Deep-4mCGP: A Deep Learning Approach to Predict 4mC Sites in Geobacter pickeringii by Using Correlation-Based Feature Selection Technique
4mC is a type of DNA alteration that has the ability to synchronize multiple biological movements, for example, DNA replication, gene expressions, and transcriptional regulations. Accurate prediction of 4mC sites can provide exact information to their hereditary functions. The purpose of this study...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2022-01, Vol.23 (3), p.1251 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 1251 |
container_title | International journal of molecular sciences |
container_volume | 23 |
creator | Zulfiqar, Hasan Huang, Qin-Lai Lv, Hao Sun, Zi-Jie Dao, Fu-Ying Lin, Hao |
description | 4mC is a type of DNA alteration that has the ability to synchronize multiple biological movements, for example, DNA replication, gene expressions, and transcriptional regulations. Accurate prediction of 4mC sites can provide exact information to their hereditary functions. The purpose of this study was to establish a robust deep learning model to recognize 4mC sites in Geobacter pickeringii. In the anticipated model, two kinds of feature descriptors, namely, binary and
-mer composition were used to encode the DNA sequences of
. The obtained features from their fusion were optimized by using correlation and gradient-boosting decision tree (GBDT)-based algorithm with incremental feature selection (IFS) method. Then, these optimized features were inserted into 1D convolutional neural network (CNN) to classify 4mC sites from non-4mC sites in
. The performance of the anticipated model on independent data exhibited an accuracy of 0.868, which was 4.2% higher than the existing model. |
doi_str_mv | 10.3390/ijms23031251 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8836036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629058704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-4265095b20fc2cf10408c69005efd30583b205bbf0b10e0ff9ade50fbb140e353</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhSMEoqVw44wsceFAYGzH2YQD0rLQBWklKrU9W44z7npJ7GA7SP0J_GsctVQLp_F4vnl6o1cULym847yF9_YwRsaBUyboo-KUVoyVAPXq8dH7pHgW4wGAcSbap8UJF7TmdFWdFr8_I05lNW62Fx_Imiwd2aEKzrobsp6m4JXek-TJRcDe6kQySi5twkisI1v0ndIJA5ms_oEhL1lLultyHZf9jQ8BB5Wsd-UnFbEn56jSHJBc4oB6-SdXqPfO_pzxefHEqCHii_t6Vlyff7nafC1337ffNutdqSvKUlmxWkArOgZGM20oVNDougUQaHoOouF5JLrOQEcBwZhW9SjAdB2tALngZ8XHO91p7kbsNboU1CCnYEcVbqVXVv47cXYvb_wv2TS8Bl5ngTf3AsFn3zHJ0UaNw6Ac-jlKVrM2-1hBldHX_6EHPweXz1uolWhpXTeZentH6eBjDGgezFCQS8byOOOMvzo-4AH-Gyr_A4J-oq4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627591668</pqid></control><display><type>article</type><title>Deep-4mCGP: A Deep Learning Approach to Predict 4mC Sites in Geobacter pickeringii by Using Correlation-Based Feature Selection Technique</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zulfiqar, Hasan ; Huang, Qin-Lai ; Lv, Hao ; Sun, Zi-Jie ; Dao, Fu-Ying ; Lin, Hao</creator><creatorcontrib>Zulfiqar, Hasan ; Huang, Qin-Lai ; Lv, Hao ; Sun, Zi-Jie ; Dao, Fu-Ying ; Lin, Hao</creatorcontrib><description>4mC is a type of DNA alteration that has the ability to synchronize multiple biological movements, for example, DNA replication, gene expressions, and transcriptional regulations. Accurate prediction of 4mC sites can provide exact information to their hereditary functions. The purpose of this study was to establish a robust deep learning model to recognize 4mC sites in Geobacter pickeringii. In the anticipated model, two kinds of feature descriptors, namely, binary and
-mer composition were used to encode the DNA sequences of
. The obtained features from their fusion were optimized by using correlation and gradient-boosting decision tree (GBDT)-based algorithm with incremental feature selection (IFS) method. Then, these optimized features were inserted into 1D convolutional neural network (CNN) to classify 4mC sites from non-4mC sites in
. The performance of the anticipated model on independent data exhibited an accuracy of 0.868, which was 4.2% higher than the existing model.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms23031251</identifier><identifier>PMID: 35163174</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Bioinformatics ; Communication ; Computational Biology - methods ; Cytosine - metabolism ; Deep Learning ; Deoxyribonucleic acid ; DNA ; DNA - genetics ; DNA biosynthesis ; DNA Methylation - genetics ; Epigenesis, Genetic - genetics ; Feature selection ; Gene expression ; Genomes ; Geobacter ; Geobacter - genetics ; Machine Learning ; Mutation - genetics ; Neural networks ; Neural Networks, Computer ; Nucleotide sequence ; Software ; Transcription</subject><ispartof>International journal of molecular sciences, 2022-01, Vol.23 (3), p.1251</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-4265095b20fc2cf10408c69005efd30583b205bbf0b10e0ff9ade50fbb140e353</citedby><cites>FETCH-LOGICAL-c412t-4265095b20fc2cf10408c69005efd30583b205bbf0b10e0ff9ade50fbb140e353</cites><orcidid>0000-0002-8526-371X ; 0000-0001-6265-2862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836036/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836036/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35163174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zulfiqar, Hasan</creatorcontrib><creatorcontrib>Huang, Qin-Lai</creatorcontrib><creatorcontrib>Lv, Hao</creatorcontrib><creatorcontrib>Sun, Zi-Jie</creatorcontrib><creatorcontrib>Dao, Fu-Ying</creatorcontrib><creatorcontrib>Lin, Hao</creatorcontrib><title>Deep-4mCGP: A Deep Learning Approach to Predict 4mC Sites in Geobacter pickeringii by Using Correlation-Based Feature Selection Technique</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>4mC is a type of DNA alteration that has the ability to synchronize multiple biological movements, for example, DNA replication, gene expressions, and transcriptional regulations. Accurate prediction of 4mC sites can provide exact information to their hereditary functions. The purpose of this study was to establish a robust deep learning model to recognize 4mC sites in Geobacter pickeringii. In the anticipated model, two kinds of feature descriptors, namely, binary and
-mer composition were used to encode the DNA sequences of
. The obtained features from their fusion were optimized by using correlation and gradient-boosting decision tree (GBDT)-based algorithm with incremental feature selection (IFS) method. Then, these optimized features were inserted into 1D convolutional neural network (CNN) to classify 4mC sites from non-4mC sites in
. The performance of the anticipated model on independent data exhibited an accuracy of 0.868, which was 4.2% higher than the existing model.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Communication</subject><subject>Computational Biology - methods</subject><subject>Cytosine - metabolism</subject><subject>Deep Learning</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA biosynthesis</subject><subject>DNA Methylation - genetics</subject><subject>Epigenesis, Genetic - genetics</subject><subject>Feature selection</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Geobacter</subject><subject>Geobacter - genetics</subject><subject>Machine Learning</subject><subject>Mutation - genetics</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Nucleotide sequence</subject><subject>Software</subject><subject>Transcription</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkUFv1DAQhSMEoqVw44wsceFAYGzH2YQD0rLQBWklKrU9W44z7npJ7GA7SP0J_GsctVQLp_F4vnl6o1cULym847yF9_YwRsaBUyboo-KUVoyVAPXq8dH7pHgW4wGAcSbap8UJF7TmdFWdFr8_I05lNW62Fx_Imiwd2aEKzrobsp6m4JXek-TJRcDe6kQySi5twkisI1v0ndIJA5ms_oEhL1lLultyHZf9jQ8BB5Wsd-UnFbEn56jSHJBc4oB6-SdXqPfO_pzxefHEqCHii_t6Vlyff7nafC1337ffNutdqSvKUlmxWkArOgZGM20oVNDougUQaHoOouF5JLrOQEcBwZhW9SjAdB2tALngZ8XHO91p7kbsNboU1CCnYEcVbqVXVv47cXYvb_wv2TS8Bl5ngTf3AsFn3zHJ0UaNw6Ac-jlKVrM2-1hBldHX_6EHPweXz1uolWhpXTeZentH6eBjDGgezFCQS8byOOOMvzo-4AH-Gyr_A4J-oq4</recordid><startdate>20220123</startdate><enddate>20220123</enddate><creator>Zulfiqar, Hasan</creator><creator>Huang, Qin-Lai</creator><creator>Lv, Hao</creator><creator>Sun, Zi-Jie</creator><creator>Dao, Fu-Ying</creator><creator>Lin, Hao</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8526-371X</orcidid><orcidid>https://orcid.org/0000-0001-6265-2862</orcidid></search><sort><creationdate>20220123</creationdate><title>Deep-4mCGP: A Deep Learning Approach to Predict 4mC Sites in Geobacter pickeringii by Using Correlation-Based Feature Selection Technique</title><author>Zulfiqar, Hasan ; Huang, Qin-Lai ; Lv, Hao ; Sun, Zi-Jie ; Dao, Fu-Ying ; Lin, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-4265095b20fc2cf10408c69005efd30583b205bbf0b10e0ff9ade50fbb140e353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Communication</topic><topic>Computational Biology - methods</topic><topic>Cytosine - metabolism</topic><topic>Deep Learning</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA biosynthesis</topic><topic>DNA Methylation - genetics</topic><topic>Epigenesis, Genetic - genetics</topic><topic>Feature selection</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Geobacter</topic><topic>Geobacter - genetics</topic><topic>Machine Learning</topic><topic>Mutation - genetics</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Nucleotide sequence</topic><topic>Software</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zulfiqar, Hasan</creatorcontrib><creatorcontrib>Huang, Qin-Lai</creatorcontrib><creatorcontrib>Lv, Hao</creatorcontrib><creatorcontrib>Sun, Zi-Jie</creatorcontrib><creatorcontrib>Dao, Fu-Ying</creatorcontrib><creatorcontrib>Lin, Hao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zulfiqar, Hasan</au><au>Huang, Qin-Lai</au><au>Lv, Hao</au><au>Sun, Zi-Jie</au><au>Dao, Fu-Ying</au><au>Lin, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-4mCGP: A Deep Learning Approach to Predict 4mC Sites in Geobacter pickeringii by Using Correlation-Based Feature Selection Technique</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2022-01-23</date><risdate>2022</risdate><volume>23</volume><issue>3</issue><spage>1251</spage><pages>1251-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>4mC is a type of DNA alteration that has the ability to synchronize multiple biological movements, for example, DNA replication, gene expressions, and transcriptional regulations. Accurate prediction of 4mC sites can provide exact information to their hereditary functions. The purpose of this study was to establish a robust deep learning model to recognize 4mC sites in Geobacter pickeringii. In the anticipated model, two kinds of feature descriptors, namely, binary and
-mer composition were used to encode the DNA sequences of
. The obtained features from their fusion were optimized by using correlation and gradient-boosting decision tree (GBDT)-based algorithm with incremental feature selection (IFS) method. Then, these optimized features were inserted into 1D convolutional neural network (CNN) to classify 4mC sites from non-4mC sites in
. The performance of the anticipated model on independent data exhibited an accuracy of 0.868, which was 4.2% higher than the existing model.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35163174</pmid><doi>10.3390/ijms23031251</doi><orcidid>https://orcid.org/0000-0002-8526-371X</orcidid><orcidid>https://orcid.org/0000-0001-6265-2862</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2022-01, Vol.23 (3), p.1251 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8836036 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Accuracy Algorithms Bioinformatics Communication Computational Biology - methods Cytosine - metabolism Deep Learning Deoxyribonucleic acid DNA DNA - genetics DNA biosynthesis DNA Methylation - genetics Epigenesis, Genetic - genetics Feature selection Gene expression Genomes Geobacter Geobacter - genetics Machine Learning Mutation - genetics Neural networks Neural Networks, Computer Nucleotide sequence Software Transcription |
title | Deep-4mCGP: A Deep Learning Approach to Predict 4mC Sites in Geobacter pickeringii by Using Correlation-Based Feature Selection Technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-4mCGP:%20A%20Deep%20Learning%20Approach%20to%20Predict%204mC%20Sites%20in%20Geobacter%20pickeringii%20by%20Using%20Correlation-Based%20Feature%20Selection%20Technique&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Zulfiqar,%20Hasan&rft.date=2022-01-23&rft.volume=23&rft.issue=3&rft.spage=1251&rft.pages=1251-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms23031251&rft_dat=%3Cproquest_pubme%3E2629058704%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627591668&rft_id=info:pmid/35163174&rfr_iscdi=true |