Hypophosphorylated pRb knock‐in mice exhibit hallmarks of aging and vitamin C‐preventable diabetes
Despite extensive analysis of pRB phosphorylation in vitro , how this modification influences development and homeostasis in vivo is unclear. Here, we show that homozygous Rb ∆K4 and Rb ∆K7 knock‐in mice, in which either four or all seven phosphorylation sites in the C‐terminal region of pRb, respec...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2022-02, Vol.41 (4), p.e106825-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | e106825 |
container_title | The EMBO journal |
container_volume | 41 |
creator | Jiang, Zhe Li, Huiqin Schroer, Stephanie A Voisin, Veronique Ju, YoungJun Pacal, Marek Erdmann, Natalie Shi, Wei Chung, Philip E D Deng, Tao Chen, Nien‐Jung Ciavarra, Giovanni Datti, Alessandro Mak, Tak W Harrington, Lea Dick, Frederick A Bader, Gary D Bremner, Rod Woo, Minna Zacksenhaus, Eldad |
description | Despite extensive analysis of pRB phosphorylation
in vitro
, how this modification influences development and homeostasis
in vivo
is unclear. Here, we show that homozygous Rb
∆K4
and Rb
∆K7
knock‐in mice, in which either four or all seven phosphorylation sites in the C‐terminal region of pRb, respectively, have been abolished by Ser/Thr‐to‐Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb
∆K4
mice exhibit telomere attrition but no other abnormalities, Rb
∆K7
mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb
∆K7
mice is insulin‐sensitive and associated with failure of quiescent pancreatic β‐cells to re‐enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence‐associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre‐treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re‐entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK‐inhibitor therapeutics, diabetes, and longevity.
Synopsis
The tumor suppressor pRB is frequently inactivated by mutation or hyper‐phosphorylation in diverse types of cancer, yet the effect of specifically blocking its phosphorylation
in vivo
is ill‐defined. Here, novel knock‐in mice show that expression of hypo‐phosphorylated pRb does not impede normal development, but promotes hallmarks of aging and diabetes by inhibiting cell‐cycle re‐entry and regeneration.
Rb∆K4 and Rb∆K7 knock‐in mice, in which four or all, respectively, phosphorylation sites at the C‐terminal are genetically abolished, exhibit normal embryogenesis and neonatal growth.
Inhibition of pRb phosphorylation at the C‐terminal selectively suppresses phosphorylation of additional upstream sites.
Rb∆K7 mice develop hallmarks of aging and severe diabetes, caused by inability of pancreatic β‐cells to reduplicate in response to mitogenic signals, leading to a DDR and senescence.
Vitamin C diet reduces the DDR and senescence of pancreatic β‐cells and attenuates diabetes in Rb∆K7 mice.
Both activation and inactivation of pRb have deleterious long‐term effects on cancer and regeneration/aging.
Graphical Abstract
Abolishing cell‐ |
doi_str_mv | 10.15252/embj.2020106825 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8844977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628440886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5195-43237b277e4749a0693a61ae910ff14a508f80ec8554497087d7189e407914e73</originalsourceid><addsrcrecordid>eNqFkcFu1DAYhC0EotvCnROyxIVLym_Hjh0JIcGqUFAREoKz5SR_dr2bxMHOLuytj8Az8iR42dJSJMTB8sHfjGY8hDxicMokl_wZ9tXqlAMHBoXm8g6ZMVFAxkHJu2QGvGCZYLo8IscxrgBAasXuk6NcAs9ZIWakPd-Nflz6mE7YdXbCho4fK7oefL3-cfndDbR3NVL8tnSVm-jSdl1vwzpS31K7cMOC2qGhWzfZPrHzJBkDbnGYbNUhbZytcML4gNxrbRfx4dV9Qj6_Pvs0P88uPrx5O395kdWSlTITOc9VxZVCoURpoShzWzCLJYO2ZcJK0K0GrLWUQpQKtGpUqocCVMkEqvyEvDj4jpuqx6ZOOYLtzBhcCr0z3jpz-2VwS7PwW6P13nBv8PTKIPgvG4yT6V2ssevsgH4TTfrRUgpWCp3QJ3-hK78JQ6qXKJ78QOsiUXCg6uBjDNheh2Fgfo1o9iOamxGT5PGfJa4Fv1dLwPMD8NV1uPuvoTl7_-rdLX92kMekHBYYboL_M9NPWtm7fA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628440886</pqid></control><display><type>article</type><title>Hypophosphorylated pRb knock‐in mice exhibit hallmarks of aging and vitamin C‐preventable diabetes</title><source>MEDLINE</source><source>Springer Nature OA Free Journals</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jiang, Zhe ; Li, Huiqin ; Schroer, Stephanie A ; Voisin, Veronique ; Ju, YoungJun ; Pacal, Marek ; Erdmann, Natalie ; Shi, Wei ; Chung, Philip E D ; Deng, Tao ; Chen, Nien‐Jung ; Ciavarra, Giovanni ; Datti, Alessandro ; Mak, Tak W ; Harrington, Lea ; Dick, Frederick A ; Bader, Gary D ; Bremner, Rod ; Woo, Minna ; Zacksenhaus, Eldad</creator><creatorcontrib>Jiang, Zhe ; Li, Huiqin ; Schroer, Stephanie A ; Voisin, Veronique ; Ju, YoungJun ; Pacal, Marek ; Erdmann, Natalie ; Shi, Wei ; Chung, Philip E D ; Deng, Tao ; Chen, Nien‐Jung ; Ciavarra, Giovanni ; Datti, Alessandro ; Mak, Tak W ; Harrington, Lea ; Dick, Frederick A ; Bader, Gary D ; Bremner, Rod ; Woo, Minna ; Zacksenhaus, Eldad</creatorcontrib><description>Despite extensive analysis of pRB phosphorylation
in vitro
, how this modification influences development and homeostasis
in vivo
is unclear. Here, we show that homozygous Rb
∆K4
and Rb
∆K7
knock‐in mice, in which either four or all seven phosphorylation sites in the C‐terminal region of pRb, respectively, have been abolished by Ser/Thr‐to‐Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb
∆K4
mice exhibit telomere attrition but no other abnormalities, Rb
∆K7
mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb
∆K7
mice is insulin‐sensitive and associated with failure of quiescent pancreatic β‐cells to re‐enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence‐associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre‐treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re‐entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK‐inhibitor therapeutics, diabetes, and longevity.
Synopsis
The tumor suppressor pRB is frequently inactivated by mutation or hyper‐phosphorylation in diverse types of cancer, yet the effect of specifically blocking its phosphorylation
in vivo
is ill‐defined. Here, novel knock‐in mice show that expression of hypo‐phosphorylated pRb does not impede normal development, but promotes hallmarks of aging and diabetes by inhibiting cell‐cycle re‐entry and regeneration.
Rb∆K4 and Rb∆K7 knock‐in mice, in which four or all, respectively, phosphorylation sites at the C‐terminal are genetically abolished, exhibit normal embryogenesis and neonatal growth.
Inhibition of pRb phosphorylation at the C‐terminal selectively suppresses phosphorylation of additional upstream sites.
Rb∆K7 mice develop hallmarks of aging and severe diabetes, caused by inability of pancreatic β‐cells to reduplicate in response to mitogenic signals, leading to a DDR and senescence.
Vitamin C diet reduces the DDR and senescence of pancreatic β‐cells and attenuates diabetes in Rb∆K7 mice.
Both activation and inactivation of pRb have deleterious long‐term effects on cancer and regeneration/aging.
Graphical Abstract
Abolishing cell‐cycle‐related hyperphosphorylation of the retinoblastoma tumor suppressor
in vivo
does not impede normal mammalian development, but blocks cell‐cycle reentry and triggers senescence of pancreatic beta‐cells.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2020106825</identifier><identifier>PMID: 35023164</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Abnormalities ; Aging ; Aging - physiology ; Animals ; Ascorbic acid ; Ascorbic Acid - pharmacology ; Cancer ; Cell cycle ; Cellular Senescence - drug effects ; Cyclin-Dependent Kinase 2 - antagonists & inhibitors ; Cytology ; Deactivation ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus, Experimental - genetics ; Diabetes Mellitus, Experimental - pathology ; Diabetes Mellitus, Experimental - prevention & control ; DNA damage ; E2F1 Transcription Factor - metabolism ; EMBO06 ; EMBO21 ; EMBO31 ; Embryogenesis ; Embryonic Development - genetics ; Embryonic growth stage ; Epigenetics ; Female ; Fibroblasts - drug effects ; Gene Knock-In Techniques ; Homeostasis ; Inactivation ; Infertility ; Insulin ; Insulin-Secreting Cells - pathology ; Kinases ; knock‐in mice ; Kyphosis ; Mice ; Mitogens ; Mutation ; Neonates ; Pancreas ; Phenotypes ; Phosphorylation ; pRB ; Pregnancy ; Regeneration ; Retina ; Retinoblastoma ; Retinoblastoma Protein - genetics ; Retinoblastoma Protein - metabolism ; Senescence ; Telomere - genetics ; Telomeres ; Tumor suppressor genes ; Tumors ; vitamin C</subject><ispartof>The EMBO journal, 2022-02, Vol.41 (4), p.e106825-n/a</ispartof><rights>The Author(s) 2022</rights><rights>2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license</rights><rights>2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5195-43237b277e4749a0693a61ae910ff14a508f80ec8554497087d7189e407914e73</citedby><cites>FETCH-LOGICAL-c5195-43237b277e4749a0693a61ae910ff14a508f80ec8554497087d7189e407914e73</cites><orcidid>0000-0002-4178-1179 ; 0000-0001-9184-7212 ; 0000-0003-2895-1476 ; 0000-0002-9441-4049 ; 0000-0001-6104-6094 ; 0000-0002-3443-3088 ; 0000-0001-6824-7382 ; 0000-0002-4977-2744 ; 0000-0003-0185-8861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844977/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844977/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,41120,42189,45574,45575,46409,46833,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35023164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Zhe</creatorcontrib><creatorcontrib>Li, Huiqin</creatorcontrib><creatorcontrib>Schroer, Stephanie A</creatorcontrib><creatorcontrib>Voisin, Veronique</creatorcontrib><creatorcontrib>Ju, YoungJun</creatorcontrib><creatorcontrib>Pacal, Marek</creatorcontrib><creatorcontrib>Erdmann, Natalie</creatorcontrib><creatorcontrib>Shi, Wei</creatorcontrib><creatorcontrib>Chung, Philip E D</creatorcontrib><creatorcontrib>Deng, Tao</creatorcontrib><creatorcontrib>Chen, Nien‐Jung</creatorcontrib><creatorcontrib>Ciavarra, Giovanni</creatorcontrib><creatorcontrib>Datti, Alessandro</creatorcontrib><creatorcontrib>Mak, Tak W</creatorcontrib><creatorcontrib>Harrington, Lea</creatorcontrib><creatorcontrib>Dick, Frederick A</creatorcontrib><creatorcontrib>Bader, Gary D</creatorcontrib><creatorcontrib>Bremner, Rod</creatorcontrib><creatorcontrib>Woo, Minna</creatorcontrib><creatorcontrib>Zacksenhaus, Eldad</creatorcontrib><title>Hypophosphorylated pRb knock‐in mice exhibit hallmarks of aging and vitamin C‐preventable diabetes</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Despite extensive analysis of pRB phosphorylation
in vitro
, how this modification influences development and homeostasis
in vivo
is unclear. Here, we show that homozygous Rb
∆K4
and Rb
∆K7
knock‐in mice, in which either four or all seven phosphorylation sites in the C‐terminal region of pRb, respectively, have been abolished by Ser/Thr‐to‐Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb
∆K4
mice exhibit telomere attrition but no other abnormalities, Rb
∆K7
mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb
∆K7
mice is insulin‐sensitive and associated with failure of quiescent pancreatic β‐cells to re‐enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence‐associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre‐treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re‐entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK‐inhibitor therapeutics, diabetes, and longevity.
Synopsis
The tumor suppressor pRB is frequently inactivated by mutation or hyper‐phosphorylation in diverse types of cancer, yet the effect of specifically blocking its phosphorylation
in vivo
is ill‐defined. Here, novel knock‐in mice show that expression of hypo‐phosphorylated pRb does not impede normal development, but promotes hallmarks of aging and diabetes by inhibiting cell‐cycle re‐entry and regeneration.
Rb∆K4 and Rb∆K7 knock‐in mice, in which four or all, respectively, phosphorylation sites at the C‐terminal are genetically abolished, exhibit normal embryogenesis and neonatal growth.
Inhibition of pRb phosphorylation at the C‐terminal selectively suppresses phosphorylation of additional upstream sites.
Rb∆K7 mice develop hallmarks of aging and severe diabetes, caused by inability of pancreatic β‐cells to reduplicate in response to mitogenic signals, leading to a DDR and senescence.
Vitamin C diet reduces the DDR and senescence of pancreatic β‐cells and attenuates diabetes in Rb∆K7 mice.
Both activation and inactivation of pRb have deleterious long‐term effects on cancer and regeneration/aging.
Graphical Abstract
Abolishing cell‐cycle‐related hyperphosphorylation of the retinoblastoma tumor suppressor
in vivo
does not impede normal mammalian development, but blocks cell‐cycle reentry and triggers senescence of pancreatic beta‐cells.</description><subject>Abnormalities</subject><subject>Aging</subject><subject>Aging - physiology</subject><subject>Animals</subject><subject>Ascorbic acid</subject><subject>Ascorbic Acid - pharmacology</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cellular Senescence - drug effects</subject><subject>Cyclin-Dependent Kinase 2 - antagonists & inhibitors</subject><subject>Cytology</subject><subject>Deactivation</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Experimental - genetics</subject><subject>Diabetes Mellitus, Experimental - pathology</subject><subject>Diabetes Mellitus, Experimental - prevention & control</subject><subject>DNA damage</subject><subject>E2F1 Transcription Factor - metabolism</subject><subject>EMBO06</subject><subject>EMBO21</subject><subject>EMBO31</subject><subject>Embryogenesis</subject><subject>Embryonic Development - genetics</subject><subject>Embryonic growth stage</subject><subject>Epigenetics</subject><subject>Female</subject><subject>Fibroblasts - drug effects</subject><subject>Gene Knock-In Techniques</subject><subject>Homeostasis</subject><subject>Inactivation</subject><subject>Infertility</subject><subject>Insulin</subject><subject>Insulin-Secreting Cells - pathology</subject><subject>Kinases</subject><subject>knock‐in mice</subject><subject>Kyphosis</subject><subject>Mice</subject><subject>Mitogens</subject><subject>Mutation</subject><subject>Neonates</subject><subject>Pancreas</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>pRB</subject><subject>Pregnancy</subject><subject>Regeneration</subject><subject>Retina</subject><subject>Retinoblastoma</subject><subject>Retinoblastoma Protein - genetics</subject><subject>Retinoblastoma Protein - metabolism</subject><subject>Senescence</subject><subject>Telomere - genetics</subject><subject>Telomeres</subject><subject>Tumor suppressor genes</subject><subject>Tumors</subject><subject>vitamin C</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAYhC0EotvCnROyxIVLym_Hjh0JIcGqUFAREoKz5SR_dr2bxMHOLuytj8Az8iR42dJSJMTB8sHfjGY8hDxicMokl_wZ9tXqlAMHBoXm8g6ZMVFAxkHJu2QGvGCZYLo8IscxrgBAasXuk6NcAs9ZIWakPd-Nflz6mE7YdXbCho4fK7oefL3-cfndDbR3NVL8tnSVm-jSdl1vwzpS31K7cMOC2qGhWzfZPrHzJBkDbnGYbNUhbZytcML4gNxrbRfx4dV9Qj6_Pvs0P88uPrx5O395kdWSlTITOc9VxZVCoURpoShzWzCLJYO2ZcJK0K0GrLWUQpQKtGpUqocCVMkEqvyEvDj4jpuqx6ZOOYLtzBhcCr0z3jpz-2VwS7PwW6P13nBv8PTKIPgvG4yT6V2ssevsgH4TTfrRUgpWCp3QJ3-hK78JQ6qXKJ78QOsiUXCg6uBjDNheh2Fgfo1o9iOamxGT5PGfJa4Fv1dLwPMD8NV1uPuvoTl7_-rdLX92kMekHBYYboL_M9NPWtm7fA</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Jiang, Zhe</creator><creator>Li, Huiqin</creator><creator>Schroer, Stephanie A</creator><creator>Voisin, Veronique</creator><creator>Ju, YoungJun</creator><creator>Pacal, Marek</creator><creator>Erdmann, Natalie</creator><creator>Shi, Wei</creator><creator>Chung, Philip E D</creator><creator>Deng, Tao</creator><creator>Chen, Nien‐Jung</creator><creator>Ciavarra, Giovanni</creator><creator>Datti, Alessandro</creator><creator>Mak, Tak W</creator><creator>Harrington, Lea</creator><creator>Dick, Frederick A</creator><creator>Bader, Gary D</creator><creator>Bremner, Rod</creator><creator>Woo, Minna</creator><creator>Zacksenhaus, Eldad</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4178-1179</orcidid><orcidid>https://orcid.org/0000-0001-9184-7212</orcidid><orcidid>https://orcid.org/0000-0003-2895-1476</orcidid><orcidid>https://orcid.org/0000-0002-9441-4049</orcidid><orcidid>https://orcid.org/0000-0001-6104-6094</orcidid><orcidid>https://orcid.org/0000-0002-3443-3088</orcidid><orcidid>https://orcid.org/0000-0001-6824-7382</orcidid><orcidid>https://orcid.org/0000-0002-4977-2744</orcidid><orcidid>https://orcid.org/0000-0003-0185-8861</orcidid></search><sort><creationdate>20220215</creationdate><title>Hypophosphorylated pRb knock‐in mice exhibit hallmarks of aging and vitamin C‐preventable diabetes</title><author>Jiang, Zhe ; Li, Huiqin ; Schroer, Stephanie A ; Voisin, Veronique ; Ju, YoungJun ; Pacal, Marek ; Erdmann, Natalie ; Shi, Wei ; Chung, Philip E D ; Deng, Tao ; Chen, Nien‐Jung ; Ciavarra, Giovanni ; Datti, Alessandro ; Mak, Tak W ; Harrington, Lea ; Dick, Frederick A ; Bader, Gary D ; Bremner, Rod ; Woo, Minna ; Zacksenhaus, Eldad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5195-43237b277e4749a0693a61ae910ff14a508f80ec8554497087d7189e407914e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abnormalities</topic><topic>Aging</topic><topic>Aging - physiology</topic><topic>Animals</topic><topic>Ascorbic acid</topic><topic>Ascorbic Acid - pharmacology</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cellular Senescence - drug effects</topic><topic>Cyclin-Dependent Kinase 2 - antagonists & inhibitors</topic><topic>Cytology</topic><topic>Deactivation</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Experimental - genetics</topic><topic>Diabetes Mellitus, Experimental - pathology</topic><topic>Diabetes Mellitus, Experimental - prevention & control</topic><topic>DNA damage</topic><topic>E2F1 Transcription Factor - metabolism</topic><topic>EMBO06</topic><topic>EMBO21</topic><topic>EMBO31</topic><topic>Embryogenesis</topic><topic>Embryonic Development - genetics</topic><topic>Embryonic growth stage</topic><topic>Epigenetics</topic><topic>Female</topic><topic>Fibroblasts - drug effects</topic><topic>Gene Knock-In Techniques</topic><topic>Homeostasis</topic><topic>Inactivation</topic><topic>Infertility</topic><topic>Insulin</topic><topic>Insulin-Secreting Cells - pathology</topic><topic>Kinases</topic><topic>knock‐in mice</topic><topic>Kyphosis</topic><topic>Mice</topic><topic>Mitogens</topic><topic>Mutation</topic><topic>Neonates</topic><topic>Pancreas</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>pRB</topic><topic>Pregnancy</topic><topic>Regeneration</topic><topic>Retina</topic><topic>Retinoblastoma</topic><topic>Retinoblastoma Protein - genetics</topic><topic>Retinoblastoma Protein - metabolism</topic><topic>Senescence</topic><topic>Telomere - genetics</topic><topic>Telomeres</topic><topic>Tumor suppressor genes</topic><topic>Tumors</topic><topic>vitamin C</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Zhe</creatorcontrib><creatorcontrib>Li, Huiqin</creatorcontrib><creatorcontrib>Schroer, Stephanie A</creatorcontrib><creatorcontrib>Voisin, Veronique</creatorcontrib><creatorcontrib>Ju, YoungJun</creatorcontrib><creatorcontrib>Pacal, Marek</creatorcontrib><creatorcontrib>Erdmann, Natalie</creatorcontrib><creatorcontrib>Shi, Wei</creatorcontrib><creatorcontrib>Chung, Philip E D</creatorcontrib><creatorcontrib>Deng, Tao</creatorcontrib><creatorcontrib>Chen, Nien‐Jung</creatorcontrib><creatorcontrib>Ciavarra, Giovanni</creatorcontrib><creatorcontrib>Datti, Alessandro</creatorcontrib><creatorcontrib>Mak, Tak W</creatorcontrib><creatorcontrib>Harrington, Lea</creatorcontrib><creatorcontrib>Dick, Frederick A</creatorcontrib><creatorcontrib>Bader, Gary D</creatorcontrib><creatorcontrib>Bremner, Rod</creatorcontrib><creatorcontrib>Woo, Minna</creatorcontrib><creatorcontrib>Zacksenhaus, Eldad</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Zhe</au><au>Li, Huiqin</au><au>Schroer, Stephanie A</au><au>Voisin, Veronique</au><au>Ju, YoungJun</au><au>Pacal, Marek</au><au>Erdmann, Natalie</au><au>Shi, Wei</au><au>Chung, Philip E D</au><au>Deng, Tao</au><au>Chen, Nien‐Jung</au><au>Ciavarra, Giovanni</au><au>Datti, Alessandro</au><au>Mak, Tak W</au><au>Harrington, Lea</au><au>Dick, Frederick A</au><au>Bader, Gary D</au><au>Bremner, Rod</au><au>Woo, Minna</au><au>Zacksenhaus, Eldad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypophosphorylated pRb knock‐in mice exhibit hallmarks of aging and vitamin C‐preventable diabetes</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2022-02-15</date><risdate>2022</risdate><volume>41</volume><issue>4</issue><spage>e106825</spage><epage>n/a</epage><pages>e106825-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>Despite extensive analysis of pRB phosphorylation
in vitro
, how this modification influences development and homeostasis
in vivo
is unclear. Here, we show that homozygous Rb
∆K4
and Rb
∆K7
knock‐in mice, in which either four or all seven phosphorylation sites in the C‐terminal region of pRb, respectively, have been abolished by Ser/Thr‐to‐Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb
∆K4
mice exhibit telomere attrition but no other abnormalities, Rb
∆K7
mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb
∆K7
mice is insulin‐sensitive and associated with failure of quiescent pancreatic β‐cells to re‐enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence‐associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre‐treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re‐entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK‐inhibitor therapeutics, diabetes, and longevity.
Synopsis
The tumor suppressor pRB is frequently inactivated by mutation or hyper‐phosphorylation in diverse types of cancer, yet the effect of specifically blocking its phosphorylation
in vivo
is ill‐defined. Here, novel knock‐in mice show that expression of hypo‐phosphorylated pRb does not impede normal development, but promotes hallmarks of aging and diabetes by inhibiting cell‐cycle re‐entry and regeneration.
Rb∆K4 and Rb∆K7 knock‐in mice, in which four or all, respectively, phosphorylation sites at the C‐terminal are genetically abolished, exhibit normal embryogenesis and neonatal growth.
Inhibition of pRb phosphorylation at the C‐terminal selectively suppresses phosphorylation of additional upstream sites.
Rb∆K7 mice develop hallmarks of aging and severe diabetes, caused by inability of pancreatic β‐cells to reduplicate in response to mitogenic signals, leading to a DDR and senescence.
Vitamin C diet reduces the DDR and senescence of pancreatic β‐cells and attenuates diabetes in Rb∆K7 mice.
Both activation and inactivation of pRb have deleterious long‐term effects on cancer and regeneration/aging.
Graphical Abstract
Abolishing cell‐cycle‐related hyperphosphorylation of the retinoblastoma tumor suppressor
in vivo
does not impede normal mammalian development, but blocks cell‐cycle reentry and triggers senescence of pancreatic beta‐cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35023164</pmid><doi>10.15252/embj.2020106825</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-4178-1179</orcidid><orcidid>https://orcid.org/0000-0001-9184-7212</orcidid><orcidid>https://orcid.org/0000-0003-2895-1476</orcidid><orcidid>https://orcid.org/0000-0002-9441-4049</orcidid><orcidid>https://orcid.org/0000-0001-6104-6094</orcidid><orcidid>https://orcid.org/0000-0002-3443-3088</orcidid><orcidid>https://orcid.org/0000-0001-6824-7382</orcidid><orcidid>https://orcid.org/0000-0002-4977-2744</orcidid><orcidid>https://orcid.org/0000-0003-0185-8861</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2022-02, Vol.41 (4), p.e106825-n/a |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8844977 |
source | MEDLINE; Springer Nature OA Free Journals; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Abnormalities Aging Aging - physiology Animals Ascorbic acid Ascorbic Acid - pharmacology Cancer Cell cycle Cellular Senescence - drug effects Cyclin-Dependent Kinase 2 - antagonists & inhibitors Cytology Deactivation Diabetes Diabetes mellitus Diabetes Mellitus, Experimental - genetics Diabetes Mellitus, Experimental - pathology Diabetes Mellitus, Experimental - prevention & control DNA damage E2F1 Transcription Factor - metabolism EMBO06 EMBO21 EMBO31 Embryogenesis Embryonic Development - genetics Embryonic growth stage Epigenetics Female Fibroblasts - drug effects Gene Knock-In Techniques Homeostasis Inactivation Infertility Insulin Insulin-Secreting Cells - pathology Kinases knock‐in mice Kyphosis Mice Mitogens Mutation Neonates Pancreas Phenotypes Phosphorylation pRB Pregnancy Regeneration Retina Retinoblastoma Retinoblastoma Protein - genetics Retinoblastoma Protein - metabolism Senescence Telomere - genetics Telomeres Tumor suppressor genes Tumors vitamin C |
title | Hypophosphorylated pRb knock‐in mice exhibit hallmarks of aging and vitamin C‐preventable diabetes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypophosphorylated%20pRb%20knock%E2%80%90in%20mice%20exhibit%20hallmarks%20of%20aging%20and%20vitamin%20C%E2%80%90preventable%20diabetes&rft.jtitle=The%20EMBO%20journal&rft.au=Jiang,%20Zhe&rft.date=2022-02-15&rft.volume=41&rft.issue=4&rft.spage=e106825&rft.epage=n/a&rft.pages=e106825-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2020106825&rft_dat=%3Cproquest_pubme%3E2628440886%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628440886&rft_id=info:pmid/35023164&rfr_iscdi=true |