Microstructure Evolution of Graphene and the Corresponding Effect on the Mechanical/Electrical Properties of Graphene/Cu Composite during Rolling Treatment
Rolling enables the directional alignment of the reinforcements in graphene/Cu composites while achieving uniform graphene dispersion and matrix grain refinement. This is expected to achieve a breakthrough in composite performance. In this paper, the process parameters of rolling are investigated, a...
Gespeichert in:
Veröffentlicht in: | Materials 2022-02, Vol.15 (3), p.1218 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 1218 |
container_title | Materials |
container_volume | 15 |
creator | Xiu, Ziyang Ju, Boyu Zhan, Junhai Zhang, Ningbo Wang, Zhijun Mei, Yong Liu, Jinming Feng, Yuhan Guo, Yixin Kang, Pengchao Zhang, Qiang Yang, Wenshu |
description | Rolling enables the directional alignment of the reinforcements in graphene/Cu composites while achieving uniform graphene dispersion and matrix grain refinement. This is expected to achieve a breakthrough in composite performance. In this paper, the process parameters of rolling are investigated, and the defects, thickness variations of graphene and property changes of the composite under different parameters are analyzed. High-temperature rolling is beneficial to avoid the damage of graphene during rolling, and the prepared composites have higher electrical conductivity. The properties of graphene were investigated. Low-temperature rolling is more favorable to the thinning and dispersion of graphene; meanwhile, the relative density of the composites is higher in the low-temperature rolling process. With the increase of rolling deformation, the graphene defects slightly increased and the number of layers decreased. In this paper, the defect states of graphene and the electrical conductivity with different rolling parameters is comprehensively investigated to provide a reference for the rolling process of graphene/copper composites with different demands. |
doi_str_mv | 10.3390/ma15031218 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8839456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2627752366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-88996f14a07c2329767936b9d3eabef8dee4a70fed95a830468c7633f043e4c83</originalsourceid><addsrcrecordid>eNpdkVFrFDEQx4MottS--AEk4IsI5yWbbDZ5EeQ4q9BiKfU55LKTXspusibZgp_FL-uG1vbqvMww8-c3M_wRekvJJ8YUWY-GtoTRhsoX6JgqJVZUcf7yoD5CpznfkiUYo7JRr9ERa6mgVJBj9OfC2xRzSbMtcwK8vYvDXHwMODp8lsy0hwDYhB6XPeBNTAnyFEPvww3eOge24EVbZxdg9yZ4a4b1dlj6qZb4MsUJUvGQD4HrzbywxilmXwD3c6q4qzgMNV8nMGWEUN6gV84MGU4f8gn6-XV7vfm2Ov9x9n3z5XxlORFlJeXyqaPckM42rFGd6BQTO9UzMDtwsgfgpiMOetUayQgX0naCMUc4A24lO0Gf77nTvBuht8vqZAY9JT-a9FtH4_XzSfB7fRPvtJRM8VYsgA8PgBR_zZCLHn22MAwmQJyzbkSjiCAtqbve_ye9jXMKy3tV1XVtw0QFfrxXVW9yAvd4DCW62q6fbF_E7w7Pf5T-M5n9Bd5XquY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627752366</pqid></control><display><type>article</type><title>Microstructure Evolution of Graphene and the Corresponding Effect on the Mechanical/Electrical Properties of Graphene/Cu Composite during Rolling Treatment</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Xiu, Ziyang ; Ju, Boyu ; Zhan, Junhai ; Zhang, Ningbo ; Wang, Zhijun ; Mei, Yong ; Liu, Jinming ; Feng, Yuhan ; Guo, Yixin ; Kang, Pengchao ; Zhang, Qiang ; Yang, Wenshu</creator><creatorcontrib>Xiu, Ziyang ; Ju, Boyu ; Zhan, Junhai ; Zhang, Ningbo ; Wang, Zhijun ; Mei, Yong ; Liu, Jinming ; Feng, Yuhan ; Guo, Yixin ; Kang, Pengchao ; Zhang, Qiang ; Yang, Wenshu</creatorcontrib><description>Rolling enables the directional alignment of the reinforcements in graphene/Cu composites while achieving uniform graphene dispersion and matrix grain refinement. This is expected to achieve a breakthrough in composite performance. In this paper, the process parameters of rolling are investigated, and the defects, thickness variations of graphene and property changes of the composite under different parameters are analyzed. High-temperature rolling is beneficial to avoid the damage of graphene during rolling, and the prepared composites have higher electrical conductivity. The properties of graphene were investigated. Low-temperature rolling is more favorable to the thinning and dispersion of graphene; meanwhile, the relative density of the composites is higher in the low-temperature rolling process. With the increase of rolling deformation, the graphene defects slightly increased and the number of layers decreased. In this paper, the defect states of graphene and the electrical conductivity with different rolling parameters is comprehensively investigated to provide a reference for the rolling process of graphene/copper composites with different demands.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15031218</identifier><identifier>PMID: 35161160</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Composite materials ; Copper ; Crystal defects ; Deformation ; Dispersion ; Electrical properties ; Electrical resistivity ; Extrusion ; Grain refinement ; Graphene ; Heat conductivity ; High temperature ; Low temperature ; Mechanical properties ; Process parameters ; Tensile strength</subject><ispartof>Materials, 2022-02, Vol.15 (3), p.1218</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-88996f14a07c2329767936b9d3eabef8dee4a70fed95a830468c7633f043e4c83</citedby><cites>FETCH-LOGICAL-c406t-88996f14a07c2329767936b9d3eabef8dee4a70fed95a830468c7633f043e4c83</cites><orcidid>0000-0003-1995-3840 ; 0000-0001-7635-9085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839456/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839456/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35161160$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiu, Ziyang</creatorcontrib><creatorcontrib>Ju, Boyu</creatorcontrib><creatorcontrib>Zhan, Junhai</creatorcontrib><creatorcontrib>Zhang, Ningbo</creatorcontrib><creatorcontrib>Wang, Zhijun</creatorcontrib><creatorcontrib>Mei, Yong</creatorcontrib><creatorcontrib>Liu, Jinming</creatorcontrib><creatorcontrib>Feng, Yuhan</creatorcontrib><creatorcontrib>Guo, Yixin</creatorcontrib><creatorcontrib>Kang, Pengchao</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Yang, Wenshu</creatorcontrib><title>Microstructure Evolution of Graphene and the Corresponding Effect on the Mechanical/Electrical Properties of Graphene/Cu Composite during Rolling Treatment</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Rolling enables the directional alignment of the reinforcements in graphene/Cu composites while achieving uniform graphene dispersion and matrix grain refinement. This is expected to achieve a breakthrough in composite performance. In this paper, the process parameters of rolling are investigated, and the defects, thickness variations of graphene and property changes of the composite under different parameters are analyzed. High-temperature rolling is beneficial to avoid the damage of graphene during rolling, and the prepared composites have higher electrical conductivity. The properties of graphene were investigated. Low-temperature rolling is more favorable to the thinning and dispersion of graphene; meanwhile, the relative density of the composites is higher in the low-temperature rolling process. With the increase of rolling deformation, the graphene defects slightly increased and the number of layers decreased. In this paper, the defect states of graphene and the electrical conductivity with different rolling parameters is comprehensively investigated to provide a reference for the rolling process of graphene/copper composites with different demands.</description><subject>Composite materials</subject><subject>Copper</subject><subject>Crystal defects</subject><subject>Deformation</subject><subject>Dispersion</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Extrusion</subject><subject>Grain refinement</subject><subject>Graphene</subject><subject>Heat conductivity</subject><subject>High temperature</subject><subject>Low temperature</subject><subject>Mechanical properties</subject><subject>Process parameters</subject><subject>Tensile strength</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkVFrFDEQx4MottS--AEk4IsI5yWbbDZ5EeQ4q9BiKfU55LKTXspusibZgp_FL-uG1vbqvMww8-c3M_wRekvJJ8YUWY-GtoTRhsoX6JgqJVZUcf7yoD5CpznfkiUYo7JRr9ERa6mgVJBj9OfC2xRzSbMtcwK8vYvDXHwMODp8lsy0hwDYhB6XPeBNTAnyFEPvww3eOge24EVbZxdg9yZ4a4b1dlj6qZb4MsUJUvGQD4HrzbywxilmXwD3c6q4qzgMNV8nMGWEUN6gV84MGU4f8gn6-XV7vfm2Ov9x9n3z5XxlORFlJeXyqaPckM42rFGd6BQTO9UzMDtwsgfgpiMOetUayQgX0naCMUc4A24lO0Gf77nTvBuht8vqZAY9JT-a9FtH4_XzSfB7fRPvtJRM8VYsgA8PgBR_zZCLHn22MAwmQJyzbkSjiCAtqbve_ye9jXMKy3tV1XVtw0QFfrxXVW9yAvd4DCW62q6fbF_E7w7Pf5T-M5n9Bd5XquY</recordid><startdate>20220206</startdate><enddate>20220206</enddate><creator>Xiu, Ziyang</creator><creator>Ju, Boyu</creator><creator>Zhan, Junhai</creator><creator>Zhang, Ningbo</creator><creator>Wang, Zhijun</creator><creator>Mei, Yong</creator><creator>Liu, Jinming</creator><creator>Feng, Yuhan</creator><creator>Guo, Yixin</creator><creator>Kang, Pengchao</creator><creator>Zhang, Qiang</creator><creator>Yang, Wenshu</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1995-3840</orcidid><orcidid>https://orcid.org/0000-0001-7635-9085</orcidid></search><sort><creationdate>20220206</creationdate><title>Microstructure Evolution of Graphene and the Corresponding Effect on the Mechanical/Electrical Properties of Graphene/Cu Composite during Rolling Treatment</title><author>Xiu, Ziyang ; Ju, Boyu ; Zhan, Junhai ; Zhang, Ningbo ; Wang, Zhijun ; Mei, Yong ; Liu, Jinming ; Feng, Yuhan ; Guo, Yixin ; Kang, Pengchao ; Zhang, Qiang ; Yang, Wenshu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-88996f14a07c2329767936b9d3eabef8dee4a70fed95a830468c7633f043e4c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Composite materials</topic><topic>Copper</topic><topic>Crystal defects</topic><topic>Deformation</topic><topic>Dispersion</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Extrusion</topic><topic>Grain refinement</topic><topic>Graphene</topic><topic>Heat conductivity</topic><topic>High temperature</topic><topic>Low temperature</topic><topic>Mechanical properties</topic><topic>Process parameters</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiu, Ziyang</creatorcontrib><creatorcontrib>Ju, Boyu</creatorcontrib><creatorcontrib>Zhan, Junhai</creatorcontrib><creatorcontrib>Zhang, Ningbo</creatorcontrib><creatorcontrib>Wang, Zhijun</creatorcontrib><creatorcontrib>Mei, Yong</creatorcontrib><creatorcontrib>Liu, Jinming</creatorcontrib><creatorcontrib>Feng, Yuhan</creatorcontrib><creatorcontrib>Guo, Yixin</creatorcontrib><creatorcontrib>Kang, Pengchao</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Yang, Wenshu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiu, Ziyang</au><au>Ju, Boyu</au><au>Zhan, Junhai</au><au>Zhang, Ningbo</au><au>Wang, Zhijun</au><au>Mei, Yong</au><au>Liu, Jinming</au><au>Feng, Yuhan</au><au>Guo, Yixin</au><au>Kang, Pengchao</au><au>Zhang, Qiang</au><au>Yang, Wenshu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure Evolution of Graphene and the Corresponding Effect on the Mechanical/Electrical Properties of Graphene/Cu Composite during Rolling Treatment</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-02-06</date><risdate>2022</risdate><volume>15</volume><issue>3</issue><spage>1218</spage><pages>1218-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Rolling enables the directional alignment of the reinforcements in graphene/Cu composites while achieving uniform graphene dispersion and matrix grain refinement. This is expected to achieve a breakthrough in composite performance. In this paper, the process parameters of rolling are investigated, and the defects, thickness variations of graphene and property changes of the composite under different parameters are analyzed. High-temperature rolling is beneficial to avoid the damage of graphene during rolling, and the prepared composites have higher electrical conductivity. The properties of graphene were investigated. Low-temperature rolling is more favorable to the thinning and dispersion of graphene; meanwhile, the relative density of the composites is higher in the low-temperature rolling process. With the increase of rolling deformation, the graphene defects slightly increased and the number of layers decreased. In this paper, the defect states of graphene and the electrical conductivity with different rolling parameters is comprehensively investigated to provide a reference for the rolling process of graphene/copper composites with different demands.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35161160</pmid><doi>10.3390/ma15031218</doi><orcidid>https://orcid.org/0000-0003-1995-3840</orcidid><orcidid>https://orcid.org/0000-0001-7635-9085</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-02, Vol.15 (3), p.1218 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8839456 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Composite materials Copper Crystal defects Deformation Dispersion Electrical properties Electrical resistivity Extrusion Grain refinement Graphene Heat conductivity High temperature Low temperature Mechanical properties Process parameters Tensile strength |
title | Microstructure Evolution of Graphene and the Corresponding Effect on the Mechanical/Electrical Properties of Graphene/Cu Composite during Rolling Treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20Evolution%20of%20Graphene%20and%20the%20Corresponding%20Effect%20on%20the%20Mechanical/Electrical%20Properties%20of%20Graphene/Cu%20Composite%20during%20Rolling%20Treatment&rft.jtitle=Materials&rft.au=Xiu,%20Ziyang&rft.date=2022-02-06&rft.volume=15&rft.issue=3&rft.spage=1218&rft.pages=1218-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15031218&rft_dat=%3Cproquest_pubme%3E2627752366%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627752366&rft_id=info:pmid/35161160&rfr_iscdi=true |