zuzana ; Elledge, Stephen J.</creatorcontrib><description>Immune evasion is a significant contributor to tumor evolution, and the immunoinhibitory axis PD-1/PD-L1 is a frequent mechanism employed to escape tumor immune surveillance. To identify cancer drivers involved in immune evasion, we performed a CRISPR-Cas9 screen of tumor suppressor genes regulating the basal and interferon (IFN)-inducible cell surface levels of PD-L1. Multiple regulators of PD-L1 were identified, including IRF2, ARID2, KMT2D, and AAMP. We also identified CTCF and the cohesin complex proteins, known regulators of chromatin architecture and transcription, among the most potent negative regulators of PD-L1 cell surface expression. Additionally, loss of the cohesin subunit RAD21 was shown to up-regulate PD-L2 and MHC-I surface expression. PD-L1 and MHC-I suppression by cohesin were shown to be conserved in mammary epithelial and myeloid cells. Comprehensive examination of the transcriptional effect of STAG2 deficiency in epithelial and myeloid cells revealed an activation of strong IFN and NF-κB expression signatures. Inhibition of JAK-STAT or NF-κB pathways did not result in rescue of PD-L1 up-regulation in RAD21-deficient cells, suggesting more complex or combinatorial mechanisms at play. Discovery of the PD-L1 and IFN up-regulation in cohesin-mutant cells expands our understanding of the biology of cohesin-deficient cells as well as molecular regulation of the PD-L1 molecule.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2120540119</identifier><identifier>PMID: 35149558</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>B7-H1 Antigen - genetics ; B7-H1 Antigen - metabolism ; Biological Sciences ; Cancer ; CCCTC-Binding Factor - genetics ; CCCTC-Binding Factor - metabolism ; Cell activation ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Line ; Cell surface ; Chromatin ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; Cohesin ; Cohesins ; Cohesion ; Combinatorial analysis ; CRISPR ; Gene Expression Regulation, Neoplastic - physiology ; Genetic analysis ; Humans ; Immunosurveillance ; Interferon ; Janus Kinases - genetics ; Janus Kinases - metabolism ; Major histocompatibility complex ; Myeloid cells ; Neoplasms - metabolism ; NF-kappa B - genetics ; NF-kappa B - metabolism ; NF-κB protein ; PD-1 protein ; PD-L1 protein ; STAT Transcription Factors - genetics ; STAT Transcription Factors - metabolism ; Suppressors ; Transcription ; Tumor suppressor genes ; Tumors ; Up-Regulation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-02, Vol.119 (7), p.1-10</ispartof><rights>Copyright © 2022 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Feb 15, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-9be82878acb49bca14305a49a46fc3ab400902c8be2a0330441e00cbc2f605b63</citedby><cites>FETCH-LOGICAL-c443t-9be82878acb49bca14305a49a46fc3ab400902c8be2a0330441e00cbc2f605b63</cites><orcidid>0000-0001-7923-6283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851563/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851563/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35149558$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oreskovic, Ena</creatorcontrib><creatorcontrib>Wheeler, Emily C.</creatorcontrib><creatorcontrib>Mengwasser, Kristen E.</creatorcontrib><creatorcontrib>Fujimura, Eric</creatorcontrib><creatorcontrib>Martin, Timothy D.</creatorcontrib><creatorcontrib>Tothova, Zuzana</creatorcontrib><creatorcontrib>Elledge, Stephen J.</creatorcontrib><title>Genetic analysis of cancer drivers reveals cohesin and CTCF as suppressors of PD-L1</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Immune evasion is a significant contributor to tumor evolution, and the immunoinhibitory axis PD-1/PD-L1 is a frequent mechanism employed to escape tumor immune surveillance. To identify cancer drivers involved in immune evasion, we performed a CRISPR-Cas9 screen of tumor suppressor genes regulating the basal and interferon (IFN)-inducible cell surface levels of PD-L1. Multiple regulators of PD-L1 were identified, including IRF2, ARID2, KMT2D, and AAMP. We also identified CTCF and the cohesin complex proteins, known regulators of chromatin architecture and transcription, among the most potent negative regulators of PD-L1 cell surface expression. Additionally, loss of the cohesin subunit RAD21 was shown to up-regulate PD-L2 and MHC-I surface expression. PD-L1 and MHC-I suppression by cohesin were shown to be conserved in mammary epithelial and myeloid cells. Comprehensive examination of the transcriptional effect of STAG2 deficiency in epithelial and myeloid cells revealed an activation of strong IFN and NF-κB expression signatures. Inhibition of JAK-STAT or NF-κB pathways did not result in rescue of PD-L1 up-regulation in RAD21-deficient cells, suggesting more complex or combinatorial mechanisms at play. Discovery of the PD-L1 and IFN up-regulation in cohesin-mutant cells expands our understanding of the biology of cohesin-deficient cells as well as molecular regulation of the PD-L1 molecule.</description><subject>B7-H1 Antigen - genetics</subject><subject>B7-H1 Antigen - metabolism</subject><subject>Biological Sciences</subject><subject>Cancer</subject><subject>CCCTC-Binding Factor - genetics</subject><subject>CCCTC-Binding Factor - metabolism</subject><subject>Cell activation</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Line</subject><subject>Cell surface</subject><subject>Chromatin</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Cohesin</subject><subject>Cohesins</subject><subject>Cohesion</subject><subject>Combinatorial analysis</subject><subject>CRISPR</subject><subject>Gene Expression Regulation, Neoplastic - physiology</subject><subject>Genetic analysis</subject><subject>Humans</subject><subject>Immunosurveillance</subject><subject>Interferon</subject><subject>Janus Kinases - genetics</subject><subject>Janus Kinases - metabolism</subject><subject>Major histocompatibility complex</subject><subject>Myeloid cells</subject><subject>Neoplasms - metabolism</subject><subject>NF-kappa B - genetics</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB protein</subject><subject>PD-1 protein</subject><subject>PD-L1 protein</subject><subject>STAT Transcription Factors - genetics</subject><subject>STAT Transcription Factors - metabolism</subject><subject>Suppressors</subject><subject>Transcription</subject><subject>Tumor suppressor genes</subject><subject>Tumors</subject><subject>Up-Regulation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0U1v1DAQBmALUdGlcOYEisSFS9rxV2JfkKqFlkorgUQ5W453QrPKxsGTrNR_j5ctC-3Jh3lmNJ6XsTcczjnU8mIcPJ0LLkAr4Nw-YwsOlpeVsvCcLQBEXRol1Cl7SbQBAKsNvGCnUnNltTYL9v0aB5y6UPjB9_fUURHbIvghYCrWqdthoiLhDn1PRYh3SN2Q6bpY3i6vCk8FzeOYkCimP53fPpUr_oqdtNnj64f3jP24-ny7_FKuvl7fLC9XZVBKTqVt0AhTGx8aZZvguZKgvbJeVW2QvlF5XRDBNCg8SAlKcQQITRBtBbqp5Bn7eJg7zs0W1wGHKfnejanb-nTvou_c48rQ3bmfceeM0VxXMg_48DAgxV8z0uS2HQXsez9gnMmJShhhaylMpu-f0E2cU77ZXuW9M1E2q4uDCikSJWyPy3Bw-8DcPjD3L7Dc8e7_Pxz934QyeHsAG5piOtZFzbmpOJe_ATN2mpo</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Oreskovic, Ena</creator><creator>Wheeler, Emily C.</creator><creator>Mengwasser, Kristen E.</creator><creator>Fujimura, Eric</creator><creator>Martin, Timothy D.</creator><creator>Tothova, Zuzana</creator><creator>Elledge, Stephen J.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7923-6283</orcidid></search><sort><creationdate>20220215</creationdate><title>Genetic analysis of cancer drivers reveals cohesin and CTCF as suppressors of PD-L1</title><author>Oreskovic, Ena ; Wheeler, Emily C. ; Mengwasser, Kristen E. ; Fujimura, Eric ; Martin, Timothy D. ; Tothova, Zuzana ; Elledge, Stephen J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-9be82878acb49bca14305a49a46fc3ab400902c8be2a0330441e00cbc2f605b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>B7-H1 Antigen - genetics</topic><topic>B7-H1 Antigen - metabolism</topic><topic>Biological Sciences</topic><topic>Cancer</topic><topic>CCCTC-Binding Factor - genetics</topic><topic>CCCTC-Binding Factor - metabolism</topic><topic>Cell activation</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Line</topic><topic>Cell surface</topic><topic>Chromatin</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Cohesin</topic><topic>Cohesins</topic><topic>Cohesion</topic><topic>Combinatorial analysis</topic><topic>CRISPR</topic><topic>Gene Expression Regulation, Neoplastic - physiology</topic><topic>Genetic analysis</topic><topic>Humans</topic><topic>Immunosurveillance</topic><topic>Interferon</topic><topic>Janus Kinases - genetics</topic><topic>Janus Kinases - metabolism</topic><topic>Major histocompatibility complex</topic><topic>Myeloid cells</topic><topic>Neoplasms - metabolism</topic><topic>NF-kappa B - genetics</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB protein</topic><topic>PD-1 protein</topic><topic>PD-L1 protein</topic><topic>STAT Transcription Factors - genetics</topic><topic>STAT Transcription Factors - metabolism</topic><topic>Suppressors</topic><topic>Transcription</topic><topic>Tumor suppressor genes</topic><topic>Tumors</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oreskovic, Ena</creatorcontrib><creatorcontrib>Wheeler, Emily C.</creatorcontrib><creatorcontrib>Mengwasser, Kristen E.</creatorcontrib><creatorcontrib>Fujimura, Eric</creatorcontrib><creatorcontrib>Martin, Timothy D.</creatorcontrib><creatorcontrib>Tothova, Zuzana</creatorcontrib><creatorcontrib>Elledge, Stephen J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oreskovic, Ena</au><au>Wheeler, Emily C.</au><au>Mengwasser, Kristen E.</au><au>Fujimura, Eric</au><au>Martin, Timothy D.</au><au>Tothova, Zuzana</au><au>Elledge, Stephen J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic analysis of cancer drivers reveals cohesin and CTCF as suppressors of PD-L1</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-02-15</date><risdate>2022</risdate><volume>119</volume><issue>7</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Immune evasion is a significant contributor to tumor evolution, and the immunoinhibitory axis PD-1/PD-L1 is a frequent mechanism employed to escape tumor immune surveillance. To identify cancer drivers involved in immune evasion, we performed a CRISPR-Cas9 screen of tumor suppressor genes regulating the basal and interferon (IFN)-inducible cell surface levels of PD-L1. Multiple regulators of PD-L1 were identified, including IRF2, ARID2, KMT2D, and AAMP. We also identified CTCF and the cohesin complex proteins, known regulators of chromatin architecture and transcription, among the most potent negative regulators of PD-L1 cell surface expression. Additionally, loss of the cohesin subunit RAD21 was shown to up-regulate PD-L2 and MHC-I surface expression. PD-L1 and MHC-I suppression by cohesin were shown to be conserved in mammary epithelial and myeloid cells. Comprehensive examination of the transcriptional effect of STAG2 deficiency in epithelial and myeloid cells revealed an activation of strong IFN and NF-κB expression signatures. Inhibition of JAK-STAT or NF-κB pathways did not result in rescue of PD-L1 up-regulation in RAD21-deficient cells, suggesting more complex or combinatorial mechanisms at play. Discovery of the PD-L1 and IFN up-regulation in cohesin-mutant cells expands our understanding of the biology of cohesin-deficient cells as well as molecular regulation of the PD-L1 molecule.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>35149558</pmid><doi>10.1073/pnas.2120540119</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7923-6283</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2022-02, Vol.119 (7), p.1-10
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8851563
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects B7-H1 Antigen - genetics
B7-H1 Antigen - metabolism
Biological Sciences
Cancer
CCCTC-Binding Factor - genetics
CCCTC-Binding Factor - metabolism
Cell activation
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Line
Cell surface
Chromatin
Chromosomal Proteins, Non-Histone - genetics
Chromosomal Proteins, Non-Histone - metabolism
Cohesin
Cohesins
Cohesion
Combinatorial analysis
CRISPR
Gene Expression Regulation, Neoplastic - physiology
Genetic analysis
Humans
Immunosurveillance
Interferon
Janus Kinases - genetics
Janus Kinases - metabolism
Major histocompatibility complex
Myeloid cells
Neoplasms - metabolism
NF-kappa B - genetics
NF-kappa B - metabolism
NF-κB protein
PD-1 protein
PD-L1 protein
STAT Transcription Factors - genetics
STAT Transcription Factors - metabolism
Suppressors
Transcription
Tumor suppressor genes
Tumors
Up-Regulation
title Genetic analysis of cancer drivers reveals cohesin and CTCF as suppressors of PD-L1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A32%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20analysis%20of%20cancer%20drivers%20reveals%20cohesin%20and%20CTCF%20as%20suppressors%20of%20PD-L1&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Oreskovic,%20Ena&rft.date=2022-02-15&rft.volume=119&rft.issue=7&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2120540119&rft_dat=%3Cjstor_pubme%3E27118611%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2630528349&rft_id=info:pmid/35149558&rft_jstor_id=27118611&rfr_iscdi=true