Artificial Intelligence Based Framework to Quantify the Cardiomyocyte Structural Integrity in Heart Slices
Purpose Drug induced cardiac toxicity is a disruption of the functionality of cardiomyocytes which is highly correlated to the organization of the subcellular structures. We can analyze cellular structures by utilizing microscopy imaging data. However, conventional image analysis methods might miss...
Gespeichert in:
Veröffentlicht in: | Cardiovascular engineering and technology 2022-02, Vol.13 (1), p.170-180 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180 |
---|---|
container_issue | 1 |
container_start_page | 170 |
container_title | Cardiovascular engineering and technology |
container_volume | 13 |
creator | Abdeltawab, Hisham Khalifa, Fahmi Hammouda, Kamal Miller, Jessica M. Meki, Moustafa M. Ou, Qinghui El-Baz, Ayman Mohamed, Tamer M. A. |
description | Purpose
Drug induced cardiac toxicity is a disruption of the functionality of cardiomyocytes which is highly correlated to the organization of the subcellular structures. We can analyze cellular structures by utilizing microscopy imaging data. However, conventional image analysis methods might miss structural deteriorations that are difficult to perceive. Here, we propose an image-based deep learning pipeline for the automated quantification of drug induced structural deteriorations using a 3D heart slice culture model.
Methods
In our deep learning pipeline, we quantify the induced structural deterioration from three anticancer drugs (doxorubicin, sunitinib, and herceptin) with known adverse cardiac effects. The proposed deep learning framework is composed of three convolutional neural networks that process three different image sizes. The results of the three networks are combined to produce a classification map that shows the locations of the structural deteriorations in the input cardiac image.
Results
The result of our technique is the capability of producing classification maps that accurately detect drug induced structural deterioration on the pixel level.
Conclusion
This technology could be widely applied to perform unbiased quantification of the structural effect of the cardiotoxins on heart slices. |
doi_str_mv | 10.1007/s13239-021-00571-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8847536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634863571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-fa8e9d5aa867d38ce1d2a4261543a95a6065356f7d08e7bac40b095921e02a403</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpSEKSP5BDEfTsdvRhWb4U0qVpAoEQ0kJvQiuPN9p6rVSSW_zvq3Q32-ZSXSSYR88M8xJyzuAdA2jeJya4aCvgrAKoG1apV-SYadVWElr9ev_W347IWUprKEfwFiQ_JEdCSuAgmmOyvojZ9955O9DrMeMw-BWODulHm7Cjl9Fu8FeI32kO9G6yY4Fnmh-QLmzsfNjMwc0Z6X2Ok8tT3FlW0eeZ-pFeoY2Z3g_eYTolB70dEp7t7hPy9fLTl8VVdXP7-XpxcVM52chc9VZj29XWatV0QjtkHbeSK1ZLYdvaKlC1qFXfdKCxWVonYQlt3XKGUEAQJ-TD1vs4LTfYORxzmcs8Rr-xcTbBevOyMvoHswo_jdayqYUqgrc7QQw_JkzZrMMUxzKz4UpIrUTZd6H4lnIxpBSx33dgYJ4iMtuITInI_InIPKnf_Dvb_stzIAUQWyCV0rjC-Lf3f7S_AUhjnfs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634863571</pqid></control><display><type>article</type><title>Artificial Intelligence Based Framework to Quantify the Cardiomyocyte Structural Integrity in Heart Slices</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Abdeltawab, Hisham ; Khalifa, Fahmi ; Hammouda, Kamal ; Miller, Jessica M. ; Meki, Moustafa M. ; Ou, Qinghui ; El-Baz, Ayman ; Mohamed, Tamer M. A.</creator><creatorcontrib>Abdeltawab, Hisham ; Khalifa, Fahmi ; Hammouda, Kamal ; Miller, Jessica M. ; Meki, Moustafa M. ; Ou, Qinghui ; El-Baz, Ayman ; Mohamed, Tamer M. A.</creatorcontrib><description>Purpose
Drug induced cardiac toxicity is a disruption of the functionality of cardiomyocytes which is highly correlated to the organization of the subcellular structures. We can analyze cellular structures by utilizing microscopy imaging data. However, conventional image analysis methods might miss structural deteriorations that are difficult to perceive. Here, we propose an image-based deep learning pipeline for the automated quantification of drug induced structural deteriorations using a 3D heart slice culture model.
Methods
In our deep learning pipeline, we quantify the induced structural deterioration from three anticancer drugs (doxorubicin, sunitinib, and herceptin) with known adverse cardiac effects. The proposed deep learning framework is composed of three convolutional neural networks that process three different image sizes. The results of the three networks are combined to produce a classification map that shows the locations of the structural deteriorations in the input cardiac image.
Results
The result of our technique is the capability of producing classification maps that accurately detect drug induced structural deterioration on the pixel level.
Conclusion
This technology could be widely applied to perform unbiased quantification of the structural effect of the cardiotoxins on heart slices.</description><identifier>ISSN: 1869-408X</identifier><identifier>EISSN: 1869-4098</identifier><identifier>DOI: 10.1007/s13239-021-00571-6</identifier><identifier>PMID: 34402037</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedical Engineering/Biotechnology ; Biomedicine ; Cardiology ; Cellular structure ; Classification ; Deep learning ; Deterioration ; Doxorubicin ; Image analysis ; Image Processing, Computer-Assisted - methods ; Machine learning ; Myocytes, Cardiac ; Neural Networks, Computer ; Original Article ; Structural integrity ; Toxicity</subject><ispartof>Cardiovascular engineering and technology, 2022-02, Vol.13 (1), p.170-180</ispartof><rights>Biomedical Engineering Society 2021</rights><rights>2021. Biomedical Engineering Society.</rights><rights>Biomedical Engineering Society 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-fa8e9d5aa867d38ce1d2a4261543a95a6065356f7d08e7bac40b095921e02a403</citedby><cites>FETCH-LOGICAL-c474t-fa8e9d5aa867d38ce1d2a4261543a95a6065356f7d08e7bac40b095921e02a403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13239-021-00571-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13239-021-00571-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34402037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abdeltawab, Hisham</creatorcontrib><creatorcontrib>Khalifa, Fahmi</creatorcontrib><creatorcontrib>Hammouda, Kamal</creatorcontrib><creatorcontrib>Miller, Jessica M.</creatorcontrib><creatorcontrib>Meki, Moustafa M.</creatorcontrib><creatorcontrib>Ou, Qinghui</creatorcontrib><creatorcontrib>El-Baz, Ayman</creatorcontrib><creatorcontrib>Mohamed, Tamer M. A.</creatorcontrib><title>Artificial Intelligence Based Framework to Quantify the Cardiomyocyte Structural Integrity in Heart Slices</title><title>Cardiovascular engineering and technology</title><addtitle>Cardiovasc Eng Tech</addtitle><addtitle>Cardiovasc Eng Technol</addtitle><description>Purpose
Drug induced cardiac toxicity is a disruption of the functionality of cardiomyocytes which is highly correlated to the organization of the subcellular structures. We can analyze cellular structures by utilizing microscopy imaging data. However, conventional image analysis methods might miss structural deteriorations that are difficult to perceive. Here, we propose an image-based deep learning pipeline for the automated quantification of drug induced structural deteriorations using a 3D heart slice culture model.
Methods
In our deep learning pipeline, we quantify the induced structural deterioration from three anticancer drugs (doxorubicin, sunitinib, and herceptin) with known adverse cardiac effects. The proposed deep learning framework is composed of three convolutional neural networks that process three different image sizes. The results of the three networks are combined to produce a classification map that shows the locations of the structural deteriorations in the input cardiac image.
Results
The result of our technique is the capability of producing classification maps that accurately detect drug induced structural deterioration on the pixel level.
Conclusion
This technology could be widely applied to perform unbiased quantification of the structural effect of the cardiotoxins on heart slices.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Cardiology</subject><subject>Cellular structure</subject><subject>Classification</subject><subject>Deep learning</subject><subject>Deterioration</subject><subject>Doxorubicin</subject><subject>Image analysis</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Machine learning</subject><subject>Myocytes, Cardiac</subject><subject>Neural Networks, Computer</subject><subject>Original Article</subject><subject>Structural integrity</subject><subject>Toxicity</subject><issn>1869-408X</issn><issn>1869-4098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1r3DAQhkVpSEKSP5BDEfTsdvRhWb4U0qVpAoEQ0kJvQiuPN9p6rVSSW_zvq3Q32-ZSXSSYR88M8xJyzuAdA2jeJya4aCvgrAKoG1apV-SYadVWElr9ev_W347IWUprKEfwFiQ_JEdCSuAgmmOyvojZ9955O9DrMeMw-BWODulHm7Cjl9Fu8FeI32kO9G6yY4Fnmh-QLmzsfNjMwc0Z6X2Ok8tT3FlW0eeZ-pFeoY2Z3g_eYTolB70dEp7t7hPy9fLTl8VVdXP7-XpxcVM52chc9VZj29XWatV0QjtkHbeSK1ZLYdvaKlC1qFXfdKCxWVonYQlt3XKGUEAQJ-TD1vs4LTfYORxzmcs8Rr-xcTbBevOyMvoHswo_jdayqYUqgrc7QQw_JkzZrMMUxzKz4UpIrUTZd6H4lnIxpBSx33dgYJ4iMtuITInI_InIPKnf_Dvb_stzIAUQWyCV0rjC-Lf3f7S_AUhjnfs</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Abdeltawab, Hisham</creator><creator>Khalifa, Fahmi</creator><creator>Hammouda, Kamal</creator><creator>Miller, Jessica M.</creator><creator>Meki, Moustafa M.</creator><creator>Ou, Qinghui</creator><creator>El-Baz, Ayman</creator><creator>Mohamed, Tamer M. A.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20220201</creationdate><title>Artificial Intelligence Based Framework to Quantify the Cardiomyocyte Structural Integrity in Heart Slices</title><author>Abdeltawab, Hisham ; Khalifa, Fahmi ; Hammouda, Kamal ; Miller, Jessica M. ; Meki, Moustafa M. ; Ou, Qinghui ; El-Baz, Ayman ; Mohamed, Tamer M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-fa8e9d5aa867d38ce1d2a4261543a95a6065356f7d08e7bac40b095921e02a403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Cardiology</topic><topic>Cellular structure</topic><topic>Classification</topic><topic>Deep learning</topic><topic>Deterioration</topic><topic>Doxorubicin</topic><topic>Image analysis</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Machine learning</topic><topic>Myocytes, Cardiac</topic><topic>Neural Networks, Computer</topic><topic>Original Article</topic><topic>Structural integrity</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdeltawab, Hisham</creatorcontrib><creatorcontrib>Khalifa, Fahmi</creatorcontrib><creatorcontrib>Hammouda, Kamal</creatorcontrib><creatorcontrib>Miller, Jessica M.</creatorcontrib><creatorcontrib>Meki, Moustafa M.</creatorcontrib><creatorcontrib>Ou, Qinghui</creatorcontrib><creatorcontrib>El-Baz, Ayman</creatorcontrib><creatorcontrib>Mohamed, Tamer M. A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cardiovascular engineering and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdeltawab, Hisham</au><au>Khalifa, Fahmi</au><au>Hammouda, Kamal</au><au>Miller, Jessica M.</au><au>Meki, Moustafa M.</au><au>Ou, Qinghui</au><au>El-Baz, Ayman</au><au>Mohamed, Tamer M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence Based Framework to Quantify the Cardiomyocyte Structural Integrity in Heart Slices</atitle><jtitle>Cardiovascular engineering and technology</jtitle><stitle>Cardiovasc Eng Tech</stitle><addtitle>Cardiovasc Eng Technol</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>170</spage><epage>180</epage><pages>170-180</pages><issn>1869-408X</issn><eissn>1869-4098</eissn><abstract>Purpose
Drug induced cardiac toxicity is a disruption of the functionality of cardiomyocytes which is highly correlated to the organization of the subcellular structures. We can analyze cellular structures by utilizing microscopy imaging data. However, conventional image analysis methods might miss structural deteriorations that are difficult to perceive. Here, we propose an image-based deep learning pipeline for the automated quantification of drug induced structural deteriorations using a 3D heart slice culture model.
Methods
In our deep learning pipeline, we quantify the induced structural deterioration from three anticancer drugs (doxorubicin, sunitinib, and herceptin) with known adverse cardiac effects. The proposed deep learning framework is composed of three convolutional neural networks that process three different image sizes. The results of the three networks are combined to produce a classification map that shows the locations of the structural deteriorations in the input cardiac image.
Results
The result of our technique is the capability of producing classification maps that accurately detect drug induced structural deterioration on the pixel level.
Conclusion
This technology could be widely applied to perform unbiased quantification of the structural effect of the cardiotoxins on heart slices.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>34402037</pmid><doi>10.1007/s13239-021-00571-6</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-408X |
ispartof | Cardiovascular engineering and technology, 2022-02, Vol.13 (1), p.170-180 |
issn | 1869-408X 1869-4098 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8847536 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Artificial neural networks Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology Biomedicine Cardiology Cellular structure Classification Deep learning Deterioration Doxorubicin Image analysis Image Processing, Computer-Assisted - methods Machine learning Myocytes, Cardiac Neural Networks, Computer Original Article Structural integrity Toxicity |
title | Artificial Intelligence Based Framework to Quantify the Cardiomyocyte Structural Integrity in Heart Slices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20Based%20Framework%20to%20Quantify%20the%20Cardiomyocyte%20Structural%20Integrity%20in%20Heart%20Slices&rft.jtitle=Cardiovascular%20engineering%20and%20technology&rft.au=Abdeltawab,%20Hisham&rft.date=2022-02-01&rft.volume=13&rft.issue=1&rft.spage=170&rft.epage=180&rft.pages=170-180&rft.issn=1869-408X&rft.eissn=1869-4098&rft_id=info:doi/10.1007/s13239-021-00571-6&rft_dat=%3Cproquest_pubme%3E2634863571%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634863571&rft_id=info:pmid/34402037&rfr_iscdi=true |