4-Dimensional Imaging of Zebrafish Optic Cup Morphogenesis

Visual system function requires the establishment of precise tissue and organ structures. In the vertebrate eye, structural defects are a common cause of visual impairment, yet mechanisms of eye morphogenesis are still poorly understood. The basic organization of the embryonic eye is conserved throu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Visualized Experiments 2021-05 (171)
Hauptverfasser: Lusk, Sarah, Casey, Macaulie A., Kwan, Kristen M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 171
container_start_page
container_title Journal of Visualized Experiments
container_volume
creator Lusk, Sarah
Casey, Macaulie A.
Kwan, Kristen M.
description Visual system function requires the establishment of precise tissue and organ structures. In the vertebrate eye, structural defects are a common cause of visual impairment, yet mechanisms of eye morphogenesis are still poorly understood. The basic organization of the embryonic eye is conserved throughout vertebrates, thus live imaging of zebrafish embryos has become a powerful approach to directly observe eye development at real time under normal and pathological conditions. Dynamic cell processes including movements, morphologies, interactions, division, and death can be visualized in the embryo. We have developed methods for uniform labeling of subcellular structures and timelapse confocal microscopy of early eye development in zebrafish. This protocol outlines the method of generating capped mRNA for injection into the 1-cell zebrafish embryo, mounting embryos at optic vesicle stage (~12 hours post fertilization, hpf), and performing multi-dimensional timelapse imaging of optic cup morphogenesis on a laser scanning confocal microscope, such that multiple datasets are acquired sequentially in the same imaging session. Such an approach yields data that can be used for a variety of purposes, including cell tracking, volume measurements, three-dimensional (3D) rendering, and visualization. Our approaches allow us to pinpoint the cellular and molecular mechanisms driving optic cup development, in both wild type and genetic mutant conditions. These methods can be employed directly by other groups or adapted to visualize many additional aspects of zebrafish eye development.
doi_str_mv 10.3791/62155
format Article
fullrecord <record><control><sourceid>proquest_223</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8848516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540729028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-6eed6345fc0973c03af7f260eabbbe812cf959b57f723d53b4afefd3fa3fee3</originalsourceid><addsrcrecordid>eNpVkE1Lw0AQhhdRbK39Ax4kF8FLdD_z4UGQ-lWo9KAH8bJsktl2S5KNu0nBf2-0tdTTDMwz7wwPQmOCr1ickuuIEiEO0JCkHIc4id8P9_oBOvF-hXFEsUiO0YBxQgXBfIhueHhvKqi9sbUqg2mlFqZeBFYHH5A5pY1fBvOmNXkw6ZrgxbpmaRdQgzf-FB1pVXoYb-sIvT4-vE2ew9n8aTq5m4U541EbRgBFxLjQOU5jlmOmdKxphEFlWQYJoblORZqJWMeUFYJlXGnQBdOKaQA2Qreb1KbLKihyqFunStk4Uyn3Ja0y8v-kNku5sGuZJDwRJOoDLrcBzn524FtZGZ9DWaoabOclFRzHNMU06dGLDZo7670DvTtDsPyxLH8t99z5_k876k9rD5xtgJVdg1zZzvVy_Xb7GyVmgPs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540729028</pqid></control><display><type>article</type><title>4-Dimensional Imaging of Zebrafish Optic Cup Morphogenesis</title><source>Journal of Visualized Experiments : JoVE</source><creator>Lusk, Sarah ; Casey, Macaulie A. ; Kwan, Kristen M.</creator><creatorcontrib>Lusk, Sarah ; Casey, Macaulie A. ; Kwan, Kristen M.</creatorcontrib><description>Visual system function requires the establishment of precise tissue and organ structures. In the vertebrate eye, structural defects are a common cause of visual impairment, yet mechanisms of eye morphogenesis are still poorly understood. The basic organization of the embryonic eye is conserved throughout vertebrates, thus live imaging of zebrafish embryos has become a powerful approach to directly observe eye development at real time under normal and pathological conditions. Dynamic cell processes including movements, morphologies, interactions, division, and death can be visualized in the embryo. We have developed methods for uniform labeling of subcellular structures and timelapse confocal microscopy of early eye development in zebrafish. This protocol outlines the method of generating capped mRNA for injection into the 1-cell zebrafish embryo, mounting embryos at optic vesicle stage (~12 hours post fertilization, hpf), and performing multi-dimensional timelapse imaging of optic cup morphogenesis on a laser scanning confocal microscope, such that multiple datasets are acquired sequentially in the same imaging session. Such an approach yields data that can be used for a variety of purposes, including cell tracking, volume measurements, three-dimensional (3D) rendering, and visualization. Our approaches allow us to pinpoint the cellular and molecular mechanisms driving optic cup development, in both wild type and genetic mutant conditions. These methods can be employed directly by other groups or adapted to visualize many additional aspects of zebrafish eye development.</description><identifier>ISSN: 1940-087X</identifier><identifier>EISSN: 1940-087X</identifier><identifier>DOI: 10.3791/62155</identifier><identifier>PMID: 34125104</identifier><language>eng</language><publisher>United States: MyJove Corporation</publisher><subject>Animals ; Eye ; Morphogenesis ; Neuroscience ; Organogenesis ; Zebrafish ; Zebrafish Proteins</subject><ispartof>Journal of Visualized Experiments, 2021-05 (171)</ispartof><rights>Copyright © 2021, Journal of Visualized Experiments</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.jove.com/files/email_thumbs/62155.png</thumbnail><link.rule.ids>230,314,776,780,881,3829,27903,27904</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.3791/62155$$EView_record_in_Journal_of_Visualized_Experiments$$FView_record_in_$$GJournal_of_Visualized_Experiments</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34125104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lusk, Sarah</creatorcontrib><creatorcontrib>Casey, Macaulie A.</creatorcontrib><creatorcontrib>Kwan, Kristen M.</creatorcontrib><title>4-Dimensional Imaging of Zebrafish Optic Cup Morphogenesis</title><title>Journal of Visualized Experiments</title><addtitle>J Vis Exp</addtitle><description>Visual system function requires the establishment of precise tissue and organ structures. In the vertebrate eye, structural defects are a common cause of visual impairment, yet mechanisms of eye morphogenesis are still poorly understood. The basic organization of the embryonic eye is conserved throughout vertebrates, thus live imaging of zebrafish embryos has become a powerful approach to directly observe eye development at real time under normal and pathological conditions. Dynamic cell processes including movements, morphologies, interactions, division, and death can be visualized in the embryo. We have developed methods for uniform labeling of subcellular structures and timelapse confocal microscopy of early eye development in zebrafish. This protocol outlines the method of generating capped mRNA for injection into the 1-cell zebrafish embryo, mounting embryos at optic vesicle stage (~12 hours post fertilization, hpf), and performing multi-dimensional timelapse imaging of optic cup morphogenesis on a laser scanning confocal microscope, such that multiple datasets are acquired sequentially in the same imaging session. Such an approach yields data that can be used for a variety of purposes, including cell tracking, volume measurements, three-dimensional (3D) rendering, and visualization. Our approaches allow us to pinpoint the cellular and molecular mechanisms driving optic cup development, in both wild type and genetic mutant conditions. These methods can be employed directly by other groups or adapted to visualize many additional aspects of zebrafish eye development.</description><subject>Animals</subject><subject>Eye</subject><subject>Morphogenesis</subject><subject>Neuroscience</subject><subject>Organogenesis</subject><subject>Zebrafish</subject><subject>Zebrafish Proteins</subject><issn>1940-087X</issn><issn>1940-087X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1Lw0AQhhdRbK39Ax4kF8FLdD_z4UGQ-lWo9KAH8bJsktl2S5KNu0nBf2-0tdTTDMwz7wwPQmOCr1ickuuIEiEO0JCkHIc4id8P9_oBOvF-hXFEsUiO0YBxQgXBfIhueHhvKqi9sbUqg2mlFqZeBFYHH5A5pY1fBvOmNXkw6ZrgxbpmaRdQgzf-FB1pVXoYb-sIvT4-vE2ew9n8aTq5m4U541EbRgBFxLjQOU5jlmOmdKxphEFlWQYJoblORZqJWMeUFYJlXGnQBdOKaQA2Qreb1KbLKihyqFunStk4Uyn3Ja0y8v-kNku5sGuZJDwRJOoDLrcBzn524FtZGZ9DWaoabOclFRzHNMU06dGLDZo7670DvTtDsPyxLH8t99z5_k876k9rD5xtgJVdg1zZzvVy_Xb7GyVmgPs</recordid><startdate>20210526</startdate><enddate>20210526</enddate><creator>Lusk, Sarah</creator><creator>Casey, Macaulie A.</creator><creator>Kwan, Kristen M.</creator><general>MyJove Corporation</general><scope>BVVXV</scope><scope>DRUMS</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210526</creationdate><title>4-Dimensional Imaging of Zebrafish Optic Cup Morphogenesis</title><author>Lusk, Sarah ; Casey, Macaulie A. ; Kwan, Kristen M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-6eed6345fc0973c03af7f260eabbbe812cf959b57f723d53b4afefd3fa3fee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Eye</topic><topic>Morphogenesis</topic><topic>Neuroscience</topic><topic>Organogenesis</topic><topic>Zebrafish</topic><topic>Zebrafish Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lusk, Sarah</creatorcontrib><creatorcontrib>Casey, Macaulie A.</creatorcontrib><creatorcontrib>Kwan, Kristen M.</creatorcontrib><collection>JoVE Journal: Neuroscience</collection><collection>JoVE Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Visualized Experiments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lusk, Sarah</au><au>Casey, Macaulie A.</au><au>Kwan, Kristen M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>4-Dimensional Imaging of Zebrafish Optic Cup Morphogenesis</atitle><jtitle>Journal of Visualized Experiments</jtitle><addtitle>J Vis Exp</addtitle><date>2021-05-26</date><risdate>2021</risdate><issue>171</issue><issn>1940-087X</issn><eissn>1940-087X</eissn><abstract>Visual system function requires the establishment of precise tissue and organ structures. In the vertebrate eye, structural defects are a common cause of visual impairment, yet mechanisms of eye morphogenesis are still poorly understood. The basic organization of the embryonic eye is conserved throughout vertebrates, thus live imaging of zebrafish embryos has become a powerful approach to directly observe eye development at real time under normal and pathological conditions. Dynamic cell processes including movements, morphologies, interactions, division, and death can be visualized in the embryo. We have developed methods for uniform labeling of subcellular structures and timelapse confocal microscopy of early eye development in zebrafish. This protocol outlines the method of generating capped mRNA for injection into the 1-cell zebrafish embryo, mounting embryos at optic vesicle stage (~12 hours post fertilization, hpf), and performing multi-dimensional timelapse imaging of optic cup morphogenesis on a laser scanning confocal microscope, such that multiple datasets are acquired sequentially in the same imaging session. Such an approach yields data that can be used for a variety of purposes, including cell tracking, volume measurements, three-dimensional (3D) rendering, and visualization. Our approaches allow us to pinpoint the cellular and molecular mechanisms driving optic cup development, in both wild type and genetic mutant conditions. These methods can be employed directly by other groups or adapted to visualize many additional aspects of zebrafish eye development.</abstract><cop>United States</cop><pub>MyJove Corporation</pub><pmid>34125104</pmid><doi>10.3791/62155</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1940-087X
ispartof Journal of Visualized Experiments, 2021-05 (171)
issn 1940-087X
1940-087X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8848516
source Journal of Visualized Experiments : JoVE
subjects Animals
Eye
Morphogenesis
Neuroscience
Organogenesis
Zebrafish
Zebrafish Proteins
title 4-Dimensional Imaging of Zebrafish Optic Cup Morphogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_223&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=4-Dimensional%20Imaging%20of%20Zebrafish%20Optic%20Cup%20Morphogenesis&rft.jtitle=Journal%20of%20Visualized%20Experiments&rft.au=Lusk,%20Sarah&rft.date=2021-05-26&rft.issue=171&rft.issn=1940-087X&rft.eissn=1940-087X&rft_id=info:doi/10.3791/62155&rft_dat=%3Cproquest_223%3E2540729028%3C/proquest_223%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540729028&rft_id=info:pmid/34125104&rfr_iscdi=true