Damage Evolution of Steel Fibre-Reinforced High-Performance Concrete in Low-Cycle Flexural Fatigue: Numerical Modeling and Experimental Validation

This contribution aims to analyze the deterioration behaviour of steel fibre-reinforced high-performance concrete (HPC) in both experiments as well as numerical simulations. For this purpose, flexural tensile tests are carried out on beams with different fibre contents and suitable damage indicators...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-02, Vol.15 (3), p.1179
Hauptverfasser: Gebuhr, Gregor, Pise, Mangesh, Anders, Steffen, Brands, Dominik, Schröder, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 1179
container_title Materials
container_volume 15
creator Gebuhr, Gregor
Pise, Mangesh
Anders, Steffen
Brands, Dominik
Schröder, Jörg
description This contribution aims to analyze the deterioration behaviour of steel fibre-reinforced high-performance concrete (HPC) in both experiments as well as numerical simulations. For this purpose, flexural tensile tests are carried out on beams with different fibre contents and suitable damage indicators are established to describe and calibrate the damage behaviour numerically using a phase-field model approach. In addition to conventional measurement methods, the tests are equipped with acoustic emission sensors in order to obtain a more precise picture of crack evolution by observing acoustic events. It is shown that, in addition to classical damage indicators, such as stiffness degradation and absorbed energy, various acoustic indicators, such as the acoustic energy of individual crack events, can also provide information about the damage progress. For the efficient numerical analysis of the overall material behaviour of fibre-reinforced HPC, a phenomenological material model is developed. The data obtained in the experiments are used to calibrate and validate the numerical model for the simulation of three-point bending beam tests. To verify the efficiency of the presented numerical model, the numerical results are compared with the experimental data, e.g., load-CMOD curves and the degradation of residual stiffness.
doi_str_mv 10.3390/ma15031179
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8838946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2627760833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-7b5e9901cda6f29ee19039a7cb55456e7acbc33976b8620fe25deb51f7a263133</originalsourceid><addsrcrecordid>eNpdkVFP1TAUxxuiEYK8-AFME14MybRdt27lwYRc7xWTCxoVX5uz7myUdO2l2xC-hp_Y3oCI9qXtOb_882sPIa84eyuEYu8G4CUTnFdqh-xxpWTGVVE8e3LeJQfjeMXSEoLXuXpBdkXJJee52CO_PsAAPdLlTXDzZIOnoaPfJkRHV7aJmH1F67sQDbb01PaX2ReM6TqAN0gXwZuIE1Lr6Tr8zBZ3xiFdObydI6QAmGw_4zE9nweM1qTSWWjRWd9T8C1d3m5SeUA_pc4PcLaFrcFL8rwDN-LBw75PLlbL74vTbP3546fFyTozBZNTVjUlKsW4aUF2uULkigkFlWnKsiglVmAak76okk0tc9ZhXrbYlLyrIJeCC7FP3t_nbuZmwNYkj2StN0kJ4p0OYPW_HW8vdR9udF2LWhUyBbx5CIjhesZx0oMdDToHHsM86lzmikkmRZHQw__QqzBHn563papKslpsjY7uKRPDOEbsHmU409tp67_TTvDrp_qP6J_Zit-C6Ka5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627760833</pqid></control><display><type>article</type><title>Damage Evolution of Steel Fibre-Reinforced High-Performance Concrete in Low-Cycle Flexural Fatigue: Numerical Modeling and Experimental Validation</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gebuhr, Gregor ; Pise, Mangesh ; Anders, Steffen ; Brands, Dominik ; Schröder, Jörg</creator><creatorcontrib>Gebuhr, Gregor ; Pise, Mangesh ; Anders, Steffen ; Brands, Dominik ; Schröder, Jörg</creatorcontrib><description>This contribution aims to analyze the deterioration behaviour of steel fibre-reinforced high-performance concrete (HPC) in both experiments as well as numerical simulations. For this purpose, flexural tensile tests are carried out on beams with different fibre contents and suitable damage indicators are established to describe and calibrate the damage behaviour numerically using a phase-field model approach. In addition to conventional measurement methods, the tests are equipped with acoustic emission sensors in order to obtain a more precise picture of crack evolution by observing acoustic events. It is shown that, in addition to classical damage indicators, such as stiffness degradation and absorbed energy, various acoustic indicators, such as the acoustic energy of individual crack events, can also provide information about the damage progress. For the efficient numerical analysis of the overall material behaviour of fibre-reinforced HPC, a phenomenological material model is developed. The data obtained in the experiments are used to calibrate and validate the numerical model for the simulation of three-point bending beam tests. To verify the efficiency of the presented numerical model, the numerical results are compared with the experimental data, e.g., load-CMOD curves and the degradation of residual stiffness.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15031179</identifier><identifier>PMID: 35161123</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acoustic absorption ; Acoustic emission testing ; Acoustics ; Composite materials ; Concrete mixing ; Crack initiation ; Crack propagation ; Damage ; Degradation ; Emission analysis ; Energy ; Evolution ; Experiments ; Fiber reinforced concretes ; Load ; Measurement methods ; Metal fatigue ; Numerical analysis ; Numerical models ; Performance evaluation ; Reinforced concrete ; Reinforcing steels ; Research methodology ; Sensors ; Steel fibers ; Stiffness ; Tensile strength ; Tensile tests</subject><ispartof>Materials, 2022-02, Vol.15 (3), p.1179</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-7b5e9901cda6f29ee19039a7cb55456e7acbc33976b8620fe25deb51f7a263133</citedby><cites>FETCH-LOGICAL-c406t-7b5e9901cda6f29ee19039a7cb55456e7acbc33976b8620fe25deb51f7a263133</cites><orcidid>0000-0003-4246-4084 ; 0000-0002-4203-3439 ; 0000-0001-7960-9553 ; 0000-0002-4848-2606 ; 0000-0003-0548-4350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838946/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838946/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35161123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gebuhr, Gregor</creatorcontrib><creatorcontrib>Pise, Mangesh</creatorcontrib><creatorcontrib>Anders, Steffen</creatorcontrib><creatorcontrib>Brands, Dominik</creatorcontrib><creatorcontrib>Schröder, Jörg</creatorcontrib><title>Damage Evolution of Steel Fibre-Reinforced High-Performance Concrete in Low-Cycle Flexural Fatigue: Numerical Modeling and Experimental Validation</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>This contribution aims to analyze the deterioration behaviour of steel fibre-reinforced high-performance concrete (HPC) in both experiments as well as numerical simulations. For this purpose, flexural tensile tests are carried out on beams with different fibre contents and suitable damage indicators are established to describe and calibrate the damage behaviour numerically using a phase-field model approach. In addition to conventional measurement methods, the tests are equipped with acoustic emission sensors in order to obtain a more precise picture of crack evolution by observing acoustic events. It is shown that, in addition to classical damage indicators, such as stiffness degradation and absorbed energy, various acoustic indicators, such as the acoustic energy of individual crack events, can also provide information about the damage progress. For the efficient numerical analysis of the overall material behaviour of fibre-reinforced HPC, a phenomenological material model is developed. The data obtained in the experiments are used to calibrate and validate the numerical model for the simulation of three-point bending beam tests. To verify the efficiency of the presented numerical model, the numerical results are compared with the experimental data, e.g., load-CMOD curves and the degradation of residual stiffness.</description><subject>Acoustic absorption</subject><subject>Acoustic emission testing</subject><subject>Acoustics</subject><subject>Composite materials</subject><subject>Concrete mixing</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Damage</subject><subject>Degradation</subject><subject>Emission analysis</subject><subject>Energy</subject><subject>Evolution</subject><subject>Experiments</subject><subject>Fiber reinforced concretes</subject><subject>Load</subject><subject>Measurement methods</subject><subject>Metal fatigue</subject><subject>Numerical analysis</subject><subject>Numerical models</subject><subject>Performance evaluation</subject><subject>Reinforced concrete</subject><subject>Reinforcing steels</subject><subject>Research methodology</subject><subject>Sensors</subject><subject>Steel fibers</subject><subject>Stiffness</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkVFP1TAUxxuiEYK8-AFME14MybRdt27lwYRc7xWTCxoVX5uz7myUdO2l2xC-hp_Y3oCI9qXtOb_882sPIa84eyuEYu8G4CUTnFdqh-xxpWTGVVE8e3LeJQfjeMXSEoLXuXpBdkXJJee52CO_PsAAPdLlTXDzZIOnoaPfJkRHV7aJmH1F67sQDbb01PaX2ReM6TqAN0gXwZuIE1Lr6Tr8zBZ3xiFdObydI6QAmGw_4zE9nweM1qTSWWjRWd9T8C1d3m5SeUA_pc4PcLaFrcFL8rwDN-LBw75PLlbL74vTbP3546fFyTozBZNTVjUlKsW4aUF2uULkigkFlWnKsiglVmAak76okk0tc9ZhXrbYlLyrIJeCC7FP3t_nbuZmwNYkj2StN0kJ4p0OYPW_HW8vdR9udF2LWhUyBbx5CIjhesZx0oMdDToHHsM86lzmikkmRZHQw__QqzBHn563papKslpsjY7uKRPDOEbsHmU409tp67_TTvDrp_qP6J_Zit-C6Ka5</recordid><startdate>20220203</startdate><enddate>20220203</enddate><creator>Gebuhr, Gregor</creator><creator>Pise, Mangesh</creator><creator>Anders, Steffen</creator><creator>Brands, Dominik</creator><creator>Schröder, Jörg</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4246-4084</orcidid><orcidid>https://orcid.org/0000-0002-4203-3439</orcidid><orcidid>https://orcid.org/0000-0001-7960-9553</orcidid><orcidid>https://orcid.org/0000-0002-4848-2606</orcidid><orcidid>https://orcid.org/0000-0003-0548-4350</orcidid></search><sort><creationdate>20220203</creationdate><title>Damage Evolution of Steel Fibre-Reinforced High-Performance Concrete in Low-Cycle Flexural Fatigue: Numerical Modeling and Experimental Validation</title><author>Gebuhr, Gregor ; Pise, Mangesh ; Anders, Steffen ; Brands, Dominik ; Schröder, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-7b5e9901cda6f29ee19039a7cb55456e7acbc33976b8620fe25deb51f7a263133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic absorption</topic><topic>Acoustic emission testing</topic><topic>Acoustics</topic><topic>Composite materials</topic><topic>Concrete mixing</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Damage</topic><topic>Degradation</topic><topic>Emission analysis</topic><topic>Energy</topic><topic>Evolution</topic><topic>Experiments</topic><topic>Fiber reinforced concretes</topic><topic>Load</topic><topic>Measurement methods</topic><topic>Metal fatigue</topic><topic>Numerical analysis</topic><topic>Numerical models</topic><topic>Performance evaluation</topic><topic>Reinforced concrete</topic><topic>Reinforcing steels</topic><topic>Research methodology</topic><topic>Sensors</topic><topic>Steel fibers</topic><topic>Stiffness</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gebuhr, Gregor</creatorcontrib><creatorcontrib>Pise, Mangesh</creatorcontrib><creatorcontrib>Anders, Steffen</creatorcontrib><creatorcontrib>Brands, Dominik</creatorcontrib><creatorcontrib>Schröder, Jörg</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gebuhr, Gregor</au><au>Pise, Mangesh</au><au>Anders, Steffen</au><au>Brands, Dominik</au><au>Schröder, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Damage Evolution of Steel Fibre-Reinforced High-Performance Concrete in Low-Cycle Flexural Fatigue: Numerical Modeling and Experimental Validation</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-02-03</date><risdate>2022</risdate><volume>15</volume><issue>3</issue><spage>1179</spage><pages>1179-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This contribution aims to analyze the deterioration behaviour of steel fibre-reinforced high-performance concrete (HPC) in both experiments as well as numerical simulations. For this purpose, flexural tensile tests are carried out on beams with different fibre contents and suitable damage indicators are established to describe and calibrate the damage behaviour numerically using a phase-field model approach. In addition to conventional measurement methods, the tests are equipped with acoustic emission sensors in order to obtain a more precise picture of crack evolution by observing acoustic events. It is shown that, in addition to classical damage indicators, such as stiffness degradation and absorbed energy, various acoustic indicators, such as the acoustic energy of individual crack events, can also provide information about the damage progress. For the efficient numerical analysis of the overall material behaviour of fibre-reinforced HPC, a phenomenological material model is developed. The data obtained in the experiments are used to calibrate and validate the numerical model for the simulation of three-point bending beam tests. To verify the efficiency of the presented numerical model, the numerical results are compared with the experimental data, e.g., load-CMOD curves and the degradation of residual stiffness.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35161123</pmid><doi>10.3390/ma15031179</doi><orcidid>https://orcid.org/0000-0003-4246-4084</orcidid><orcidid>https://orcid.org/0000-0002-4203-3439</orcidid><orcidid>https://orcid.org/0000-0001-7960-9553</orcidid><orcidid>https://orcid.org/0000-0002-4848-2606</orcidid><orcidid>https://orcid.org/0000-0003-0548-4350</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-02, Vol.15 (3), p.1179
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8838946
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acoustic absorption
Acoustic emission testing
Acoustics
Composite materials
Concrete mixing
Crack initiation
Crack propagation
Damage
Degradation
Emission analysis
Energy
Evolution
Experiments
Fiber reinforced concretes
Load
Measurement methods
Metal fatigue
Numerical analysis
Numerical models
Performance evaluation
Reinforced concrete
Reinforcing steels
Research methodology
Sensors
Steel fibers
Stiffness
Tensile strength
Tensile tests
title Damage Evolution of Steel Fibre-Reinforced High-Performance Concrete in Low-Cycle Flexural Fatigue: Numerical Modeling and Experimental Validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Damage%20Evolution%20of%20Steel%20Fibre-Reinforced%20High-Performance%20Concrete%20in%20Low-Cycle%20Flexural%20Fatigue:%20Numerical%20Modeling%20and%20Experimental%20Validation&rft.jtitle=Materials&rft.au=Gebuhr,%20Gregor&rft.date=2022-02-03&rft.volume=15&rft.issue=3&rft.spage=1179&rft.pages=1179-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15031179&rft_dat=%3Cproquest_pubme%3E2627760833%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627760833&rft_id=info:pmid/35161123&rfr_iscdi=true