Artificial Intelligence Based Framework to Quantify the Cardiomyocyte Structural Integrity in Heart Slices

Purpose Drug induced cardiac toxicity is a disruption of the functionality of cardiomyocytes which is highly correlated to the organization of the subcellular structures. We can analyze cellular structures by utilizing microscopy imaging data. However, conventional image analysis methods might miss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cardiovascular engineering and technology 2022-02, Vol.13 (1), p.170-180
Hauptverfasser: Abdeltawab, Hisham, Khalifa, Fahmi, Hammouda, Kamal, Miller, Jessica M., Meki, Moustafa M., Ou, Qinghui, El-Baz, Ayman, Mohamed, Tamer M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180
container_issue 1
container_start_page 170
container_title Cardiovascular engineering and technology
container_volume 13
creator Abdeltawab, Hisham
Khalifa, Fahmi
Hammouda, Kamal
Miller, Jessica M.
Meki, Moustafa M.
Ou, Qinghui
El-Baz, Ayman
Mohamed, Tamer M. A.
description Purpose Drug induced cardiac toxicity is a disruption of the functionality of cardiomyocytes which is highly correlated to the organization of the subcellular structures. We can analyze cellular structures by utilizing microscopy imaging data. However, conventional image analysis methods might miss structural deteriorations that are difficult to perceive. Here, we propose an image-based deep learning pipeline for the automated quantification of drug induced structural deteriorations using a 3D heart slice culture model. Methods In our deep learning pipeline, we quantify the induced structural deterioration from three anticancer drugs (doxorubicin, sunitinib, and herceptin) with known adverse cardiac effects. The proposed deep learning framework is composed of three convolutional neural networks that process three different image sizes. The results of the three networks are combined to produce a classification map that shows the locations of the structural deteriorations in the input cardiac image. Results The result of our technique is the capability of producing classification maps that accurately detect drug induced structural deterioration on the pixel level. Conclusion This technology could be widely applied to perform unbiased quantification of the structural effect of the cardiotoxins on heart slices.
doi_str_mv 10.1007/s13239-021-00571-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8847536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634863571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-fa8e9d5aa867d38ce1d2a4261543a95a6065356f7d08e7bac40b095921e02a403</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpSEKSP5BDEfTsdvRhWb4U0qVpAoEQ0kJvQiuPN9p6rVSSW_zvq3Q32-ZSXSSYR88M8xJyzuAdA2jeJya4aCvgrAKoG1apV-SYadVWElr9ev_W347IWUprKEfwFiQ_JEdCSuAgmmOyvojZ9955O9DrMeMw-BWODulHm7Cjl9Fu8FeI32kO9G6yY4Fnmh-QLmzsfNjMwc0Z6X2Ok8tT3FlW0eeZ-pFeoY2Z3g_eYTolB70dEp7t7hPy9fLTl8VVdXP7-XpxcVM52chc9VZj29XWatV0QjtkHbeSK1ZLYdvaKlC1qFXfdKCxWVonYQlt3XKGUEAQJ-TD1vs4LTfYORxzmcs8Rr-xcTbBevOyMvoHswo_jdayqYUqgrc7QQw_JkzZrMMUxzKz4UpIrUTZd6H4lnIxpBSx33dgYJ4iMtuITInI_InIPKnf_Dvb_stzIAUQWyCV0rjC-Lf3f7S_AUhjnfs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634863571</pqid></control><display><type>article</type><title>Artificial Intelligence Based Framework to Quantify the Cardiomyocyte Structural Integrity in Heart Slices</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Abdeltawab, Hisham ; Khalifa, Fahmi ; Hammouda, Kamal ; Miller, Jessica M. ; Meki, Moustafa M. ; Ou, Qinghui ; El-Baz, Ayman ; Mohamed, Tamer M. A.</creator><creatorcontrib>Abdeltawab, Hisham ; Khalifa, Fahmi ; Hammouda, Kamal ; Miller, Jessica M. ; Meki, Moustafa M. ; Ou, Qinghui ; El-Baz, Ayman ; Mohamed, Tamer M. A.</creatorcontrib><description>Purpose Drug induced cardiac toxicity is a disruption of the functionality of cardiomyocytes which is highly correlated to the organization of the subcellular structures. We can analyze cellular structures by utilizing microscopy imaging data. However, conventional image analysis methods might miss structural deteriorations that are difficult to perceive. Here, we propose an image-based deep learning pipeline for the automated quantification of drug induced structural deteriorations using a 3D heart slice culture model. Methods In our deep learning pipeline, we quantify the induced structural deterioration from three anticancer drugs (doxorubicin, sunitinib, and herceptin) with known adverse cardiac effects. The proposed deep learning framework is composed of three convolutional neural networks that process three different image sizes. The results of the three networks are combined to produce a classification map that shows the locations of the structural deteriorations in the input cardiac image. Results The result of our technique is the capability of producing classification maps that accurately detect drug induced structural deterioration on the pixel level. Conclusion This technology could be widely applied to perform unbiased quantification of the structural effect of the cardiotoxins on heart slices.</description><identifier>ISSN: 1869-408X</identifier><identifier>EISSN: 1869-4098</identifier><identifier>DOI: 10.1007/s13239-021-00571-6</identifier><identifier>PMID: 34402037</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedical Engineering/Biotechnology ; Biomedicine ; Cardiology ; Cellular structure ; Classification ; Deep learning ; Deterioration ; Doxorubicin ; Image analysis ; Image Processing, Computer-Assisted - methods ; Machine learning ; Myocytes, Cardiac ; Neural Networks, Computer ; Original Article ; Structural integrity ; Toxicity</subject><ispartof>Cardiovascular engineering and technology, 2022-02, Vol.13 (1), p.170-180</ispartof><rights>Biomedical Engineering Society 2021</rights><rights>2021. Biomedical Engineering Society.</rights><rights>Biomedical Engineering Society 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-fa8e9d5aa867d38ce1d2a4261543a95a6065356f7d08e7bac40b095921e02a403</citedby><cites>FETCH-LOGICAL-c474t-fa8e9d5aa867d38ce1d2a4261543a95a6065356f7d08e7bac40b095921e02a403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13239-021-00571-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13239-021-00571-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34402037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abdeltawab, Hisham</creatorcontrib><creatorcontrib>Khalifa, Fahmi</creatorcontrib><creatorcontrib>Hammouda, Kamal</creatorcontrib><creatorcontrib>Miller, Jessica M.</creatorcontrib><creatorcontrib>Meki, Moustafa M.</creatorcontrib><creatorcontrib>Ou, Qinghui</creatorcontrib><creatorcontrib>El-Baz, Ayman</creatorcontrib><creatorcontrib>Mohamed, Tamer M. A.</creatorcontrib><title>Artificial Intelligence Based Framework to Quantify the Cardiomyocyte Structural Integrity in Heart Slices</title><title>Cardiovascular engineering and technology</title><addtitle>Cardiovasc Eng Tech</addtitle><addtitle>Cardiovasc Eng Technol</addtitle><description>Purpose Drug induced cardiac toxicity is a disruption of the functionality of cardiomyocytes which is highly correlated to the organization of the subcellular structures. We can analyze cellular structures by utilizing microscopy imaging data. However, conventional image analysis methods might miss structural deteriorations that are difficult to perceive. Here, we propose an image-based deep learning pipeline for the automated quantification of drug induced structural deteriorations using a 3D heart slice culture model. Methods In our deep learning pipeline, we quantify the induced structural deterioration from three anticancer drugs (doxorubicin, sunitinib, and herceptin) with known adverse cardiac effects. The proposed deep learning framework is composed of three convolutional neural networks that process three different image sizes. The results of the three networks are combined to produce a classification map that shows the locations of the structural deteriorations in the input cardiac image. Results The result of our technique is the capability of producing classification maps that accurately detect drug induced structural deterioration on the pixel level. Conclusion This technology could be widely applied to perform unbiased quantification of the structural effect of the cardiotoxins on heart slices.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Cardiology</subject><subject>Cellular structure</subject><subject>Classification</subject><subject>Deep learning</subject><subject>Deterioration</subject><subject>Doxorubicin</subject><subject>Image analysis</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Machine learning</subject><subject>Myocytes, Cardiac</subject><subject>Neural Networks, Computer</subject><subject>Original Article</subject><subject>Structural integrity</subject><subject>Toxicity</subject><issn>1869-408X</issn><issn>1869-4098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1r3DAQhkVpSEKSP5BDEfTsdvRhWb4U0qVpAoEQ0kJvQiuPN9p6rVSSW_zvq3Q32-ZSXSSYR88M8xJyzuAdA2jeJya4aCvgrAKoG1apV-SYadVWElr9ev_W347IWUprKEfwFiQ_JEdCSuAgmmOyvojZ9955O9DrMeMw-BWODulHm7Cjl9Fu8FeI32kO9G6yY4Fnmh-QLmzsfNjMwc0Z6X2Ok8tT3FlW0eeZ-pFeoY2Z3g_eYTolB70dEp7t7hPy9fLTl8VVdXP7-XpxcVM52chc9VZj29XWatV0QjtkHbeSK1ZLYdvaKlC1qFXfdKCxWVonYQlt3XKGUEAQJ-TD1vs4LTfYORxzmcs8Rr-xcTbBevOyMvoHswo_jdayqYUqgrc7QQw_JkzZrMMUxzKz4UpIrUTZd6H4lnIxpBSx33dgYJ4iMtuITInI_InIPKnf_Dvb_stzIAUQWyCV0rjC-Lf3f7S_AUhjnfs</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Abdeltawab, Hisham</creator><creator>Khalifa, Fahmi</creator><creator>Hammouda, Kamal</creator><creator>Miller, Jessica M.</creator><creator>Meki, Moustafa M.</creator><creator>Ou, Qinghui</creator><creator>El-Baz, Ayman</creator><creator>Mohamed, Tamer M. A.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20220201</creationdate><title>Artificial Intelligence Based Framework to Quantify the Cardiomyocyte Structural Integrity in Heart Slices</title><author>Abdeltawab, Hisham ; Khalifa, Fahmi ; Hammouda, Kamal ; Miller, Jessica M. ; Meki, Moustafa M. ; Ou, Qinghui ; El-Baz, Ayman ; Mohamed, Tamer M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-fa8e9d5aa867d38ce1d2a4261543a95a6065356f7d08e7bac40b095921e02a403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Cardiology</topic><topic>Cellular structure</topic><topic>Classification</topic><topic>Deep learning</topic><topic>Deterioration</topic><topic>Doxorubicin</topic><topic>Image analysis</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Machine learning</topic><topic>Myocytes, Cardiac</topic><topic>Neural Networks, Computer</topic><topic>Original Article</topic><topic>Structural integrity</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdeltawab, Hisham</creatorcontrib><creatorcontrib>Khalifa, Fahmi</creatorcontrib><creatorcontrib>Hammouda, Kamal</creatorcontrib><creatorcontrib>Miller, Jessica M.</creatorcontrib><creatorcontrib>Meki, Moustafa M.</creatorcontrib><creatorcontrib>Ou, Qinghui</creatorcontrib><creatorcontrib>El-Baz, Ayman</creatorcontrib><creatorcontrib>Mohamed, Tamer M. A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cardiovascular engineering and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdeltawab, Hisham</au><au>Khalifa, Fahmi</au><au>Hammouda, Kamal</au><au>Miller, Jessica M.</au><au>Meki, Moustafa M.</au><au>Ou, Qinghui</au><au>El-Baz, Ayman</au><au>Mohamed, Tamer M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence Based Framework to Quantify the Cardiomyocyte Structural Integrity in Heart Slices</atitle><jtitle>Cardiovascular engineering and technology</jtitle><stitle>Cardiovasc Eng Tech</stitle><addtitle>Cardiovasc Eng Technol</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>170</spage><epage>180</epage><pages>170-180</pages><issn>1869-408X</issn><eissn>1869-4098</eissn><abstract>Purpose Drug induced cardiac toxicity is a disruption of the functionality of cardiomyocytes which is highly correlated to the organization of the subcellular structures. We can analyze cellular structures by utilizing microscopy imaging data. However, conventional image analysis methods might miss structural deteriorations that are difficult to perceive. Here, we propose an image-based deep learning pipeline for the automated quantification of drug induced structural deteriorations using a 3D heart slice culture model. Methods In our deep learning pipeline, we quantify the induced structural deterioration from three anticancer drugs (doxorubicin, sunitinib, and herceptin) with known adverse cardiac effects. The proposed deep learning framework is composed of three convolutional neural networks that process three different image sizes. The results of the three networks are combined to produce a classification map that shows the locations of the structural deteriorations in the input cardiac image. Results The result of our technique is the capability of producing classification maps that accurately detect drug induced structural deterioration on the pixel level. Conclusion This technology could be widely applied to perform unbiased quantification of the structural effect of the cardiotoxins on heart slices.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>34402037</pmid><doi>10.1007/s13239-021-00571-6</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1869-408X
ispartof Cardiovascular engineering and technology, 2022-02, Vol.13 (1), p.170-180
issn 1869-408X
1869-4098
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8847536
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Artificial neural networks
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Biomedicine
Cardiology
Cellular structure
Classification
Deep learning
Deterioration
Doxorubicin
Image analysis
Image Processing, Computer-Assisted - methods
Machine learning
Myocytes, Cardiac
Neural Networks, Computer
Original Article
Structural integrity
Toxicity
title Artificial Intelligence Based Framework to Quantify the Cardiomyocyte Structural Integrity in Heart Slices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20Based%20Framework%20to%20Quantify%20the%20Cardiomyocyte%20Structural%20Integrity%20in%20Heart%20Slices&rft.jtitle=Cardiovascular%20engineering%20and%20technology&rft.au=Abdeltawab,%20Hisham&rft.date=2022-02-01&rft.volume=13&rft.issue=1&rft.spage=170&rft.epage=180&rft.pages=170-180&rft.issn=1869-408X&rft.eissn=1869-4098&rft_id=info:doi/10.1007/s13239-021-00571-6&rft_dat=%3Cproquest_pubme%3E2634863571%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634863571&rft_id=info:pmid/34402037&rfr_iscdi=true