Upregulation of Cathepsin X in Glioblastoma: Interplay with γ-Enolase and the Effects of Selective Cathepsin X Inhibitors
Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. Understanding GBM pathobiology and discovering novel therapeutic targets are critical to finding efficient treatments. Upregulation of the lysosomal cysteine carboxypeptidase cathepsin X has been linked to immune dysfunc...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2022-02, Vol.23 (3), p.1784 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 1784 |
container_title | International journal of molecular sciences |
container_volume | 23 |
creator | Majc, Bernarda Habič, Anamarija Novak, Metka Rotter, Ana Porčnik, Andrej Mlakar, Jernej Župunski, Vera Pečar Fonović, Urša Knez, Damijan Zidar, Nace Gobec, Stanislav Kos, Janko Lah Turnšek, Tamara Pišlar, Anja Breznik, Barbara |
description | Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. Understanding GBM pathobiology and discovering novel therapeutic targets are critical to finding efficient treatments. Upregulation of the lysosomal cysteine carboxypeptidase cathepsin X has been linked to immune dysfunction and neurodegenerative diseases, but its role in cancer and particularly in GBM progression in patients is unknown. In this study, cathepsin X expression and activity were found to be upregulated in human GBM tissues compared to low-grade gliomas and nontumor brain tissues. Cathepsin X was localized in GBM cells as well as in tumor-associated macrophages and microglia. Subsequently, potent irreversible (AMS36) and reversible (Z7) selective cathepsin X inhibitors were tested in vitro. Selective cathepsin X inhibitors decreased the viability of patient-derived GBM cells as well as macrophages and microglia that were cultured in conditioned media of GBM cells. We next examined the expression pattern of neuron-specific enzyme γ-enolase, which is the target of cathepsin X. We found that there was a correlation between high proteolytic activity of cathepsin X and
-terminal cleavage of γ-enolase and that cathepsin X and γ-enolase were colocalized in GBM tissues, preferentially in GBM-associated macrophages and microglia. Taken together, our results on patient-derived material suggest that cathepsin X is involved in GBM progression and is a potential target for therapeutic approaches against GBM. |
doi_str_mv | 10.3390/ijms23031784 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8836869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2627760741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-83bae2f3253caf02565765fcb2a651c87c12882f80e5bef833b79d7edff9b8bb3</originalsourceid><addsrcrecordid>eNpVkc1KAzEUhYMo1r-dawm4dTSTdJKMC0FKrQXBhQruQjJN2pRpMiZppb6W7-EzGfGHurn3wj33uwcOAMclOiekRhd2voiYIFIy3t8Ce2Uf4wIhyrY35h7Yj3GOECa4qndBj1QlJQzRPfD21AU9XbYyWe-gN3Ag00x30Tr4DHMZtdarVsbkF_ISjl3SoWvlGr7aNIMf78XQ-bzVULoJzIdwaIxuUvwiPeg2j3al_zHHbmaVTT7EQ7BjZBv10U8_AE83w8fBbXF3PxoPru-KhrA6FZwoqbHJzkkjDcIVrRitTKOwpFXZcNaUmHNsONKV0oYTolg9YXpiTK24UuQAXH1zu6Va6EmjXQqyFV2wCxnWwksr_m-cnYmpXwnOCeW0zoDTH0DwL0sdk5j7ZXDZs8AUM0YR65dZdfataoKPMWjz96FE4ispsZlUlp9suvoT_0ZDPgF_RJKL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627760741</pqid></control><display><type>article</type><title>Upregulation of Cathepsin X in Glioblastoma: Interplay with γ-Enolase and the Effects of Selective Cathepsin X Inhibitors</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Majc, Bernarda ; Habič, Anamarija ; Novak, Metka ; Rotter, Ana ; Porčnik, Andrej ; Mlakar, Jernej ; Župunski, Vera ; Pečar Fonović, Urša ; Knez, Damijan ; Zidar, Nace ; Gobec, Stanislav ; Kos, Janko ; Lah Turnšek, Tamara ; Pišlar, Anja ; Breznik, Barbara</creator><creatorcontrib>Majc, Bernarda ; Habič, Anamarija ; Novak, Metka ; Rotter, Ana ; Porčnik, Andrej ; Mlakar, Jernej ; Župunski, Vera ; Pečar Fonović, Urša ; Knez, Damijan ; Zidar, Nace ; Gobec, Stanislav ; Kos, Janko ; Lah Turnšek, Tamara ; Pišlar, Anja ; Breznik, Barbara</creatorcontrib><description>Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. Understanding GBM pathobiology and discovering novel therapeutic targets are critical to finding efficient treatments. Upregulation of the lysosomal cysteine carboxypeptidase cathepsin X has been linked to immune dysfunction and neurodegenerative diseases, but its role in cancer and particularly in GBM progression in patients is unknown. In this study, cathepsin X expression and activity were found to be upregulated in human GBM tissues compared to low-grade gliomas and nontumor brain tissues. Cathepsin X was localized in GBM cells as well as in tumor-associated macrophages and microglia. Subsequently, potent irreversible (AMS36) and reversible (Z7) selective cathepsin X inhibitors were tested in vitro. Selective cathepsin X inhibitors decreased the viability of patient-derived GBM cells as well as macrophages and microglia that were cultured in conditioned media of GBM cells. We next examined the expression pattern of neuron-specific enzyme γ-enolase, which is the target of cathepsin X. We found that there was a correlation between high proteolytic activity of cathepsin X and
-terminal cleavage of γ-enolase and that cathepsin X and γ-enolase were colocalized in GBM tissues, preferentially in GBM-associated macrophages and microglia. Taken together, our results on patient-derived material suggest that cathepsin X is involved in GBM progression and is a potential target for therapeutic approaches against GBM.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms23031784</identifier><identifier>PMID: 35163706</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Biomarkers ; Brain cancer ; Brain Neoplasms - drug therapy ; Brain Neoplasms - genetics ; Brain Neoplasms - metabolism ; Brain tumors ; Cancer therapies ; Carboxypeptidase ; Cathepsin Z - antagonists & inhibitors ; Cathepsin Z - genetics ; Cathepsin Z - metabolism ; Cell growth ; Enzymes ; Gene expression ; Gene Expression Regulation, Neoplastic ; Glioblastoma ; Glioblastoma - drug therapy ; Glioblastoma - genetics ; Glioblastoma - metabolism ; Glioma ; Humans ; Immune system ; Inflammation ; Inhibitors ; Localization ; Macrophages ; Macrophages - drug effects ; Macrophages - metabolism ; Medical prognosis ; Microglia ; Microglia - drug effects ; Microglia - metabolism ; Neurons ; Patients ; Peptides ; Phosphopyruvate hydratase ; Phosphopyruvate Hydratase - metabolism ; Proteins ; Proteolysis ; Signal transduction ; Therapeutic targets ; Tumor Microenvironment ; Tumors ; Up-Regulation</subject><ispartof>International journal of molecular sciences, 2022-02, Vol.23 (3), p.1784</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-83bae2f3253caf02565765fcb2a651c87c12882f80e5bef833b79d7edff9b8bb3</citedby><cites>FETCH-LOGICAL-c379t-83bae2f3253caf02565765fcb2a651c87c12882f80e5bef833b79d7edff9b8bb3</cites><orcidid>0000-0003-0247-5811 ; 0000-0001-6660-1499 ; 0000-0003-1905-0158 ; 0000-0002-9678-3083 ; 0000-0002-1159-1024 ; 0000-0001-9917-1384 ; 0000-0003-2672-4624 ; 0000-0002-6879-0980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836869/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836869/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35163706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Majc, Bernarda</creatorcontrib><creatorcontrib>Habič, Anamarija</creatorcontrib><creatorcontrib>Novak, Metka</creatorcontrib><creatorcontrib>Rotter, Ana</creatorcontrib><creatorcontrib>Porčnik, Andrej</creatorcontrib><creatorcontrib>Mlakar, Jernej</creatorcontrib><creatorcontrib>Župunski, Vera</creatorcontrib><creatorcontrib>Pečar Fonović, Urša</creatorcontrib><creatorcontrib>Knez, Damijan</creatorcontrib><creatorcontrib>Zidar, Nace</creatorcontrib><creatorcontrib>Gobec, Stanislav</creatorcontrib><creatorcontrib>Kos, Janko</creatorcontrib><creatorcontrib>Lah Turnšek, Tamara</creatorcontrib><creatorcontrib>Pišlar, Anja</creatorcontrib><creatorcontrib>Breznik, Barbara</creatorcontrib><title>Upregulation of Cathepsin X in Glioblastoma: Interplay with γ-Enolase and the Effects of Selective Cathepsin X Inhibitors</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. Understanding GBM pathobiology and discovering novel therapeutic targets are critical to finding efficient treatments. Upregulation of the lysosomal cysteine carboxypeptidase cathepsin X has been linked to immune dysfunction and neurodegenerative diseases, but its role in cancer and particularly in GBM progression in patients is unknown. In this study, cathepsin X expression and activity were found to be upregulated in human GBM tissues compared to low-grade gliomas and nontumor brain tissues. Cathepsin X was localized in GBM cells as well as in tumor-associated macrophages and microglia. Subsequently, potent irreversible (AMS36) and reversible (Z7) selective cathepsin X inhibitors were tested in vitro. Selective cathepsin X inhibitors decreased the viability of patient-derived GBM cells as well as macrophages and microglia that were cultured in conditioned media of GBM cells. We next examined the expression pattern of neuron-specific enzyme γ-enolase, which is the target of cathepsin X. We found that there was a correlation between high proteolytic activity of cathepsin X and
-terminal cleavage of γ-enolase and that cathepsin X and γ-enolase were colocalized in GBM tissues, preferentially in GBM-associated macrophages and microglia. Taken together, our results on patient-derived material suggest that cathepsin X is involved in GBM progression and is a potential target for therapeutic approaches against GBM.</description><subject>Biomarkers</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain tumors</subject><subject>Cancer therapies</subject><subject>Carboxypeptidase</subject><subject>Cathepsin Z - antagonists & inhibitors</subject><subject>Cathepsin Z - genetics</subject><subject>Cathepsin Z - metabolism</subject><subject>Cell growth</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Glioblastoma</subject><subject>Glioblastoma - drug therapy</subject><subject>Glioblastoma - genetics</subject><subject>Glioblastoma - metabolism</subject><subject>Glioma</subject><subject>Humans</subject><subject>Immune system</subject><subject>Inflammation</subject><subject>Inhibitors</subject><subject>Localization</subject><subject>Macrophages</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - metabolism</subject><subject>Medical prognosis</subject><subject>Microglia</subject><subject>Microglia - drug effects</subject><subject>Microglia - metabolism</subject><subject>Neurons</subject><subject>Patients</subject><subject>Peptides</subject><subject>Phosphopyruvate hydratase</subject><subject>Phosphopyruvate Hydratase - metabolism</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Signal transduction</subject><subject>Therapeutic targets</subject><subject>Tumor Microenvironment</subject><subject>Tumors</subject><subject>Up-Regulation</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpVkc1KAzEUhYMo1r-dawm4dTSTdJKMC0FKrQXBhQruQjJN2pRpMiZppb6W7-EzGfGHurn3wj33uwcOAMclOiekRhd2voiYIFIy3t8Ce2Uf4wIhyrY35h7Yj3GOECa4qndBj1QlJQzRPfD21AU9XbYyWe-gN3Ag00x30Tr4DHMZtdarVsbkF_ISjl3SoWvlGr7aNIMf78XQ-bzVULoJzIdwaIxuUvwiPeg2j3al_zHHbmaVTT7EQ7BjZBv10U8_AE83w8fBbXF3PxoPru-KhrA6FZwoqbHJzkkjDcIVrRitTKOwpFXZcNaUmHNsONKV0oYTolg9YXpiTK24UuQAXH1zu6Va6EmjXQqyFV2wCxnWwksr_m-cnYmpXwnOCeW0zoDTH0DwL0sdk5j7ZXDZs8AUM0YR65dZdfataoKPMWjz96FE4ispsZlUlp9suvoT_0ZDPgF_RJKL</recordid><startdate>20220204</startdate><enddate>20220204</enddate><creator>Majc, Bernarda</creator><creator>Habič, Anamarija</creator><creator>Novak, Metka</creator><creator>Rotter, Ana</creator><creator>Porčnik, Andrej</creator><creator>Mlakar, Jernej</creator><creator>Župunski, Vera</creator><creator>Pečar Fonović, Urša</creator><creator>Knez, Damijan</creator><creator>Zidar, Nace</creator><creator>Gobec, Stanislav</creator><creator>Kos, Janko</creator><creator>Lah Turnšek, Tamara</creator><creator>Pišlar, Anja</creator><creator>Breznik, Barbara</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0247-5811</orcidid><orcidid>https://orcid.org/0000-0001-6660-1499</orcidid><orcidid>https://orcid.org/0000-0003-1905-0158</orcidid><orcidid>https://orcid.org/0000-0002-9678-3083</orcidid><orcidid>https://orcid.org/0000-0002-1159-1024</orcidid><orcidid>https://orcid.org/0000-0001-9917-1384</orcidid><orcidid>https://orcid.org/0000-0003-2672-4624</orcidid><orcidid>https://orcid.org/0000-0002-6879-0980</orcidid></search><sort><creationdate>20220204</creationdate><title>Upregulation of Cathepsin X in Glioblastoma: Interplay with γ-Enolase and the Effects of Selective Cathepsin X Inhibitors</title><author>Majc, Bernarda ; Habič, Anamarija ; Novak, Metka ; Rotter, Ana ; Porčnik, Andrej ; Mlakar, Jernej ; Župunski, Vera ; Pečar Fonović, Urša ; Knez, Damijan ; Zidar, Nace ; Gobec, Stanislav ; Kos, Janko ; Lah Turnšek, Tamara ; Pišlar, Anja ; Breznik, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-83bae2f3253caf02565765fcb2a651c87c12882f80e5bef833b79d7edff9b8bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomarkers</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain tumors</topic><topic>Cancer therapies</topic><topic>Carboxypeptidase</topic><topic>Cathepsin Z - antagonists & inhibitors</topic><topic>Cathepsin Z - genetics</topic><topic>Cathepsin Z - metabolism</topic><topic>Cell growth</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Glioblastoma</topic><topic>Glioblastoma - drug therapy</topic><topic>Glioblastoma - genetics</topic><topic>Glioblastoma - metabolism</topic><topic>Glioma</topic><topic>Humans</topic><topic>Immune system</topic><topic>Inflammation</topic><topic>Inhibitors</topic><topic>Localization</topic><topic>Macrophages</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - metabolism</topic><topic>Medical prognosis</topic><topic>Microglia</topic><topic>Microglia - drug effects</topic><topic>Microglia - metabolism</topic><topic>Neurons</topic><topic>Patients</topic><topic>Peptides</topic><topic>Phosphopyruvate hydratase</topic><topic>Phosphopyruvate Hydratase - metabolism</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Signal transduction</topic><topic>Therapeutic targets</topic><topic>Tumor Microenvironment</topic><topic>Tumors</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majc, Bernarda</creatorcontrib><creatorcontrib>Habič, Anamarija</creatorcontrib><creatorcontrib>Novak, Metka</creatorcontrib><creatorcontrib>Rotter, Ana</creatorcontrib><creatorcontrib>Porčnik, Andrej</creatorcontrib><creatorcontrib>Mlakar, Jernej</creatorcontrib><creatorcontrib>Župunski, Vera</creatorcontrib><creatorcontrib>Pečar Fonović, Urša</creatorcontrib><creatorcontrib>Knez, Damijan</creatorcontrib><creatorcontrib>Zidar, Nace</creatorcontrib><creatorcontrib>Gobec, Stanislav</creatorcontrib><creatorcontrib>Kos, Janko</creatorcontrib><creatorcontrib>Lah Turnšek, Tamara</creatorcontrib><creatorcontrib>Pišlar, Anja</creatorcontrib><creatorcontrib>Breznik, Barbara</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majc, Bernarda</au><au>Habič, Anamarija</au><au>Novak, Metka</au><au>Rotter, Ana</au><au>Porčnik, Andrej</au><au>Mlakar, Jernej</au><au>Župunski, Vera</au><au>Pečar Fonović, Urša</au><au>Knez, Damijan</au><au>Zidar, Nace</au><au>Gobec, Stanislav</au><au>Kos, Janko</au><au>Lah Turnšek, Tamara</au><au>Pišlar, Anja</au><au>Breznik, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upregulation of Cathepsin X in Glioblastoma: Interplay with γ-Enolase and the Effects of Selective Cathepsin X Inhibitors</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2022-02-04</date><risdate>2022</risdate><volume>23</volume><issue>3</issue><spage>1784</spage><pages>1784-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. Understanding GBM pathobiology and discovering novel therapeutic targets are critical to finding efficient treatments. Upregulation of the lysosomal cysteine carboxypeptidase cathepsin X has been linked to immune dysfunction and neurodegenerative diseases, but its role in cancer and particularly in GBM progression in patients is unknown. In this study, cathepsin X expression and activity were found to be upregulated in human GBM tissues compared to low-grade gliomas and nontumor brain tissues. Cathepsin X was localized in GBM cells as well as in tumor-associated macrophages and microglia. Subsequently, potent irreversible (AMS36) and reversible (Z7) selective cathepsin X inhibitors were tested in vitro. Selective cathepsin X inhibitors decreased the viability of patient-derived GBM cells as well as macrophages and microglia that were cultured in conditioned media of GBM cells. We next examined the expression pattern of neuron-specific enzyme γ-enolase, which is the target of cathepsin X. We found that there was a correlation between high proteolytic activity of cathepsin X and
-terminal cleavage of γ-enolase and that cathepsin X and γ-enolase were colocalized in GBM tissues, preferentially in GBM-associated macrophages and microglia. Taken together, our results on patient-derived material suggest that cathepsin X is involved in GBM progression and is a potential target for therapeutic approaches against GBM.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35163706</pmid><doi>10.3390/ijms23031784</doi><orcidid>https://orcid.org/0000-0003-0247-5811</orcidid><orcidid>https://orcid.org/0000-0001-6660-1499</orcidid><orcidid>https://orcid.org/0000-0003-1905-0158</orcidid><orcidid>https://orcid.org/0000-0002-9678-3083</orcidid><orcidid>https://orcid.org/0000-0002-1159-1024</orcidid><orcidid>https://orcid.org/0000-0001-9917-1384</orcidid><orcidid>https://orcid.org/0000-0003-2672-4624</orcidid><orcidid>https://orcid.org/0000-0002-6879-0980</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2022-02, Vol.23 (3), p.1784 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8836869 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Biomarkers Brain cancer Brain Neoplasms - drug therapy Brain Neoplasms - genetics Brain Neoplasms - metabolism Brain tumors Cancer therapies Carboxypeptidase Cathepsin Z - antagonists & inhibitors Cathepsin Z - genetics Cathepsin Z - metabolism Cell growth Enzymes Gene expression Gene Expression Regulation, Neoplastic Glioblastoma Glioblastoma - drug therapy Glioblastoma - genetics Glioblastoma - metabolism Glioma Humans Immune system Inflammation Inhibitors Localization Macrophages Macrophages - drug effects Macrophages - metabolism Medical prognosis Microglia Microglia - drug effects Microglia - metabolism Neurons Patients Peptides Phosphopyruvate hydratase Phosphopyruvate Hydratase - metabolism Proteins Proteolysis Signal transduction Therapeutic targets Tumor Microenvironment Tumors Up-Regulation |
title | Upregulation of Cathepsin X in Glioblastoma: Interplay with γ-Enolase and the Effects of Selective Cathepsin X Inhibitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upregulation%20of%20Cathepsin%20X%20in%20Glioblastoma:%20Interplay%20with%20%CE%B3-Enolase%20and%20the%20Effects%20of%20Selective%20Cathepsin%20X%20Inhibitors&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Majc,%20Bernarda&rft.date=2022-02-04&rft.volume=23&rft.issue=3&rft.spage=1784&rft.pages=1784-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms23031784&rft_dat=%3Cproquest_pubme%3E2627760741%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627760741&rft_id=info:pmid/35163706&rfr_iscdi=true |