Hypophosphorylated pRb knock‐in mice exhibit hallmarks of aging and vitamin C‐preventable diabetes

Despite extensive analysis of pRB phosphorylation in vitro , how this modification influences development and homeostasis in vivo is unclear. Here, we show that homozygous Rb ∆K4 and Rb ∆K7 knock‐in mice, in which either four or all seven phosphorylation sites in the C‐terminal region of pRb, respec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2022-02, Vol.41 (4), p.e106825-n/a
Hauptverfasser: Jiang, Zhe, Li, Huiqin, Schroer, Stephanie A, Voisin, Veronique, Ju, YoungJun, Pacal, Marek, Erdmann, Natalie, Shi, Wei, Chung, Philip E D, Deng, Tao, Chen, Nien‐Jung, Ciavarra, Giovanni, Datti, Alessandro, Mak, Tak W, Harrington, Lea, Dick, Frederick A, Bader, Gary D, Bremner, Rod, Woo, Minna, Zacksenhaus, Eldad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e106825
container_title The EMBO journal
container_volume 41
creator Jiang, Zhe
Li, Huiqin
Schroer, Stephanie A
Voisin, Veronique
Ju, YoungJun
Pacal, Marek
Erdmann, Natalie
Shi, Wei
Chung, Philip E D
Deng, Tao
Chen, Nien‐Jung
Ciavarra, Giovanni
Datti, Alessandro
Mak, Tak W
Harrington, Lea
Dick, Frederick A
Bader, Gary D
Bremner, Rod
Woo, Minna
Zacksenhaus, Eldad
description Despite extensive analysis of pRB phosphorylation in vitro , how this modification influences development and homeostasis in vivo is unclear. Here, we show that homozygous Rb ∆K4 and Rb ∆K7 knock‐in mice, in which either four or all seven phosphorylation sites in the C‐terminal region of pRb, respectively, have been abolished by Ser/Thr‐to‐Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb ∆K4 mice exhibit telomere attrition but no other abnormalities, Rb ∆K7 mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb ∆K7 mice is insulin‐sensitive and associated with failure of quiescent pancreatic β‐cells to re‐enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence‐associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre‐treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re‐entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK‐inhibitor therapeutics, diabetes, and longevity. Synopsis The tumor suppressor pRB is frequently inactivated by mutation or hyper‐phosphorylation in diverse types of cancer, yet the effect of specifically blocking its phosphorylation in vivo is ill‐defined. Here, novel knock‐in mice show that expression of hypo‐phosphorylated pRb does not impede normal development, but promotes hallmarks of aging and diabetes by inhibiting cell‐cycle re‐entry and regeneration. Rb∆K4 and Rb∆K7 knock‐in mice, in which four or all, respectively, phosphorylation sites at the C‐terminal are genetically abolished, exhibit normal embryogenesis and neonatal growth. Inhibition of pRb phosphorylation at the C‐terminal selectively suppresses phosphorylation of additional upstream sites. Rb∆K7 mice develop hallmarks of aging and severe diabetes, caused by inability of pancreatic β‐cells to reduplicate in response to mitogenic signals, leading to a DDR and senescence. Vitamin C diet reduces the DDR and senescence of pancreatic β‐cells and attenuates diabetes in Rb∆K7 mice. Both activation and inactivation of pRb have deleterious long‐term effects on cancer and regeneration/aging. Graphical Abstract Abolishing cell‐
doi_str_mv 10.15252/embj.2020106825
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8844977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628440886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5195-43237b277e4749a0693a61ae910ff14a508f80ec8554497087d7189e407914e73</originalsourceid><addsrcrecordid>eNqFkcFu1DAYhC0EotvCnROyxIVLym_Hjh0JIcGqUFAREoKz5SR_dr2bxMHOLuytj8Az8iR42dJSJMTB8sHfjGY8hDxicMokl_wZ9tXqlAMHBoXm8g6ZMVFAxkHJu2QGvGCZYLo8IscxrgBAasXuk6NcAs9ZIWakPd-Nflz6mE7YdXbCho4fK7oefL3-cfndDbR3NVL8tnSVm-jSdl1vwzpS31K7cMOC2qGhWzfZPrHzJBkDbnGYbNUhbZytcML4gNxrbRfx4dV9Qj6_Pvs0P88uPrx5O395kdWSlTITOc9VxZVCoURpoShzWzCLJYO2ZcJK0K0GrLWUQpQKtGpUqocCVMkEqvyEvDj4jpuqx6ZOOYLtzBhcCr0z3jpz-2VwS7PwW6P13nBv8PTKIPgvG4yT6V2ssevsgH4TTfrRUgpWCp3QJ3-hK78JQ6qXKJ78QOsiUXCg6uBjDNheh2Fgfo1o9iOamxGT5PGfJa4Fv1dLwPMD8NV1uPuvoTl7_-rdLX92kMekHBYYboL_M9NPWtm7fA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628440886</pqid></control><display><type>article</type><title>Hypophosphorylated pRb knock‐in mice exhibit hallmarks of aging and vitamin C‐preventable diabetes</title><source>MEDLINE</source><source>Springer Nature OA Free Journals</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jiang, Zhe ; Li, Huiqin ; Schroer, Stephanie A ; Voisin, Veronique ; Ju, YoungJun ; Pacal, Marek ; Erdmann, Natalie ; Shi, Wei ; Chung, Philip E D ; Deng, Tao ; Chen, Nien‐Jung ; Ciavarra, Giovanni ; Datti, Alessandro ; Mak, Tak W ; Harrington, Lea ; Dick, Frederick A ; Bader, Gary D ; Bremner, Rod ; Woo, Minna ; Zacksenhaus, Eldad</creator><creatorcontrib>Jiang, Zhe ; Li, Huiqin ; Schroer, Stephanie A ; Voisin, Veronique ; Ju, YoungJun ; Pacal, Marek ; Erdmann, Natalie ; Shi, Wei ; Chung, Philip E D ; Deng, Tao ; Chen, Nien‐Jung ; Ciavarra, Giovanni ; Datti, Alessandro ; Mak, Tak W ; Harrington, Lea ; Dick, Frederick A ; Bader, Gary D ; Bremner, Rod ; Woo, Minna ; Zacksenhaus, Eldad</creatorcontrib><description>Despite extensive analysis of pRB phosphorylation in vitro , how this modification influences development and homeostasis in vivo is unclear. Here, we show that homozygous Rb ∆K4 and Rb ∆K7 knock‐in mice, in which either four or all seven phosphorylation sites in the C‐terminal region of pRb, respectively, have been abolished by Ser/Thr‐to‐Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb ∆K4 mice exhibit telomere attrition but no other abnormalities, Rb ∆K7 mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb ∆K7 mice is insulin‐sensitive and associated with failure of quiescent pancreatic β‐cells to re‐enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence‐associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre‐treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re‐entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK‐inhibitor therapeutics, diabetes, and longevity. Synopsis The tumor suppressor pRB is frequently inactivated by mutation or hyper‐phosphorylation in diverse types of cancer, yet the effect of specifically blocking its phosphorylation in vivo is ill‐defined. Here, novel knock‐in mice show that expression of hypo‐phosphorylated pRb does not impede normal development, but promotes hallmarks of aging and diabetes by inhibiting cell‐cycle re‐entry and regeneration. Rb∆K4 and Rb∆K7 knock‐in mice, in which four or all, respectively, phosphorylation sites at the C‐terminal are genetically abolished, exhibit normal embryogenesis and neonatal growth. Inhibition of pRb phosphorylation at the C‐terminal selectively suppresses phosphorylation of additional upstream sites. Rb∆K7 mice develop hallmarks of aging and severe diabetes, caused by inability of pancreatic β‐cells to reduplicate in response to mitogenic signals, leading to a DDR and senescence. Vitamin C diet reduces the DDR and senescence of pancreatic β‐cells and attenuates diabetes in Rb∆K7 mice. Both activation and inactivation of pRb have deleterious long‐term effects on cancer and regeneration/aging. Graphical Abstract Abolishing cell‐cycle‐related hyperphosphorylation of the retinoblastoma tumor suppressor in vivo does not impede normal mammalian development, but blocks cell‐cycle reentry and triggers senescence of pancreatic beta‐cells.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2020106825</identifier><identifier>PMID: 35023164</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Abnormalities ; Aging ; Aging - physiology ; Animals ; Ascorbic acid ; Ascorbic Acid - pharmacology ; Cancer ; Cell cycle ; Cellular Senescence - drug effects ; Cyclin-Dependent Kinase 2 - antagonists &amp; inhibitors ; Cytology ; Deactivation ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus, Experimental - genetics ; Diabetes Mellitus, Experimental - pathology ; Diabetes Mellitus, Experimental - prevention &amp; control ; DNA damage ; E2F1 Transcription Factor - metabolism ; EMBO06 ; EMBO21 ; EMBO31 ; Embryogenesis ; Embryonic Development - genetics ; Embryonic growth stage ; Epigenetics ; Female ; Fibroblasts - drug effects ; Gene Knock-In Techniques ; Homeostasis ; Inactivation ; Infertility ; Insulin ; Insulin-Secreting Cells - pathology ; Kinases ; knock‐in mice ; Kyphosis ; Mice ; Mitogens ; Mutation ; Neonates ; Pancreas ; Phenotypes ; Phosphorylation ; pRB ; Pregnancy ; Regeneration ; Retina ; Retinoblastoma ; Retinoblastoma Protein - genetics ; Retinoblastoma Protein - metabolism ; Senescence ; Telomere - genetics ; Telomeres ; Tumor suppressor genes ; Tumors ; vitamin C</subject><ispartof>The EMBO journal, 2022-02, Vol.41 (4), p.e106825-n/a</ispartof><rights>The Author(s) 2022</rights><rights>2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license</rights><rights>2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5195-43237b277e4749a0693a61ae910ff14a508f80ec8554497087d7189e407914e73</citedby><cites>FETCH-LOGICAL-c5195-43237b277e4749a0693a61ae910ff14a508f80ec8554497087d7189e407914e73</cites><orcidid>0000-0002-4178-1179 ; 0000-0001-9184-7212 ; 0000-0003-2895-1476 ; 0000-0002-9441-4049 ; 0000-0001-6104-6094 ; 0000-0002-3443-3088 ; 0000-0001-6824-7382 ; 0000-0002-4977-2744 ; 0000-0003-0185-8861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844977/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844977/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,41120,42189,45574,45575,46409,46833,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35023164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Zhe</creatorcontrib><creatorcontrib>Li, Huiqin</creatorcontrib><creatorcontrib>Schroer, Stephanie A</creatorcontrib><creatorcontrib>Voisin, Veronique</creatorcontrib><creatorcontrib>Ju, YoungJun</creatorcontrib><creatorcontrib>Pacal, Marek</creatorcontrib><creatorcontrib>Erdmann, Natalie</creatorcontrib><creatorcontrib>Shi, Wei</creatorcontrib><creatorcontrib>Chung, Philip E D</creatorcontrib><creatorcontrib>Deng, Tao</creatorcontrib><creatorcontrib>Chen, Nien‐Jung</creatorcontrib><creatorcontrib>Ciavarra, Giovanni</creatorcontrib><creatorcontrib>Datti, Alessandro</creatorcontrib><creatorcontrib>Mak, Tak W</creatorcontrib><creatorcontrib>Harrington, Lea</creatorcontrib><creatorcontrib>Dick, Frederick A</creatorcontrib><creatorcontrib>Bader, Gary D</creatorcontrib><creatorcontrib>Bremner, Rod</creatorcontrib><creatorcontrib>Woo, Minna</creatorcontrib><creatorcontrib>Zacksenhaus, Eldad</creatorcontrib><title>Hypophosphorylated pRb knock‐in mice exhibit hallmarks of aging and vitamin C‐preventable diabetes</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Despite extensive analysis of pRB phosphorylation in vitro , how this modification influences development and homeostasis in vivo is unclear. Here, we show that homozygous Rb ∆K4 and Rb ∆K7 knock‐in mice, in which either four or all seven phosphorylation sites in the C‐terminal region of pRb, respectively, have been abolished by Ser/Thr‐to‐Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb ∆K4 mice exhibit telomere attrition but no other abnormalities, Rb ∆K7 mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb ∆K7 mice is insulin‐sensitive and associated with failure of quiescent pancreatic β‐cells to re‐enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence‐associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre‐treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re‐entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK‐inhibitor therapeutics, diabetes, and longevity. Synopsis The tumor suppressor pRB is frequently inactivated by mutation or hyper‐phosphorylation in diverse types of cancer, yet the effect of specifically blocking its phosphorylation in vivo is ill‐defined. Here, novel knock‐in mice show that expression of hypo‐phosphorylated pRb does not impede normal development, but promotes hallmarks of aging and diabetes by inhibiting cell‐cycle re‐entry and regeneration. Rb∆K4 and Rb∆K7 knock‐in mice, in which four or all, respectively, phosphorylation sites at the C‐terminal are genetically abolished, exhibit normal embryogenesis and neonatal growth. Inhibition of pRb phosphorylation at the C‐terminal selectively suppresses phosphorylation of additional upstream sites. Rb∆K7 mice develop hallmarks of aging and severe diabetes, caused by inability of pancreatic β‐cells to reduplicate in response to mitogenic signals, leading to a DDR and senescence. Vitamin C diet reduces the DDR and senescence of pancreatic β‐cells and attenuates diabetes in Rb∆K7 mice. Both activation and inactivation of pRb have deleterious long‐term effects on cancer and regeneration/aging. Graphical Abstract Abolishing cell‐cycle‐related hyperphosphorylation of the retinoblastoma tumor suppressor in vivo does not impede normal mammalian development, but blocks cell‐cycle reentry and triggers senescence of pancreatic beta‐cells.</description><subject>Abnormalities</subject><subject>Aging</subject><subject>Aging - physiology</subject><subject>Animals</subject><subject>Ascorbic acid</subject><subject>Ascorbic Acid - pharmacology</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cellular Senescence - drug effects</subject><subject>Cyclin-Dependent Kinase 2 - antagonists &amp; inhibitors</subject><subject>Cytology</subject><subject>Deactivation</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Experimental - genetics</subject><subject>Diabetes Mellitus, Experimental - pathology</subject><subject>Diabetes Mellitus, Experimental - prevention &amp; control</subject><subject>DNA damage</subject><subject>E2F1 Transcription Factor - metabolism</subject><subject>EMBO06</subject><subject>EMBO21</subject><subject>EMBO31</subject><subject>Embryogenesis</subject><subject>Embryonic Development - genetics</subject><subject>Embryonic growth stage</subject><subject>Epigenetics</subject><subject>Female</subject><subject>Fibroblasts - drug effects</subject><subject>Gene Knock-In Techniques</subject><subject>Homeostasis</subject><subject>Inactivation</subject><subject>Infertility</subject><subject>Insulin</subject><subject>Insulin-Secreting Cells - pathology</subject><subject>Kinases</subject><subject>knock‐in mice</subject><subject>Kyphosis</subject><subject>Mice</subject><subject>Mitogens</subject><subject>Mutation</subject><subject>Neonates</subject><subject>Pancreas</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>pRB</subject><subject>Pregnancy</subject><subject>Regeneration</subject><subject>Retina</subject><subject>Retinoblastoma</subject><subject>Retinoblastoma Protein - genetics</subject><subject>Retinoblastoma Protein - metabolism</subject><subject>Senescence</subject><subject>Telomere - genetics</subject><subject>Telomeres</subject><subject>Tumor suppressor genes</subject><subject>Tumors</subject><subject>vitamin C</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAYhC0EotvCnROyxIVLym_Hjh0JIcGqUFAREoKz5SR_dr2bxMHOLuytj8Az8iR42dJSJMTB8sHfjGY8hDxicMokl_wZ9tXqlAMHBoXm8g6ZMVFAxkHJu2QGvGCZYLo8IscxrgBAasXuk6NcAs9ZIWakPd-Nflz6mE7YdXbCho4fK7oefL3-cfndDbR3NVL8tnSVm-jSdl1vwzpS31K7cMOC2qGhWzfZPrHzJBkDbnGYbNUhbZytcML4gNxrbRfx4dV9Qj6_Pvs0P88uPrx5O395kdWSlTITOc9VxZVCoURpoShzWzCLJYO2ZcJK0K0GrLWUQpQKtGpUqocCVMkEqvyEvDj4jpuqx6ZOOYLtzBhcCr0z3jpz-2VwS7PwW6P13nBv8PTKIPgvG4yT6V2ssevsgH4TTfrRUgpWCp3QJ3-hK78JQ6qXKJ78QOsiUXCg6uBjDNheh2Fgfo1o9iOamxGT5PGfJa4Fv1dLwPMD8NV1uPuvoTl7_-rdLX92kMekHBYYboL_M9NPWtm7fA</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Jiang, Zhe</creator><creator>Li, Huiqin</creator><creator>Schroer, Stephanie A</creator><creator>Voisin, Veronique</creator><creator>Ju, YoungJun</creator><creator>Pacal, Marek</creator><creator>Erdmann, Natalie</creator><creator>Shi, Wei</creator><creator>Chung, Philip E D</creator><creator>Deng, Tao</creator><creator>Chen, Nien‐Jung</creator><creator>Ciavarra, Giovanni</creator><creator>Datti, Alessandro</creator><creator>Mak, Tak W</creator><creator>Harrington, Lea</creator><creator>Dick, Frederick A</creator><creator>Bader, Gary D</creator><creator>Bremner, Rod</creator><creator>Woo, Minna</creator><creator>Zacksenhaus, Eldad</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4178-1179</orcidid><orcidid>https://orcid.org/0000-0001-9184-7212</orcidid><orcidid>https://orcid.org/0000-0003-2895-1476</orcidid><orcidid>https://orcid.org/0000-0002-9441-4049</orcidid><orcidid>https://orcid.org/0000-0001-6104-6094</orcidid><orcidid>https://orcid.org/0000-0002-3443-3088</orcidid><orcidid>https://orcid.org/0000-0001-6824-7382</orcidid><orcidid>https://orcid.org/0000-0002-4977-2744</orcidid><orcidid>https://orcid.org/0000-0003-0185-8861</orcidid></search><sort><creationdate>20220215</creationdate><title>Hypophosphorylated pRb knock‐in mice exhibit hallmarks of aging and vitamin C‐preventable diabetes</title><author>Jiang, Zhe ; Li, Huiqin ; Schroer, Stephanie A ; Voisin, Veronique ; Ju, YoungJun ; Pacal, Marek ; Erdmann, Natalie ; Shi, Wei ; Chung, Philip E D ; Deng, Tao ; Chen, Nien‐Jung ; Ciavarra, Giovanni ; Datti, Alessandro ; Mak, Tak W ; Harrington, Lea ; Dick, Frederick A ; Bader, Gary D ; Bremner, Rod ; Woo, Minna ; Zacksenhaus, Eldad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5195-43237b277e4749a0693a61ae910ff14a508f80ec8554497087d7189e407914e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abnormalities</topic><topic>Aging</topic><topic>Aging - physiology</topic><topic>Animals</topic><topic>Ascorbic acid</topic><topic>Ascorbic Acid - pharmacology</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cellular Senescence - drug effects</topic><topic>Cyclin-Dependent Kinase 2 - antagonists &amp; inhibitors</topic><topic>Cytology</topic><topic>Deactivation</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Experimental - genetics</topic><topic>Diabetes Mellitus, Experimental - pathology</topic><topic>Diabetes Mellitus, Experimental - prevention &amp; control</topic><topic>DNA damage</topic><topic>E2F1 Transcription Factor - metabolism</topic><topic>EMBO06</topic><topic>EMBO21</topic><topic>EMBO31</topic><topic>Embryogenesis</topic><topic>Embryonic Development - genetics</topic><topic>Embryonic growth stage</topic><topic>Epigenetics</topic><topic>Female</topic><topic>Fibroblasts - drug effects</topic><topic>Gene Knock-In Techniques</topic><topic>Homeostasis</topic><topic>Inactivation</topic><topic>Infertility</topic><topic>Insulin</topic><topic>Insulin-Secreting Cells - pathology</topic><topic>Kinases</topic><topic>knock‐in mice</topic><topic>Kyphosis</topic><topic>Mice</topic><topic>Mitogens</topic><topic>Mutation</topic><topic>Neonates</topic><topic>Pancreas</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>pRB</topic><topic>Pregnancy</topic><topic>Regeneration</topic><topic>Retina</topic><topic>Retinoblastoma</topic><topic>Retinoblastoma Protein - genetics</topic><topic>Retinoblastoma Protein - metabolism</topic><topic>Senescence</topic><topic>Telomere - genetics</topic><topic>Telomeres</topic><topic>Tumor suppressor genes</topic><topic>Tumors</topic><topic>vitamin C</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Zhe</creatorcontrib><creatorcontrib>Li, Huiqin</creatorcontrib><creatorcontrib>Schroer, Stephanie A</creatorcontrib><creatorcontrib>Voisin, Veronique</creatorcontrib><creatorcontrib>Ju, YoungJun</creatorcontrib><creatorcontrib>Pacal, Marek</creatorcontrib><creatorcontrib>Erdmann, Natalie</creatorcontrib><creatorcontrib>Shi, Wei</creatorcontrib><creatorcontrib>Chung, Philip E D</creatorcontrib><creatorcontrib>Deng, Tao</creatorcontrib><creatorcontrib>Chen, Nien‐Jung</creatorcontrib><creatorcontrib>Ciavarra, Giovanni</creatorcontrib><creatorcontrib>Datti, Alessandro</creatorcontrib><creatorcontrib>Mak, Tak W</creatorcontrib><creatorcontrib>Harrington, Lea</creatorcontrib><creatorcontrib>Dick, Frederick A</creatorcontrib><creatorcontrib>Bader, Gary D</creatorcontrib><creatorcontrib>Bremner, Rod</creatorcontrib><creatorcontrib>Woo, Minna</creatorcontrib><creatorcontrib>Zacksenhaus, Eldad</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Zhe</au><au>Li, Huiqin</au><au>Schroer, Stephanie A</au><au>Voisin, Veronique</au><au>Ju, YoungJun</au><au>Pacal, Marek</au><au>Erdmann, Natalie</au><au>Shi, Wei</au><au>Chung, Philip E D</au><au>Deng, Tao</au><au>Chen, Nien‐Jung</au><au>Ciavarra, Giovanni</au><au>Datti, Alessandro</au><au>Mak, Tak W</au><au>Harrington, Lea</au><au>Dick, Frederick A</au><au>Bader, Gary D</au><au>Bremner, Rod</au><au>Woo, Minna</au><au>Zacksenhaus, Eldad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypophosphorylated pRb knock‐in mice exhibit hallmarks of aging and vitamin C‐preventable diabetes</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2022-02-15</date><risdate>2022</risdate><volume>41</volume><issue>4</issue><spage>e106825</spage><epage>n/a</epage><pages>e106825-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>Despite extensive analysis of pRB phosphorylation in vitro , how this modification influences development and homeostasis in vivo is unclear. Here, we show that homozygous Rb ∆K4 and Rb ∆K7 knock‐in mice, in which either four or all seven phosphorylation sites in the C‐terminal region of pRb, respectively, have been abolished by Ser/Thr‐to‐Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb ∆K4 mice exhibit telomere attrition but no other abnormalities, Rb ∆K7 mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb ∆K7 mice is insulin‐sensitive and associated with failure of quiescent pancreatic β‐cells to re‐enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence‐associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre‐treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re‐entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK‐inhibitor therapeutics, diabetes, and longevity. Synopsis The tumor suppressor pRB is frequently inactivated by mutation or hyper‐phosphorylation in diverse types of cancer, yet the effect of specifically blocking its phosphorylation in vivo is ill‐defined. Here, novel knock‐in mice show that expression of hypo‐phosphorylated pRb does not impede normal development, but promotes hallmarks of aging and diabetes by inhibiting cell‐cycle re‐entry and regeneration. Rb∆K4 and Rb∆K7 knock‐in mice, in which four or all, respectively, phosphorylation sites at the C‐terminal are genetically abolished, exhibit normal embryogenesis and neonatal growth. Inhibition of pRb phosphorylation at the C‐terminal selectively suppresses phosphorylation of additional upstream sites. Rb∆K7 mice develop hallmarks of aging and severe diabetes, caused by inability of pancreatic β‐cells to reduplicate in response to mitogenic signals, leading to a DDR and senescence. Vitamin C diet reduces the DDR and senescence of pancreatic β‐cells and attenuates diabetes in Rb∆K7 mice. Both activation and inactivation of pRb have deleterious long‐term effects on cancer and regeneration/aging. Graphical Abstract Abolishing cell‐cycle‐related hyperphosphorylation of the retinoblastoma tumor suppressor in vivo does not impede normal mammalian development, but blocks cell‐cycle reentry and triggers senescence of pancreatic beta‐cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35023164</pmid><doi>10.15252/embj.2020106825</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-4178-1179</orcidid><orcidid>https://orcid.org/0000-0001-9184-7212</orcidid><orcidid>https://orcid.org/0000-0003-2895-1476</orcidid><orcidid>https://orcid.org/0000-0002-9441-4049</orcidid><orcidid>https://orcid.org/0000-0001-6104-6094</orcidid><orcidid>https://orcid.org/0000-0002-3443-3088</orcidid><orcidid>https://orcid.org/0000-0001-6824-7382</orcidid><orcidid>https://orcid.org/0000-0002-4977-2744</orcidid><orcidid>https://orcid.org/0000-0003-0185-8861</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2022-02, Vol.41 (4), p.e106825-n/a
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8844977
source MEDLINE; Springer Nature OA Free Journals; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry
subjects Abnormalities
Aging
Aging - physiology
Animals
Ascorbic acid
Ascorbic Acid - pharmacology
Cancer
Cell cycle
Cellular Senescence - drug effects
Cyclin-Dependent Kinase 2 - antagonists & inhibitors
Cytology
Deactivation
Diabetes
Diabetes mellitus
Diabetes Mellitus, Experimental - genetics
Diabetes Mellitus, Experimental - pathology
Diabetes Mellitus, Experimental - prevention & control
DNA damage
E2F1 Transcription Factor - metabolism
EMBO06
EMBO21
EMBO31
Embryogenesis
Embryonic Development - genetics
Embryonic growth stage
Epigenetics
Female
Fibroblasts - drug effects
Gene Knock-In Techniques
Homeostasis
Inactivation
Infertility
Insulin
Insulin-Secreting Cells - pathology
Kinases
knock‐in mice
Kyphosis
Mice
Mitogens
Mutation
Neonates
Pancreas
Phenotypes
Phosphorylation
pRB
Pregnancy
Regeneration
Retina
Retinoblastoma
Retinoblastoma Protein - genetics
Retinoblastoma Protein - metabolism
Senescence
Telomere - genetics
Telomeres
Tumor suppressor genes
Tumors
vitamin C
title Hypophosphorylated pRb knock‐in mice exhibit hallmarks of aging and vitamin C‐preventable diabetes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypophosphorylated%20pRb%20knock%E2%80%90in%20mice%20exhibit%20hallmarks%20of%20aging%20and%20vitamin%20C%E2%80%90preventable%20diabetes&rft.jtitle=The%20EMBO%20journal&rft.au=Jiang,%20Zhe&rft.date=2022-02-15&rft.volume=41&rft.issue=4&rft.spage=e106825&rft.epage=n/a&rft.pages=e106825-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2020106825&rft_dat=%3Cproquest_pubme%3E2628440886%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628440886&rft_id=info:pmid/35023164&rfr_iscdi=true