Upregulation of Cathepsin X in Glioblastoma: Interplay with γ-Enolase and the Effects of Selective Cathepsin X Inhibitors

Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. Understanding GBM pathobiology and discovering novel therapeutic targets are critical to finding efficient treatments. Upregulation of the lysosomal cysteine carboxypeptidase cathepsin X has been linked to immune dysfunc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2022-02, Vol.23 (3), p.1784
Hauptverfasser: Majc, Bernarda, Habič, Anamarija, Novak, Metka, Rotter, Ana, Porčnik, Andrej, Mlakar, Jernej, Župunski, Vera, Pečar Fonović, Urša, Knez, Damijan, Zidar, Nace, Gobec, Stanislav, Kos, Janko, Lah Turnšek, Tamara, Pišlar, Anja, Breznik, Barbara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 1784
container_title International journal of molecular sciences
container_volume 23
creator Majc, Bernarda
Habič, Anamarija
Novak, Metka
Rotter, Ana
Porčnik, Andrej
Mlakar, Jernej
Župunski, Vera
Pečar Fonović, Urša
Knez, Damijan
Zidar, Nace
Gobec, Stanislav
Kos, Janko
Lah Turnšek, Tamara
Pišlar, Anja
Breznik, Barbara
description Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. Understanding GBM pathobiology and discovering novel therapeutic targets are critical to finding efficient treatments. Upregulation of the lysosomal cysteine carboxypeptidase cathepsin X has been linked to immune dysfunction and neurodegenerative diseases, but its role in cancer and particularly in GBM progression in patients is unknown. In this study, cathepsin X expression and activity were found to be upregulated in human GBM tissues compared to low-grade gliomas and nontumor brain tissues. Cathepsin X was localized in GBM cells as well as in tumor-associated macrophages and microglia. Subsequently, potent irreversible (AMS36) and reversible (Z7) selective cathepsin X inhibitors were tested in vitro. Selective cathepsin X inhibitors decreased the viability of patient-derived GBM cells as well as macrophages and microglia that were cultured in conditioned media of GBM cells. We next examined the expression pattern of neuron-specific enzyme γ-enolase, which is the target of cathepsin X. We found that there was a correlation between high proteolytic activity of cathepsin X and -terminal cleavage of γ-enolase and that cathepsin X and γ-enolase were colocalized in GBM tissues, preferentially in GBM-associated macrophages and microglia. Taken together, our results on patient-derived material suggest that cathepsin X is involved in GBM progression and is a potential target for therapeutic approaches against GBM.
doi_str_mv 10.3390/ijms23031784
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8836869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2627760741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-83bae2f3253caf02565765fcb2a651c87c12882f80e5bef833b79d7edff9b8bb3</originalsourceid><addsrcrecordid>eNpVkc1KAzEUhYMo1r-dawm4dTSTdJKMC0FKrQXBhQruQjJN2pRpMiZppb6W7-EzGfGHurn3wj33uwcOAMclOiekRhd2voiYIFIy3t8Ce2Uf4wIhyrY35h7Yj3GOECa4qndBj1QlJQzRPfD21AU9XbYyWe-gN3Ag00x30Tr4DHMZtdarVsbkF_ISjl3SoWvlGr7aNIMf78XQ-bzVULoJzIdwaIxuUvwiPeg2j3al_zHHbmaVTT7EQ7BjZBv10U8_AE83w8fBbXF3PxoPru-KhrA6FZwoqbHJzkkjDcIVrRitTKOwpFXZcNaUmHNsONKV0oYTolg9YXpiTK24UuQAXH1zu6Va6EmjXQqyFV2wCxnWwksr_m-cnYmpXwnOCeW0zoDTH0DwL0sdk5j7ZXDZs8AUM0YR65dZdfataoKPMWjz96FE4ispsZlUlp9suvoT_0ZDPgF_RJKL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627760741</pqid></control><display><type>article</type><title>Upregulation of Cathepsin X in Glioblastoma: Interplay with γ-Enolase and the Effects of Selective Cathepsin X Inhibitors</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Majc, Bernarda ; Habič, Anamarija ; Novak, Metka ; Rotter, Ana ; Porčnik, Andrej ; Mlakar, Jernej ; Župunski, Vera ; Pečar Fonović, Urša ; Knez, Damijan ; Zidar, Nace ; Gobec, Stanislav ; Kos, Janko ; Lah Turnšek, Tamara ; Pišlar, Anja ; Breznik, Barbara</creator><creatorcontrib>Majc, Bernarda ; Habič, Anamarija ; Novak, Metka ; Rotter, Ana ; Porčnik, Andrej ; Mlakar, Jernej ; Župunski, Vera ; Pečar Fonović, Urša ; Knez, Damijan ; Zidar, Nace ; Gobec, Stanislav ; Kos, Janko ; Lah Turnšek, Tamara ; Pišlar, Anja ; Breznik, Barbara</creatorcontrib><description>Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. Understanding GBM pathobiology and discovering novel therapeutic targets are critical to finding efficient treatments. Upregulation of the lysosomal cysteine carboxypeptidase cathepsin X has been linked to immune dysfunction and neurodegenerative diseases, but its role in cancer and particularly in GBM progression in patients is unknown. In this study, cathepsin X expression and activity were found to be upregulated in human GBM tissues compared to low-grade gliomas and nontumor brain tissues. Cathepsin X was localized in GBM cells as well as in tumor-associated macrophages and microglia. Subsequently, potent irreversible (AMS36) and reversible (Z7) selective cathepsin X inhibitors were tested in vitro. Selective cathepsin X inhibitors decreased the viability of patient-derived GBM cells as well as macrophages and microglia that were cultured in conditioned media of GBM cells. We next examined the expression pattern of neuron-specific enzyme γ-enolase, which is the target of cathepsin X. We found that there was a correlation between high proteolytic activity of cathepsin X and -terminal cleavage of γ-enolase and that cathepsin X and γ-enolase were colocalized in GBM tissues, preferentially in GBM-associated macrophages and microglia. Taken together, our results on patient-derived material suggest that cathepsin X is involved in GBM progression and is a potential target for therapeutic approaches against GBM.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms23031784</identifier><identifier>PMID: 35163706</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Biomarkers ; Brain cancer ; Brain Neoplasms - drug therapy ; Brain Neoplasms - genetics ; Brain Neoplasms - metabolism ; Brain tumors ; Cancer therapies ; Carboxypeptidase ; Cathepsin Z - antagonists &amp; inhibitors ; Cathepsin Z - genetics ; Cathepsin Z - metabolism ; Cell growth ; Enzymes ; Gene expression ; Gene Expression Regulation, Neoplastic ; Glioblastoma ; Glioblastoma - drug therapy ; Glioblastoma - genetics ; Glioblastoma - metabolism ; Glioma ; Humans ; Immune system ; Inflammation ; Inhibitors ; Localization ; Macrophages ; Macrophages - drug effects ; Macrophages - metabolism ; Medical prognosis ; Microglia ; Microglia - drug effects ; Microglia - metabolism ; Neurons ; Patients ; Peptides ; Phosphopyruvate hydratase ; Phosphopyruvate Hydratase - metabolism ; Proteins ; Proteolysis ; Signal transduction ; Therapeutic targets ; Tumor Microenvironment ; Tumors ; Up-Regulation</subject><ispartof>International journal of molecular sciences, 2022-02, Vol.23 (3), p.1784</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-83bae2f3253caf02565765fcb2a651c87c12882f80e5bef833b79d7edff9b8bb3</citedby><cites>FETCH-LOGICAL-c379t-83bae2f3253caf02565765fcb2a651c87c12882f80e5bef833b79d7edff9b8bb3</cites><orcidid>0000-0003-0247-5811 ; 0000-0001-6660-1499 ; 0000-0003-1905-0158 ; 0000-0002-9678-3083 ; 0000-0002-1159-1024 ; 0000-0001-9917-1384 ; 0000-0003-2672-4624 ; 0000-0002-6879-0980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836869/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836869/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35163706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Majc, Bernarda</creatorcontrib><creatorcontrib>Habič, Anamarija</creatorcontrib><creatorcontrib>Novak, Metka</creatorcontrib><creatorcontrib>Rotter, Ana</creatorcontrib><creatorcontrib>Porčnik, Andrej</creatorcontrib><creatorcontrib>Mlakar, Jernej</creatorcontrib><creatorcontrib>Župunski, Vera</creatorcontrib><creatorcontrib>Pečar Fonović, Urša</creatorcontrib><creatorcontrib>Knez, Damijan</creatorcontrib><creatorcontrib>Zidar, Nace</creatorcontrib><creatorcontrib>Gobec, Stanislav</creatorcontrib><creatorcontrib>Kos, Janko</creatorcontrib><creatorcontrib>Lah Turnšek, Tamara</creatorcontrib><creatorcontrib>Pišlar, Anja</creatorcontrib><creatorcontrib>Breznik, Barbara</creatorcontrib><title>Upregulation of Cathepsin X in Glioblastoma: Interplay with γ-Enolase and the Effects of Selective Cathepsin X Inhibitors</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. Understanding GBM pathobiology and discovering novel therapeutic targets are critical to finding efficient treatments. Upregulation of the lysosomal cysteine carboxypeptidase cathepsin X has been linked to immune dysfunction and neurodegenerative diseases, but its role in cancer and particularly in GBM progression in patients is unknown. In this study, cathepsin X expression and activity were found to be upregulated in human GBM tissues compared to low-grade gliomas and nontumor brain tissues. Cathepsin X was localized in GBM cells as well as in tumor-associated macrophages and microglia. Subsequently, potent irreversible (AMS36) and reversible (Z7) selective cathepsin X inhibitors were tested in vitro. Selective cathepsin X inhibitors decreased the viability of patient-derived GBM cells as well as macrophages and microglia that were cultured in conditioned media of GBM cells. We next examined the expression pattern of neuron-specific enzyme γ-enolase, which is the target of cathepsin X. We found that there was a correlation between high proteolytic activity of cathepsin X and -terminal cleavage of γ-enolase and that cathepsin X and γ-enolase were colocalized in GBM tissues, preferentially in GBM-associated macrophages and microglia. Taken together, our results on patient-derived material suggest that cathepsin X is involved in GBM progression and is a potential target for therapeutic approaches against GBM.</description><subject>Biomarkers</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain tumors</subject><subject>Cancer therapies</subject><subject>Carboxypeptidase</subject><subject>Cathepsin Z - antagonists &amp; inhibitors</subject><subject>Cathepsin Z - genetics</subject><subject>Cathepsin Z - metabolism</subject><subject>Cell growth</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Glioblastoma</subject><subject>Glioblastoma - drug therapy</subject><subject>Glioblastoma - genetics</subject><subject>Glioblastoma - metabolism</subject><subject>Glioma</subject><subject>Humans</subject><subject>Immune system</subject><subject>Inflammation</subject><subject>Inhibitors</subject><subject>Localization</subject><subject>Macrophages</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - metabolism</subject><subject>Medical prognosis</subject><subject>Microglia</subject><subject>Microglia - drug effects</subject><subject>Microglia - metabolism</subject><subject>Neurons</subject><subject>Patients</subject><subject>Peptides</subject><subject>Phosphopyruvate hydratase</subject><subject>Phosphopyruvate Hydratase - metabolism</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Signal transduction</subject><subject>Therapeutic targets</subject><subject>Tumor Microenvironment</subject><subject>Tumors</subject><subject>Up-Regulation</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpVkc1KAzEUhYMo1r-dawm4dTSTdJKMC0FKrQXBhQruQjJN2pRpMiZppb6W7-EzGfGHurn3wj33uwcOAMclOiekRhd2voiYIFIy3t8Ce2Uf4wIhyrY35h7Yj3GOECa4qndBj1QlJQzRPfD21AU9XbYyWe-gN3Ag00x30Tr4DHMZtdarVsbkF_ISjl3SoWvlGr7aNIMf78XQ-bzVULoJzIdwaIxuUvwiPeg2j3al_zHHbmaVTT7EQ7BjZBv10U8_AE83w8fBbXF3PxoPru-KhrA6FZwoqbHJzkkjDcIVrRitTKOwpFXZcNaUmHNsONKV0oYTolg9YXpiTK24UuQAXH1zu6Va6EmjXQqyFV2wCxnWwksr_m-cnYmpXwnOCeW0zoDTH0DwL0sdk5j7ZXDZs8AUM0YR65dZdfataoKPMWjz96FE4ispsZlUlp9suvoT_0ZDPgF_RJKL</recordid><startdate>20220204</startdate><enddate>20220204</enddate><creator>Majc, Bernarda</creator><creator>Habič, Anamarija</creator><creator>Novak, Metka</creator><creator>Rotter, Ana</creator><creator>Porčnik, Andrej</creator><creator>Mlakar, Jernej</creator><creator>Župunski, Vera</creator><creator>Pečar Fonović, Urša</creator><creator>Knez, Damijan</creator><creator>Zidar, Nace</creator><creator>Gobec, Stanislav</creator><creator>Kos, Janko</creator><creator>Lah Turnšek, Tamara</creator><creator>Pišlar, Anja</creator><creator>Breznik, Barbara</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0247-5811</orcidid><orcidid>https://orcid.org/0000-0001-6660-1499</orcidid><orcidid>https://orcid.org/0000-0003-1905-0158</orcidid><orcidid>https://orcid.org/0000-0002-9678-3083</orcidid><orcidid>https://orcid.org/0000-0002-1159-1024</orcidid><orcidid>https://orcid.org/0000-0001-9917-1384</orcidid><orcidid>https://orcid.org/0000-0003-2672-4624</orcidid><orcidid>https://orcid.org/0000-0002-6879-0980</orcidid></search><sort><creationdate>20220204</creationdate><title>Upregulation of Cathepsin X in Glioblastoma: Interplay with γ-Enolase and the Effects of Selective Cathepsin X Inhibitors</title><author>Majc, Bernarda ; Habič, Anamarija ; Novak, Metka ; Rotter, Ana ; Porčnik, Andrej ; Mlakar, Jernej ; Župunski, Vera ; Pečar Fonović, Urša ; Knez, Damijan ; Zidar, Nace ; Gobec, Stanislav ; Kos, Janko ; Lah Turnšek, Tamara ; Pišlar, Anja ; Breznik, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-83bae2f3253caf02565765fcb2a651c87c12882f80e5bef833b79d7edff9b8bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomarkers</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain tumors</topic><topic>Cancer therapies</topic><topic>Carboxypeptidase</topic><topic>Cathepsin Z - antagonists &amp; inhibitors</topic><topic>Cathepsin Z - genetics</topic><topic>Cathepsin Z - metabolism</topic><topic>Cell growth</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Glioblastoma</topic><topic>Glioblastoma - drug therapy</topic><topic>Glioblastoma - genetics</topic><topic>Glioblastoma - metabolism</topic><topic>Glioma</topic><topic>Humans</topic><topic>Immune system</topic><topic>Inflammation</topic><topic>Inhibitors</topic><topic>Localization</topic><topic>Macrophages</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - metabolism</topic><topic>Medical prognosis</topic><topic>Microglia</topic><topic>Microglia - drug effects</topic><topic>Microglia - metabolism</topic><topic>Neurons</topic><topic>Patients</topic><topic>Peptides</topic><topic>Phosphopyruvate hydratase</topic><topic>Phosphopyruvate Hydratase - metabolism</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Signal transduction</topic><topic>Therapeutic targets</topic><topic>Tumor Microenvironment</topic><topic>Tumors</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majc, Bernarda</creatorcontrib><creatorcontrib>Habič, Anamarija</creatorcontrib><creatorcontrib>Novak, Metka</creatorcontrib><creatorcontrib>Rotter, Ana</creatorcontrib><creatorcontrib>Porčnik, Andrej</creatorcontrib><creatorcontrib>Mlakar, Jernej</creatorcontrib><creatorcontrib>Župunski, Vera</creatorcontrib><creatorcontrib>Pečar Fonović, Urša</creatorcontrib><creatorcontrib>Knez, Damijan</creatorcontrib><creatorcontrib>Zidar, Nace</creatorcontrib><creatorcontrib>Gobec, Stanislav</creatorcontrib><creatorcontrib>Kos, Janko</creatorcontrib><creatorcontrib>Lah Turnšek, Tamara</creatorcontrib><creatorcontrib>Pišlar, Anja</creatorcontrib><creatorcontrib>Breznik, Barbara</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majc, Bernarda</au><au>Habič, Anamarija</au><au>Novak, Metka</au><au>Rotter, Ana</au><au>Porčnik, Andrej</au><au>Mlakar, Jernej</au><au>Župunski, Vera</au><au>Pečar Fonović, Urša</au><au>Knez, Damijan</au><au>Zidar, Nace</au><au>Gobec, Stanislav</au><au>Kos, Janko</au><au>Lah Turnšek, Tamara</au><au>Pišlar, Anja</au><au>Breznik, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upregulation of Cathepsin X in Glioblastoma: Interplay with γ-Enolase and the Effects of Selective Cathepsin X Inhibitors</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2022-02-04</date><risdate>2022</risdate><volume>23</volume><issue>3</issue><spage>1784</spage><pages>1784-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. Understanding GBM pathobiology and discovering novel therapeutic targets are critical to finding efficient treatments. Upregulation of the lysosomal cysteine carboxypeptidase cathepsin X has been linked to immune dysfunction and neurodegenerative diseases, but its role in cancer and particularly in GBM progression in patients is unknown. In this study, cathepsin X expression and activity were found to be upregulated in human GBM tissues compared to low-grade gliomas and nontumor brain tissues. Cathepsin X was localized in GBM cells as well as in tumor-associated macrophages and microglia. Subsequently, potent irreversible (AMS36) and reversible (Z7) selective cathepsin X inhibitors were tested in vitro. Selective cathepsin X inhibitors decreased the viability of patient-derived GBM cells as well as macrophages and microglia that were cultured in conditioned media of GBM cells. We next examined the expression pattern of neuron-specific enzyme γ-enolase, which is the target of cathepsin X. We found that there was a correlation between high proteolytic activity of cathepsin X and -terminal cleavage of γ-enolase and that cathepsin X and γ-enolase were colocalized in GBM tissues, preferentially in GBM-associated macrophages and microglia. Taken together, our results on patient-derived material suggest that cathepsin X is involved in GBM progression and is a potential target for therapeutic approaches against GBM.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35163706</pmid><doi>10.3390/ijms23031784</doi><orcidid>https://orcid.org/0000-0003-0247-5811</orcidid><orcidid>https://orcid.org/0000-0001-6660-1499</orcidid><orcidid>https://orcid.org/0000-0003-1905-0158</orcidid><orcidid>https://orcid.org/0000-0002-9678-3083</orcidid><orcidid>https://orcid.org/0000-0002-1159-1024</orcidid><orcidid>https://orcid.org/0000-0001-9917-1384</orcidid><orcidid>https://orcid.org/0000-0003-2672-4624</orcidid><orcidid>https://orcid.org/0000-0002-6879-0980</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2022-02, Vol.23 (3), p.1784
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8836869
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biomarkers
Brain cancer
Brain Neoplasms - drug therapy
Brain Neoplasms - genetics
Brain Neoplasms - metabolism
Brain tumors
Cancer therapies
Carboxypeptidase
Cathepsin Z - antagonists & inhibitors
Cathepsin Z - genetics
Cathepsin Z - metabolism
Cell growth
Enzymes
Gene expression
Gene Expression Regulation, Neoplastic
Glioblastoma
Glioblastoma - drug therapy
Glioblastoma - genetics
Glioblastoma - metabolism
Glioma
Humans
Immune system
Inflammation
Inhibitors
Localization
Macrophages
Macrophages - drug effects
Macrophages - metabolism
Medical prognosis
Microglia
Microglia - drug effects
Microglia - metabolism
Neurons
Patients
Peptides
Phosphopyruvate hydratase
Phosphopyruvate Hydratase - metabolism
Proteins
Proteolysis
Signal transduction
Therapeutic targets
Tumor Microenvironment
Tumors
Up-Regulation
title Upregulation of Cathepsin X in Glioblastoma: Interplay with γ-Enolase and the Effects of Selective Cathepsin X Inhibitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upregulation%20of%20Cathepsin%20X%20in%20Glioblastoma:%20Interplay%20with%20%CE%B3-Enolase%20and%20the%20Effects%20of%20Selective%20Cathepsin%20X%20Inhibitors&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Majc,%20Bernarda&rft.date=2022-02-04&rft.volume=23&rft.issue=3&rft.spage=1784&rft.pages=1784-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms23031784&rft_dat=%3Cproquest_pubme%3E2627760741%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627760741&rft_id=info:pmid/35163706&rfr_iscdi=true