Deep-4mCGP: A Deep Learning Approach to Predict 4mC Sites in Geobacter pickeringii by Using Correlation-Based Feature Selection Technique

4mC is a type of DNA alteration that has the ability to synchronize multiple biological movements, for example, DNA replication, gene expressions, and transcriptional regulations. Accurate prediction of 4mC sites can provide exact information to their hereditary functions. The purpose of this study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2022-01, Vol.23 (3), p.1251
Hauptverfasser: Zulfiqar, Hasan, Huang, Qin-Lai, Lv, Hao, Sun, Zi-Jie, Dao, Fu-Ying, Lin, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 1251
container_title International journal of molecular sciences
container_volume 23
creator Zulfiqar, Hasan
Huang, Qin-Lai
Lv, Hao
Sun, Zi-Jie
Dao, Fu-Ying
Lin, Hao
description 4mC is a type of DNA alteration that has the ability to synchronize multiple biological movements, for example, DNA replication, gene expressions, and transcriptional regulations. Accurate prediction of 4mC sites can provide exact information to their hereditary functions. The purpose of this study was to establish a robust deep learning model to recognize 4mC sites in Geobacter pickeringii. In the anticipated model, two kinds of feature descriptors, namely, binary and -mer composition were used to encode the DNA sequences of . The obtained features from their fusion were optimized by using correlation and gradient-boosting decision tree (GBDT)-based algorithm with incremental feature selection (IFS) method. Then, these optimized features were inserted into 1D convolutional neural network (CNN) to classify 4mC sites from non-4mC sites in . The performance of the anticipated model on independent data exhibited an accuracy of 0.868, which was 4.2% higher than the existing model.
doi_str_mv 10.3390/ijms23031251
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8836036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629058704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-4265095b20fc2cf10408c69005efd30583b205bbf0b10e0ff9ade50fbb140e353</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhSMEoqVw44wsceFAYGzH2YQD0rLQBWklKrU9W44z7npJ7GA7SP0J_GsctVQLp_F4vnl6o1cULym847yF9_YwRsaBUyboo-KUVoyVAPXq8dH7pHgW4wGAcSbap8UJF7TmdFWdFr8_I05lNW62Fx_Imiwd2aEKzrobsp6m4JXek-TJRcDe6kQySi5twkisI1v0ndIJA5ms_oEhL1lLultyHZf9jQ8BB5Wsd-UnFbEn56jSHJBc4oB6-SdXqPfO_pzxefHEqCHii_t6Vlyff7nafC1337ffNutdqSvKUlmxWkArOgZGM20oVNDougUQaHoOouF5JLrOQEcBwZhW9SjAdB2tALngZ8XHO91p7kbsNboU1CCnYEcVbqVXVv47cXYvb_wv2TS8Bl5ngTf3AsFn3zHJ0UaNw6Ac-jlKVrM2-1hBldHX_6EHPweXz1uolWhpXTeZentH6eBjDGgezFCQS8byOOOMvzo-4AH-Gyr_A4J-oq4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627591668</pqid></control><display><type>article</type><title>Deep-4mCGP: A Deep Learning Approach to Predict 4mC Sites in Geobacter pickeringii by Using Correlation-Based Feature Selection Technique</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zulfiqar, Hasan ; Huang, Qin-Lai ; Lv, Hao ; Sun, Zi-Jie ; Dao, Fu-Ying ; Lin, Hao</creator><creatorcontrib>Zulfiqar, Hasan ; Huang, Qin-Lai ; Lv, Hao ; Sun, Zi-Jie ; Dao, Fu-Ying ; Lin, Hao</creatorcontrib><description>4mC is a type of DNA alteration that has the ability to synchronize multiple biological movements, for example, DNA replication, gene expressions, and transcriptional regulations. Accurate prediction of 4mC sites can provide exact information to their hereditary functions. The purpose of this study was to establish a robust deep learning model to recognize 4mC sites in Geobacter pickeringii. In the anticipated model, two kinds of feature descriptors, namely, binary and -mer composition were used to encode the DNA sequences of . The obtained features from their fusion were optimized by using correlation and gradient-boosting decision tree (GBDT)-based algorithm with incremental feature selection (IFS) method. Then, these optimized features were inserted into 1D convolutional neural network (CNN) to classify 4mC sites from non-4mC sites in . The performance of the anticipated model on independent data exhibited an accuracy of 0.868, which was 4.2% higher than the existing model.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms23031251</identifier><identifier>PMID: 35163174</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Bioinformatics ; Communication ; Computational Biology - methods ; Cytosine - metabolism ; Deep Learning ; Deoxyribonucleic acid ; DNA ; DNA - genetics ; DNA biosynthesis ; DNA Methylation - genetics ; Epigenesis, Genetic - genetics ; Feature selection ; Gene expression ; Genomes ; Geobacter ; Geobacter - genetics ; Machine Learning ; Mutation - genetics ; Neural networks ; Neural Networks, Computer ; Nucleotide sequence ; Software ; Transcription</subject><ispartof>International journal of molecular sciences, 2022-01, Vol.23 (3), p.1251</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-4265095b20fc2cf10408c69005efd30583b205bbf0b10e0ff9ade50fbb140e353</citedby><cites>FETCH-LOGICAL-c412t-4265095b20fc2cf10408c69005efd30583b205bbf0b10e0ff9ade50fbb140e353</cites><orcidid>0000-0002-8526-371X ; 0000-0001-6265-2862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836036/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836036/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35163174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zulfiqar, Hasan</creatorcontrib><creatorcontrib>Huang, Qin-Lai</creatorcontrib><creatorcontrib>Lv, Hao</creatorcontrib><creatorcontrib>Sun, Zi-Jie</creatorcontrib><creatorcontrib>Dao, Fu-Ying</creatorcontrib><creatorcontrib>Lin, Hao</creatorcontrib><title>Deep-4mCGP: A Deep Learning Approach to Predict 4mC Sites in Geobacter pickeringii by Using Correlation-Based Feature Selection Technique</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>4mC is a type of DNA alteration that has the ability to synchronize multiple biological movements, for example, DNA replication, gene expressions, and transcriptional regulations. Accurate prediction of 4mC sites can provide exact information to their hereditary functions. The purpose of this study was to establish a robust deep learning model to recognize 4mC sites in Geobacter pickeringii. In the anticipated model, two kinds of feature descriptors, namely, binary and -mer composition were used to encode the DNA sequences of . The obtained features from their fusion were optimized by using correlation and gradient-boosting decision tree (GBDT)-based algorithm with incremental feature selection (IFS) method. Then, these optimized features were inserted into 1D convolutional neural network (CNN) to classify 4mC sites from non-4mC sites in . The performance of the anticipated model on independent data exhibited an accuracy of 0.868, which was 4.2% higher than the existing model.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Communication</subject><subject>Computational Biology - methods</subject><subject>Cytosine - metabolism</subject><subject>Deep Learning</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA biosynthesis</subject><subject>DNA Methylation - genetics</subject><subject>Epigenesis, Genetic - genetics</subject><subject>Feature selection</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Geobacter</subject><subject>Geobacter - genetics</subject><subject>Machine Learning</subject><subject>Mutation - genetics</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Nucleotide sequence</subject><subject>Software</subject><subject>Transcription</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkUFv1DAQhSMEoqVw44wsceFAYGzH2YQD0rLQBWklKrU9W44z7npJ7GA7SP0J_GsctVQLp_F4vnl6o1cULym847yF9_YwRsaBUyboo-KUVoyVAPXq8dH7pHgW4wGAcSbap8UJF7TmdFWdFr8_I05lNW62Fx_Imiwd2aEKzrobsp6m4JXek-TJRcDe6kQySi5twkisI1v0ndIJA5ms_oEhL1lLultyHZf9jQ8BB5Wsd-UnFbEn56jSHJBc4oB6-SdXqPfO_pzxefHEqCHii_t6Vlyff7nafC1337ffNutdqSvKUlmxWkArOgZGM20oVNDougUQaHoOouF5JLrOQEcBwZhW9SjAdB2tALngZ8XHO91p7kbsNboU1CCnYEcVbqVXVv47cXYvb_wv2TS8Bl5ngTf3AsFn3zHJ0UaNw6Ac-jlKVrM2-1hBldHX_6EHPweXz1uolWhpXTeZentH6eBjDGgezFCQS8byOOOMvzo-4AH-Gyr_A4J-oq4</recordid><startdate>20220123</startdate><enddate>20220123</enddate><creator>Zulfiqar, Hasan</creator><creator>Huang, Qin-Lai</creator><creator>Lv, Hao</creator><creator>Sun, Zi-Jie</creator><creator>Dao, Fu-Ying</creator><creator>Lin, Hao</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8526-371X</orcidid><orcidid>https://orcid.org/0000-0001-6265-2862</orcidid></search><sort><creationdate>20220123</creationdate><title>Deep-4mCGP: A Deep Learning Approach to Predict 4mC Sites in Geobacter pickeringii by Using Correlation-Based Feature Selection Technique</title><author>Zulfiqar, Hasan ; Huang, Qin-Lai ; Lv, Hao ; Sun, Zi-Jie ; Dao, Fu-Ying ; Lin, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-4265095b20fc2cf10408c69005efd30583b205bbf0b10e0ff9ade50fbb140e353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Communication</topic><topic>Computational Biology - methods</topic><topic>Cytosine - metabolism</topic><topic>Deep Learning</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA biosynthesis</topic><topic>DNA Methylation - genetics</topic><topic>Epigenesis, Genetic - genetics</topic><topic>Feature selection</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Geobacter</topic><topic>Geobacter - genetics</topic><topic>Machine Learning</topic><topic>Mutation - genetics</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Nucleotide sequence</topic><topic>Software</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zulfiqar, Hasan</creatorcontrib><creatorcontrib>Huang, Qin-Lai</creatorcontrib><creatorcontrib>Lv, Hao</creatorcontrib><creatorcontrib>Sun, Zi-Jie</creatorcontrib><creatorcontrib>Dao, Fu-Ying</creatorcontrib><creatorcontrib>Lin, Hao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zulfiqar, Hasan</au><au>Huang, Qin-Lai</au><au>Lv, Hao</au><au>Sun, Zi-Jie</au><au>Dao, Fu-Ying</au><au>Lin, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-4mCGP: A Deep Learning Approach to Predict 4mC Sites in Geobacter pickeringii by Using Correlation-Based Feature Selection Technique</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2022-01-23</date><risdate>2022</risdate><volume>23</volume><issue>3</issue><spage>1251</spage><pages>1251-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>4mC is a type of DNA alteration that has the ability to synchronize multiple biological movements, for example, DNA replication, gene expressions, and transcriptional regulations. Accurate prediction of 4mC sites can provide exact information to their hereditary functions. The purpose of this study was to establish a robust deep learning model to recognize 4mC sites in Geobacter pickeringii. In the anticipated model, two kinds of feature descriptors, namely, binary and -mer composition were used to encode the DNA sequences of . The obtained features from their fusion were optimized by using correlation and gradient-boosting decision tree (GBDT)-based algorithm with incremental feature selection (IFS) method. Then, these optimized features were inserted into 1D convolutional neural network (CNN) to classify 4mC sites from non-4mC sites in . The performance of the anticipated model on independent data exhibited an accuracy of 0.868, which was 4.2% higher than the existing model.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35163174</pmid><doi>10.3390/ijms23031251</doi><orcidid>https://orcid.org/0000-0002-8526-371X</orcidid><orcidid>https://orcid.org/0000-0001-6265-2862</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2022-01, Vol.23 (3), p.1251
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8836036
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Accuracy
Algorithms
Bioinformatics
Communication
Computational Biology - methods
Cytosine - metabolism
Deep Learning
Deoxyribonucleic acid
DNA
DNA - genetics
DNA biosynthesis
DNA Methylation - genetics
Epigenesis, Genetic - genetics
Feature selection
Gene expression
Genomes
Geobacter
Geobacter - genetics
Machine Learning
Mutation - genetics
Neural networks
Neural Networks, Computer
Nucleotide sequence
Software
Transcription
title Deep-4mCGP: A Deep Learning Approach to Predict 4mC Sites in Geobacter pickeringii by Using Correlation-Based Feature Selection Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-4mCGP:%20A%20Deep%20Learning%20Approach%20to%20Predict%204mC%20Sites%20in%20Geobacter%20pickeringii%20by%20Using%20Correlation-Based%20Feature%20Selection%20Technique&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Zulfiqar,%20Hasan&rft.date=2022-01-23&rft.volume=23&rft.issue=3&rft.spage=1251&rft.pages=1251-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms23031251&rft_dat=%3Cproquest_pubme%3E2629058704%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627591668&rft_id=info:pmid/35163174&rfr_iscdi=true