Influence of Friction Stir Process on the Physical, Microstructural, Corrosive, and Electrical Properties of an Al-Mg Alloy Modified with Ti-B Additives
In this study, two successive methods were used to improve the grain structure and the mechanical and physical properties of Al 5052 aluminum alloy. The modifying elements, 0.99 wt.% of titanium (Ti) and 0.2 wt.% of boron (B), were added during the casting process. After solidification, single- and...
Gespeichert in:
Veröffentlicht in: | Materials 2022-01, Vol.15 (3), p.835 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 835 |
container_title | Materials |
container_volume | 15 |
creator | Moustafa, Essam B Alazwari, Mashhour A Abushanab, Waheed Sami Ghandourah, Emad Ismat Mosleh, Ahmed O Ahmed, Haitham M Taha, Mohamed A |
description | In this study, two successive methods were used to improve the grain structure and the mechanical and physical properties of Al 5052 aluminum alloy. The modifying elements, 0.99 wt.% of titanium (Ti) and 0.2 wt.% of boron (B), were added during the casting process. After solidification, single- and double-pass friction stir processing (FSP) were performed to achieve additional grain refinement and disperse the newly formed phases well. The addition of Ti-B modifiers significantly improved the mechanical and physical properties of the Al 5052 aluminum alloy. Nevertheless, only a 3% improvement in microhardness was achieved. The ultimate strength (US), yield strength (YS), and elastic modulus were investigated. In addition, the electrical conductivity was reduced by 56% compared to the base alloys. The effects of grain refinement on thermal expansion and corrosion rate were studied; the modified alloy with Ti-B in the as-cast state showed lower dimension stability than the samples treated with the FSP method. The grain refinement significantly affected the corrosion resistance; for example, single and double FSP passes reduced the corrosion rate by 11.4 times and 19.2 times, respectively. The successive FSP passes, resulting in a non-porous structure, increased the bulk density and formed precipitates with high bulk density. |
doi_str_mv | 10.3390/ma15030835 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8837146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629062128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-5c586cc783add0a702a3a3e02f93c68e7db2a67a27fd614ce5e83e4b5432bf433</originalsourceid><addsrcrecordid>eNpdkd9uFCEUxonR2Kb2xgcwJN4Y01H-zABzY7JuWm3SjU2s14SFM12aWViBqdk38XFlbK1VLuBw-OXLd_gQeknJO8578n5raEc4Ubx7gg5p34uG9m379FF9gI5zviF1cU4V65-jA95RQaQih-jneRjGCYIFHAd8lrwtPgb8tfiEL1O0kDOu97IBfLnZZ2_NeIJX3qaYS5psmdLcWMZUG_4WTrAJDp-OYEua2VljB6l4yLO-CXgxNqvruo9xj1fR-cGDwz982eAr33zEC-d8qUL5BXo2mDHD8f15hL6dnV4tPzcXXz6dLxcXjW2JKE1nOyWslYob54iRhBluOBA29NwKBdKtmRHSMDk4QVsLHSgO7bprOVsPLedH6MOd7m5ab8FZCKWOpHfJb03a62i8_vcl-I2-jrdaKS5pK6rAm3uBFL9PkIve-mxhHE2AOGXNBOuJYJSpir7-D72JUwp1vJmSsmby29HbO2r-5JxgeDBDiZ4z138zr_Crx_Yf0D8J818wrKhd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627760743</pqid></control><display><type>article</type><title>Influence of Friction Stir Process on the Physical, Microstructural, Corrosive, and Electrical Properties of an Al-Mg Alloy Modified with Ti-B Additives</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Moustafa, Essam B ; Alazwari, Mashhour A ; Abushanab, Waheed Sami ; Ghandourah, Emad Ismat ; Mosleh, Ahmed O ; Ahmed, Haitham M ; Taha, Mohamed A</creator><creatorcontrib>Moustafa, Essam B ; Alazwari, Mashhour A ; Abushanab, Waheed Sami ; Ghandourah, Emad Ismat ; Mosleh, Ahmed O ; Ahmed, Haitham M ; Taha, Mohamed A</creatorcontrib><description>In this study, two successive methods were used to improve the grain structure and the mechanical and physical properties of Al 5052 aluminum alloy. The modifying elements, 0.99 wt.% of titanium (Ti) and 0.2 wt.% of boron (B), were added during the casting process. After solidification, single- and double-pass friction stir processing (FSP) were performed to achieve additional grain refinement and disperse the newly formed phases well. The addition of Ti-B modifiers significantly improved the mechanical and physical properties of the Al 5052 aluminum alloy. Nevertheless, only a 3% improvement in microhardness was achieved. The ultimate strength (US), yield strength (YS), and elastic modulus were investigated. In addition, the electrical conductivity was reduced by 56% compared to the base alloys. The effects of grain refinement on thermal expansion and corrosion rate were studied; the modified alloy with Ti-B in the as-cast state showed lower dimension stability than the samples treated with the FSP method. The grain refinement significantly affected the corrosion resistance; for example, single and double FSP passes reduced the corrosion rate by 11.4 times and 19.2 times, respectively. The successive FSP passes, resulting in a non-porous structure, increased the bulk density and formed precipitates with high bulk density.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15030835</identifier><identifier>PMID: 35160780</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Additives ; Alloying elements ; Alloys ; Aluminum alloys ; Aluminum base alloys ; Bulk density ; Corrosion effects ; Corrosion rate ; Corrosion resistance ; Electrical properties ; Electrical resistivity ; Friction ; Friction stir processing ; Grain refinement ; Grain size ; Grain structure ; Investigations ; Magnesium ; Mechanical properties ; Microhardness ; Microstructure ; Modulus of elasticity ; Physical properties ; Precipitates ; Scanning electron microscopy ; Solidification ; Standard deviation ; Thermal expansion ; Titanium ; Ultimate tensile strength ; Yield strength ; Yield stress</subject><ispartof>Materials, 2022-01, Vol.15 (3), p.835</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-5c586cc783add0a702a3a3e02f93c68e7db2a67a27fd614ce5e83e4b5432bf433</citedby><cites>FETCH-LOGICAL-c406t-5c586cc783add0a702a3a3e02f93c68e7db2a67a27fd614ce5e83e4b5432bf433</cites><orcidid>0000-0002-0247-7975 ; 0000-0003-4036-002X ; 0000-0002-5642-8968 ; 0000-0002-5080-4934 ; 0000-0003-4990-1398 ; 0000-0002-0981-1059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837146/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837146/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35160780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moustafa, Essam B</creatorcontrib><creatorcontrib>Alazwari, Mashhour A</creatorcontrib><creatorcontrib>Abushanab, Waheed Sami</creatorcontrib><creatorcontrib>Ghandourah, Emad Ismat</creatorcontrib><creatorcontrib>Mosleh, Ahmed O</creatorcontrib><creatorcontrib>Ahmed, Haitham M</creatorcontrib><creatorcontrib>Taha, Mohamed A</creatorcontrib><title>Influence of Friction Stir Process on the Physical, Microstructural, Corrosive, and Electrical Properties of an Al-Mg Alloy Modified with Ti-B Additives</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>In this study, two successive methods were used to improve the grain structure and the mechanical and physical properties of Al 5052 aluminum alloy. The modifying elements, 0.99 wt.% of titanium (Ti) and 0.2 wt.% of boron (B), were added during the casting process. After solidification, single- and double-pass friction stir processing (FSP) were performed to achieve additional grain refinement and disperse the newly formed phases well. The addition of Ti-B modifiers significantly improved the mechanical and physical properties of the Al 5052 aluminum alloy. Nevertheless, only a 3% improvement in microhardness was achieved. The ultimate strength (US), yield strength (YS), and elastic modulus were investigated. In addition, the electrical conductivity was reduced by 56% compared to the base alloys. The effects of grain refinement on thermal expansion and corrosion rate were studied; the modified alloy with Ti-B in the as-cast state showed lower dimension stability than the samples treated with the FSP method. The grain refinement significantly affected the corrosion resistance; for example, single and double FSP passes reduced the corrosion rate by 11.4 times and 19.2 times, respectively. The successive FSP passes, resulting in a non-porous structure, increased the bulk density and formed precipitates with high bulk density.</description><subject>Additives</subject><subject>Alloying elements</subject><subject>Alloys</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Bulk density</subject><subject>Corrosion effects</subject><subject>Corrosion rate</subject><subject>Corrosion resistance</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Friction</subject><subject>Friction stir processing</subject><subject>Grain refinement</subject><subject>Grain size</subject><subject>Grain structure</subject><subject>Investigations</subject><subject>Magnesium</subject><subject>Mechanical properties</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Modulus of elasticity</subject><subject>Physical properties</subject><subject>Precipitates</subject><subject>Scanning electron microscopy</subject><subject>Solidification</subject><subject>Standard deviation</subject><subject>Thermal expansion</subject><subject>Titanium</subject><subject>Ultimate tensile strength</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkd9uFCEUxonR2Kb2xgcwJN4Y01H-zABzY7JuWm3SjU2s14SFM12aWViBqdk38XFlbK1VLuBw-OXLd_gQeknJO8578n5raEc4Ubx7gg5p34uG9m379FF9gI5zviF1cU4V65-jA95RQaQih-jneRjGCYIFHAd8lrwtPgb8tfiEL1O0kDOu97IBfLnZZ2_NeIJX3qaYS5psmdLcWMZUG_4WTrAJDp-OYEua2VljB6l4yLO-CXgxNqvruo9xj1fR-cGDwz982eAr33zEC-d8qUL5BXo2mDHD8f15hL6dnV4tPzcXXz6dLxcXjW2JKE1nOyWslYob54iRhBluOBA29NwKBdKtmRHSMDk4QVsLHSgO7bprOVsPLedH6MOd7m5ab8FZCKWOpHfJb03a62i8_vcl-I2-jrdaKS5pK6rAm3uBFL9PkIve-mxhHE2AOGXNBOuJYJSpir7-D72JUwp1vJmSsmby29HbO2r-5JxgeDBDiZ4z138zr_Crx_Yf0D8J818wrKhd</recordid><startdate>20220122</startdate><enddate>20220122</enddate><creator>Moustafa, Essam B</creator><creator>Alazwari, Mashhour A</creator><creator>Abushanab, Waheed Sami</creator><creator>Ghandourah, Emad Ismat</creator><creator>Mosleh, Ahmed O</creator><creator>Ahmed, Haitham M</creator><creator>Taha, Mohamed A</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0247-7975</orcidid><orcidid>https://orcid.org/0000-0003-4036-002X</orcidid><orcidid>https://orcid.org/0000-0002-5642-8968</orcidid><orcidid>https://orcid.org/0000-0002-5080-4934</orcidid><orcidid>https://orcid.org/0000-0003-4990-1398</orcidid><orcidid>https://orcid.org/0000-0002-0981-1059</orcidid></search><sort><creationdate>20220122</creationdate><title>Influence of Friction Stir Process on the Physical, Microstructural, Corrosive, and Electrical Properties of an Al-Mg Alloy Modified with Ti-B Additives</title><author>Moustafa, Essam B ; Alazwari, Mashhour A ; Abushanab, Waheed Sami ; Ghandourah, Emad Ismat ; Mosleh, Ahmed O ; Ahmed, Haitham M ; Taha, Mohamed A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-5c586cc783add0a702a3a3e02f93c68e7db2a67a27fd614ce5e83e4b5432bf433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additives</topic><topic>Alloying elements</topic><topic>Alloys</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Bulk density</topic><topic>Corrosion effects</topic><topic>Corrosion rate</topic><topic>Corrosion resistance</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Friction</topic><topic>Friction stir processing</topic><topic>Grain refinement</topic><topic>Grain size</topic><topic>Grain structure</topic><topic>Investigations</topic><topic>Magnesium</topic><topic>Mechanical properties</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Modulus of elasticity</topic><topic>Physical properties</topic><topic>Precipitates</topic><topic>Scanning electron microscopy</topic><topic>Solidification</topic><topic>Standard deviation</topic><topic>Thermal expansion</topic><topic>Titanium</topic><topic>Ultimate tensile strength</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moustafa, Essam B</creatorcontrib><creatorcontrib>Alazwari, Mashhour A</creatorcontrib><creatorcontrib>Abushanab, Waheed Sami</creatorcontrib><creatorcontrib>Ghandourah, Emad Ismat</creatorcontrib><creatorcontrib>Mosleh, Ahmed O</creatorcontrib><creatorcontrib>Ahmed, Haitham M</creatorcontrib><creatorcontrib>Taha, Mohamed A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moustafa, Essam B</au><au>Alazwari, Mashhour A</au><au>Abushanab, Waheed Sami</au><au>Ghandourah, Emad Ismat</au><au>Mosleh, Ahmed O</au><au>Ahmed, Haitham M</au><au>Taha, Mohamed A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Friction Stir Process on the Physical, Microstructural, Corrosive, and Electrical Properties of an Al-Mg Alloy Modified with Ti-B Additives</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-01-22</date><risdate>2022</risdate><volume>15</volume><issue>3</issue><spage>835</spage><pages>835-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In this study, two successive methods were used to improve the grain structure and the mechanical and physical properties of Al 5052 aluminum alloy. The modifying elements, 0.99 wt.% of titanium (Ti) and 0.2 wt.% of boron (B), were added during the casting process. After solidification, single- and double-pass friction stir processing (FSP) were performed to achieve additional grain refinement and disperse the newly formed phases well. The addition of Ti-B modifiers significantly improved the mechanical and physical properties of the Al 5052 aluminum alloy. Nevertheless, only a 3% improvement in microhardness was achieved. The ultimate strength (US), yield strength (YS), and elastic modulus were investigated. In addition, the electrical conductivity was reduced by 56% compared to the base alloys. The effects of grain refinement on thermal expansion and corrosion rate were studied; the modified alloy with Ti-B in the as-cast state showed lower dimension stability than the samples treated with the FSP method. The grain refinement significantly affected the corrosion resistance; for example, single and double FSP passes reduced the corrosion rate by 11.4 times and 19.2 times, respectively. The successive FSP passes, resulting in a non-porous structure, increased the bulk density and formed precipitates with high bulk density.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35160780</pmid><doi>10.3390/ma15030835</doi><orcidid>https://orcid.org/0000-0002-0247-7975</orcidid><orcidid>https://orcid.org/0000-0003-4036-002X</orcidid><orcidid>https://orcid.org/0000-0002-5642-8968</orcidid><orcidid>https://orcid.org/0000-0002-5080-4934</orcidid><orcidid>https://orcid.org/0000-0003-4990-1398</orcidid><orcidid>https://orcid.org/0000-0002-0981-1059</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-01, Vol.15 (3), p.835 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8837146 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Additives Alloying elements Alloys Aluminum alloys Aluminum base alloys Bulk density Corrosion effects Corrosion rate Corrosion resistance Electrical properties Electrical resistivity Friction Friction stir processing Grain refinement Grain size Grain structure Investigations Magnesium Mechanical properties Microhardness Microstructure Modulus of elasticity Physical properties Precipitates Scanning electron microscopy Solidification Standard deviation Thermal expansion Titanium Ultimate tensile strength Yield strength Yield stress |
title | Influence of Friction Stir Process on the Physical, Microstructural, Corrosive, and Electrical Properties of an Al-Mg Alloy Modified with Ti-B Additives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A11%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Friction%20Stir%20Process%20on%20the%20Physical,%20Microstructural,%20Corrosive,%20and%20Electrical%20Properties%20of%20an%20Al-Mg%20Alloy%20Modified%20with%20Ti-B%20Additives&rft.jtitle=Materials&rft.au=Moustafa,%20Essam%20B&rft.date=2022-01-22&rft.volume=15&rft.issue=3&rft.spage=835&rft.pages=835-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15030835&rft_dat=%3Cproquest_pubme%3E2629062128%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627760743&rft_id=info:pmid/35160780&rfr_iscdi=true |