Challenging the negative learning bias hypothesis of depression: reversal learning in a naturalistic psychiatric sample
Classic theories posit that depression is driven by a negative learning bias. Most studies supporting this proposition used small and selected samples, excluding patients with comorbidities. However, comorbidity between psychiatric disorders occurs in up to 70% of the population. Therefore, the gene...
Gespeichert in:
Veröffentlicht in: | Psychological medicine 2022-01, Vol.52 (2), p.303-313 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 313 |
---|---|
container_issue | 2 |
container_start_page | 303 |
container_title | Psychological medicine |
container_volume | 52 |
creator | Brolsma, Sophie C. A. Vrijsen, Janna N. Vassena, Eliana Rostami Kandroodi, Mojtaba Bergman, M. Annemiek van Eijndhoven, Philip F. Collard, Rose M. den Ouden, Hanneke E. M. Schene, Aart H. Cools, Roshan |
description | Classic theories posit that depression is driven by a negative learning bias. Most studies supporting this proposition used small and selected samples, excluding patients with comorbidities. However, comorbidity between psychiatric disorders occurs in up to 70% of the population. Therefore, the generalizability of the negative bias hypothesis to a naturalistic psychiatric sample as well as the specificity of the bias to depression, remain unclear. In the present study, we tested the negative learning bias hypothesis in a large naturalistic sample of psychiatric patients, including depression, anxiety, addiction, attention-deficit/hyperactivity disorder, and/or autism. First, we assessed whether the negative bias hypothesis of depression generalized to a heterogeneous (and hence more naturalistic) depression sample compared with controls. Second, we assessed whether negative bias extends to other psychiatric disorders. Third, we adopted a dimensional approach, by using symptom severity as a way to assess associations across the sample.
We administered a probabilistic reversal learning task to 217 patients and 81 healthy controls. According to the negative bias hypothesis, participants with depression should exhibit enhanced learning and flexibility based on punishment v. reward. We combined analyses of traditional measures with more sensitive computational modeling.
In contrast to previous findings, this sample of depressed patients with psychiatric comorbidities did not show a negative learning bias.
These results speak against the generalizability of the negative learning bias hypothesis to depressed patients with comorbidities. This study highlights the importance of investigating unselected samples of psychiatric patients, which represent the vast majority of the psychiatric population. |
doi_str_mv | 10.1017/S0033291720001956 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8842187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0033291720001956</cupid><sourcerecordid>2627323930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-dbdabc437746ca4531d9258a2336ba563d11d187f1a364fcd28788725f681f393</originalsourceid><addsrcrecordid>eNp1kUtv1DAUhS0EokPhB7BBltiwCfUrscMCCY14SZVYtKytG8dJXCV2sJNB8-9x1KEFKla2fM75fK4uQi8peUsJlRdXhHDOaioZIYTWZfUI7aio6kLVUj1Gu00uNv0MPUvpJns4FewpOuOs5IoLtkM_9wOMo_W98z1eBou97WFxB4tHC9Fvr42DhIfjHLKcXMKhw62do03JBf8OR3uwMcF4H3AeA_awrBFGlxZn8JyOZnCwxHxPMM2jfY6edDAm--J0nqPvnz5e778Ul98-f91_uCyMkHQp2qaFxggupagMiJLTtmalAsZ51UBZ8ZbSlirZUeCV6EzLlFRKsrKrFO14zc_R-1vuvDaTbY31S26l5-gmiEcdwOm_Fe8G3YeDVkqwDM6ANydADD9WmxY9uWTsOIK3YU2aCcrrupR8s77-x3oT1ujzeJpVTHKW-5DsorcuE0NK0XZ3ZSjR21r1g7XmzKs_p7hL_N5jNvATFKYmura393__H_sL6v-uwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627323930</pqid></control><display><type>article</type><title>Challenging the negative learning bias hypothesis of depression: reversal learning in a naturalistic psychiatric sample</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>Cambridge Journals - Connect here FIRST to enable access</source><creator>Brolsma, Sophie C. A. ; Vrijsen, Janna N. ; Vassena, Eliana ; Rostami Kandroodi, Mojtaba ; Bergman, M. Annemiek ; van Eijndhoven, Philip F. ; Collard, Rose M. ; den Ouden, Hanneke E. M. ; Schene, Aart H. ; Cools, Roshan</creator><creatorcontrib>Brolsma, Sophie C. A. ; Vrijsen, Janna N. ; Vassena, Eliana ; Rostami Kandroodi, Mojtaba ; Bergman, M. Annemiek ; van Eijndhoven, Philip F. ; Collard, Rose M. ; den Ouden, Hanneke E. M. ; Schene, Aart H. ; Cools, Roshan</creatorcontrib><description>Classic theories posit that depression is driven by a negative learning bias. Most studies supporting this proposition used small and selected samples, excluding patients with comorbidities. However, comorbidity between psychiatric disorders occurs in up to 70% of the population. Therefore, the generalizability of the negative bias hypothesis to a naturalistic psychiatric sample as well as the specificity of the bias to depression, remain unclear. In the present study, we tested the negative learning bias hypothesis in a large naturalistic sample of psychiatric patients, including depression, anxiety, addiction, attention-deficit/hyperactivity disorder, and/or autism. First, we assessed whether the negative bias hypothesis of depression generalized to a heterogeneous (and hence more naturalistic) depression sample compared with controls. Second, we assessed whether negative bias extends to other psychiatric disorders. Third, we adopted a dimensional approach, by using symptom severity as a way to assess associations across the sample.
We administered a probabilistic reversal learning task to 217 patients and 81 healthy controls. According to the negative bias hypothesis, participants with depression should exhibit enhanced learning and flexibility based on punishment v. reward. We combined analyses of traditional measures with more sensitive computational modeling.
In contrast to previous findings, this sample of depressed patients with psychiatric comorbidities did not show a negative learning bias.
These results speak against the generalizability of the negative learning bias hypothesis to depressed patients with comorbidities. This study highlights the importance of investigating unselected samples of psychiatric patients, which represent the vast majority of the psychiatric population.</description><identifier>ISSN: 0033-2917</identifier><identifier>EISSN: 1469-8978</identifier><identifier>DOI: 10.1017/S0033291720001956</identifier><identifier>PMID: 32538342</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Addictions ; Attention deficit hyperactivity disorder ; Autism ; Bias ; Comorbidity ; Computer applications ; Dimensional approach ; Flexibility ; Generalizability ; Hyperactivity ; Learning ; Mental depression ; Mental disorders ; Original ; Original Article ; Punishment ; Reinforcement ; Reversal ; Reversal learning</subject><ispartof>Psychological medicine, 2022-01, Vol.52 (2), p.303-313</ispartof><rights>Copyright © The Author(s), 2020. Published by Cambridge University Press</rights><rights>Copyright © The Author(s), 2020. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020 2020 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-dbdabc437746ca4531d9258a2336ba563d11d187f1a364fcd28788725f681f393</citedby><cites>FETCH-LOGICAL-c471t-dbdabc437746ca4531d9258a2336ba563d11d187f1a364fcd28788725f681f393</cites><orcidid>0000-0002-0336-2707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0033291720001956/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,230,314,776,780,881,12825,27901,27902,30976,55603</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32538342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brolsma, Sophie C. A.</creatorcontrib><creatorcontrib>Vrijsen, Janna N.</creatorcontrib><creatorcontrib>Vassena, Eliana</creatorcontrib><creatorcontrib>Rostami Kandroodi, Mojtaba</creatorcontrib><creatorcontrib>Bergman, M. Annemiek</creatorcontrib><creatorcontrib>van Eijndhoven, Philip F.</creatorcontrib><creatorcontrib>Collard, Rose M.</creatorcontrib><creatorcontrib>den Ouden, Hanneke E. M.</creatorcontrib><creatorcontrib>Schene, Aart H.</creatorcontrib><creatorcontrib>Cools, Roshan</creatorcontrib><title>Challenging the negative learning bias hypothesis of depression: reversal learning in a naturalistic psychiatric sample</title><title>Psychological medicine</title><addtitle>Psychol. Med</addtitle><description>Classic theories posit that depression is driven by a negative learning bias. Most studies supporting this proposition used small and selected samples, excluding patients with comorbidities. However, comorbidity between psychiatric disorders occurs in up to 70% of the population. Therefore, the generalizability of the negative bias hypothesis to a naturalistic psychiatric sample as well as the specificity of the bias to depression, remain unclear. In the present study, we tested the negative learning bias hypothesis in a large naturalistic sample of psychiatric patients, including depression, anxiety, addiction, attention-deficit/hyperactivity disorder, and/or autism. First, we assessed whether the negative bias hypothesis of depression generalized to a heterogeneous (and hence more naturalistic) depression sample compared with controls. Second, we assessed whether negative bias extends to other psychiatric disorders. Third, we adopted a dimensional approach, by using symptom severity as a way to assess associations across the sample.
We administered a probabilistic reversal learning task to 217 patients and 81 healthy controls. According to the negative bias hypothesis, participants with depression should exhibit enhanced learning and flexibility based on punishment v. reward. We combined analyses of traditional measures with more sensitive computational modeling.
In contrast to previous findings, this sample of depressed patients with psychiatric comorbidities did not show a negative learning bias.
These results speak against the generalizability of the negative learning bias hypothesis to depressed patients with comorbidities. This study highlights the importance of investigating unselected samples of psychiatric patients, which represent the vast majority of the psychiatric population.</description><subject>Addictions</subject><subject>Attention deficit hyperactivity disorder</subject><subject>Autism</subject><subject>Bias</subject><subject>Comorbidity</subject><subject>Computer applications</subject><subject>Dimensional approach</subject><subject>Flexibility</subject><subject>Generalizability</subject><subject>Hyperactivity</subject><subject>Learning</subject><subject>Mental depression</subject><subject>Mental disorders</subject><subject>Original</subject><subject>Original Article</subject><subject>Punishment</subject><subject>Reinforcement</subject><subject>Reversal</subject><subject>Reversal learning</subject><issn>0033-2917</issn><issn>1469-8978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>7QJ</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUtv1DAUhS0EokPhB7BBltiwCfUrscMCCY14SZVYtKytG8dJXCV2sJNB8-9x1KEFKla2fM75fK4uQi8peUsJlRdXhHDOaioZIYTWZfUI7aio6kLVUj1Gu00uNv0MPUvpJns4FewpOuOs5IoLtkM_9wOMo_W98z1eBou97WFxB4tHC9Fvr42DhIfjHLKcXMKhw62do03JBf8OR3uwMcF4H3AeA_awrBFGlxZn8JyOZnCwxHxPMM2jfY6edDAm--J0nqPvnz5e778Ul98-f91_uCyMkHQp2qaFxggupagMiJLTtmalAsZ51UBZ8ZbSlirZUeCV6EzLlFRKsrKrFO14zc_R-1vuvDaTbY31S26l5-gmiEcdwOm_Fe8G3YeDVkqwDM6ANydADD9WmxY9uWTsOIK3YU2aCcrrupR8s77-x3oT1ujzeJpVTHKW-5DsorcuE0NK0XZ3ZSjR21r1g7XmzKs_p7hL_N5jNvATFKYmura393__H_sL6v-uwg</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Brolsma, Sophie C. A.</creator><creator>Vrijsen, Janna N.</creator><creator>Vassena, Eliana</creator><creator>Rostami Kandroodi, Mojtaba</creator><creator>Bergman, M. Annemiek</creator><creator>van Eijndhoven, Philip F.</creator><creator>Collard, Rose M.</creator><creator>den Ouden, Hanneke E. M.</creator><creator>Schene, Aart H.</creator><creator>Cools, Roshan</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QJ</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HEHIP</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0336-2707</orcidid></search><sort><creationdate>20220101</creationdate><title>Challenging the negative learning bias hypothesis of depression: reversal learning in a naturalistic psychiatric sample</title><author>Brolsma, Sophie C. A. ; Vrijsen, Janna N. ; Vassena, Eliana ; Rostami Kandroodi, Mojtaba ; Bergman, M. Annemiek ; van Eijndhoven, Philip F. ; Collard, Rose M. ; den Ouden, Hanneke E. M. ; Schene, Aart H. ; Cools, Roshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-dbdabc437746ca4531d9258a2336ba563d11d187f1a364fcd28788725f681f393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Addictions</topic><topic>Attention deficit hyperactivity disorder</topic><topic>Autism</topic><topic>Bias</topic><topic>Comorbidity</topic><topic>Computer applications</topic><topic>Dimensional approach</topic><topic>Flexibility</topic><topic>Generalizability</topic><topic>Hyperactivity</topic><topic>Learning</topic><topic>Mental depression</topic><topic>Mental disorders</topic><topic>Original</topic><topic>Original Article</topic><topic>Punishment</topic><topic>Reinforcement</topic><topic>Reversal</topic><topic>Reversal learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brolsma, Sophie C. A.</creatorcontrib><creatorcontrib>Vrijsen, Janna N.</creatorcontrib><creatorcontrib>Vassena, Eliana</creatorcontrib><creatorcontrib>Rostami Kandroodi, Mojtaba</creatorcontrib><creatorcontrib>Bergman, M. Annemiek</creatorcontrib><creatorcontrib>van Eijndhoven, Philip F.</creatorcontrib><creatorcontrib>Collard, Rose M.</creatorcontrib><creatorcontrib>den Ouden, Hanneke E. M.</creatorcontrib><creatorcontrib>Schene, Aart H.</creatorcontrib><creatorcontrib>Cools, Roshan</creatorcontrib><collection>Cambridge Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Sociology Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Psychology</collection><collection>ProQuest research library</collection><collection>Sociology Database (ProQuest)</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Psychological medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brolsma, Sophie C. A.</au><au>Vrijsen, Janna N.</au><au>Vassena, Eliana</au><au>Rostami Kandroodi, Mojtaba</au><au>Bergman, M. Annemiek</au><au>van Eijndhoven, Philip F.</au><au>Collard, Rose M.</au><au>den Ouden, Hanneke E. M.</au><au>Schene, Aart H.</au><au>Cools, Roshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Challenging the negative learning bias hypothesis of depression: reversal learning in a naturalistic psychiatric sample</atitle><jtitle>Psychological medicine</jtitle><addtitle>Psychol. Med</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>52</volume><issue>2</issue><spage>303</spage><epage>313</epage><pages>303-313</pages><issn>0033-2917</issn><eissn>1469-8978</eissn><abstract>Classic theories posit that depression is driven by a negative learning bias. Most studies supporting this proposition used small and selected samples, excluding patients with comorbidities. However, comorbidity between psychiatric disorders occurs in up to 70% of the population. Therefore, the generalizability of the negative bias hypothesis to a naturalistic psychiatric sample as well as the specificity of the bias to depression, remain unclear. In the present study, we tested the negative learning bias hypothesis in a large naturalistic sample of psychiatric patients, including depression, anxiety, addiction, attention-deficit/hyperactivity disorder, and/or autism. First, we assessed whether the negative bias hypothesis of depression generalized to a heterogeneous (and hence more naturalistic) depression sample compared with controls. Second, we assessed whether negative bias extends to other psychiatric disorders. Third, we adopted a dimensional approach, by using symptom severity as a way to assess associations across the sample.
We administered a probabilistic reversal learning task to 217 patients and 81 healthy controls. According to the negative bias hypothesis, participants with depression should exhibit enhanced learning and flexibility based on punishment v. reward. We combined analyses of traditional measures with more sensitive computational modeling.
In contrast to previous findings, this sample of depressed patients with psychiatric comorbidities did not show a negative learning bias.
These results speak against the generalizability of the negative learning bias hypothesis to depressed patients with comorbidities. This study highlights the importance of investigating unselected samples of psychiatric patients, which represent the vast majority of the psychiatric population.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>32538342</pmid><doi>10.1017/S0033291720001956</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0336-2707</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-2917 |
ispartof | Psychological medicine, 2022-01, Vol.52 (2), p.303-313 |
issn | 0033-2917 1469-8978 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8842187 |
source | Applied Social Sciences Index & Abstracts (ASSIA); Cambridge Journals - Connect here FIRST to enable access |
subjects | Addictions Attention deficit hyperactivity disorder Autism Bias Comorbidity Computer applications Dimensional approach Flexibility Generalizability Hyperactivity Learning Mental depression Mental disorders Original Original Article Punishment Reinforcement Reversal Reversal learning |
title | Challenging the negative learning bias hypothesis of depression: reversal learning in a naturalistic psychiatric sample |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Challenging%20the%20negative%20learning%20bias%20hypothesis%20of%20depression:%20reversal%20learning%20in%20a%20naturalistic%20psychiatric%20sample&rft.jtitle=Psychological%20medicine&rft.au=Brolsma,%20Sophie%20C.%20A.&rft.date=2022-01-01&rft.volume=52&rft.issue=2&rft.spage=303&rft.epage=313&rft.pages=303-313&rft.issn=0033-2917&rft.eissn=1469-8978&rft_id=info:doi/10.1017/S0033291720001956&rft_dat=%3Cproquest_pubme%3E2627323930%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627323930&rft_id=info:pmid/32538342&rft_cupid=10_1017_S0033291720001956&rfr_iscdi=true |