Sequence-specific RNA recognition by an RGG motif connects U1 and U2 snRNP for spliceosome assembly

In mammals, the structural basis for the interaction between U1 and U2 small nuclear ribonucleoproteins (snRNPs) during the early steps of splicing is still elusive. The binding of the ubiquitin-like (UBL) domain of SF3A1 to the stem-loop 4 of U1 snRNP (U1-SL4) contributes to this interaction. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2022-02, Vol.119 (6), p.1-11
Hauptverfasser: de Vries, Tebbe, Martelly, William, Campagne, Sébastien, Sabath, Kevin, Sarnowski, Chris P., Wong, Jason, Leitner, Alexander, Jonas, Stefanie, Sharma, Shalini, Allain, Frédéric H.-T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 6
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 119
creator de Vries, Tebbe
Martelly, William
Campagne, Sébastien
Sabath, Kevin
Sarnowski, Chris P.
Wong, Jason
Leitner, Alexander
Jonas, Stefanie
Sharma, Shalini
Allain, Frédéric H.-T.
description In mammals, the structural basis for the interaction between U1 and U2 small nuclear ribonucleoproteins (snRNPs) during the early steps of splicing is still elusive. The binding of the ubiquitin-like (UBL) domain of SF3A1 to the stem-loop 4 of U1 snRNP (U1-SL4) contributes to this interaction. Here, we determined the 3D structure of the complex between the UBL of SF3A1 and U1-SL4 RNA. Our crystallography, NMR spectroscopy, and cross-linking mass spectrometry data show that SF3A1-UBL recognizes, sequence specifically, the GCG/CGC RNA stem and the apical UUCG tetraloop of U1-SL4. In vitro and in vivo mutational analyses support the observed intermolecular contacts and demonstrate that the carboxyl-terminal arginine-glycine-glycine-arginine (RGGR) motif of SF3A1-UBL binds sequence specifically by inserting into the RNA major groove. Thus, the characterization of the SF3A1-UBL/U1-SL4 complex expands the repertoire of RNA binding domains and reveals the capacity of RGG/RG motifs to bind RNA in a sequence-specific manner.
doi_str_mv 10.1073/pnas.2114092119
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8833184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27118508</jstor_id><sourcerecordid>27118508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-f0ca7a492d017b4f4e62b95b49fdb8049e61d9378871bd3c63e30dd19c0009a03</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS0EomngzAlkiUs5bDv-2LV9QYoqSJGiggI5W16vt3W0a6f2plL-e3aVEqAXW_L7zfPMPITeEbgkINjVLph8SQnhoMZTvUAzAooUFVfwEs0AqCgkp_wMnee8BQBVSniNzlhJgCgJM2R_uoe9C9YVeeesb73F69sFTs7Gu-AHHwOuD9gEvF4ucR8H32IbQ3B2yHhDRqHBG4pzWN_-wG1MOO86b13MsXfY5Oz6uju8Qa9a02X39umeo83XL7-ub4rV9-W368WqsFyIoWjBGmG4og0QUfOWu4rWqqy5aptaAleuIo1iQkpB6obZijkGTUOUnQYzwObo89F3t69711gXhmQ6vUu-N-mgo_H6fyX4e30XH7WUjBHJR4NPR4P7Z2U3i5We3oCXoiJQPpKRvXj6LMVxg3nQvc_WdZ0JLu6zphXlValIOaEfn6HbuE9hXMVESUYFHxuYo6sjZVPMObn21AEBPYWtp7D137DHig__znvi_6Q7Au-PwDYPMZ10KgiRJUj2G6Efra0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628327483</pqid></control><display><type>article</type><title>Sequence-specific RNA recognition by an RGG motif connects U1 and U2 snRNP for spliceosome assembly</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>de Vries, Tebbe ; Martelly, William ; Campagne, Sébastien ; Sabath, Kevin ; Sarnowski, Chris P. ; Wong, Jason ; Leitner, Alexander ; Jonas, Stefanie ; Sharma, Shalini ; Allain, Frédéric H.-T.</creator><creatorcontrib>de Vries, Tebbe ; Martelly, William ; Campagne, Sébastien ; Sabath, Kevin ; Sarnowski, Chris P. ; Wong, Jason ; Leitner, Alexander ; Jonas, Stefanie ; Sharma, Shalini ; Allain, Frédéric H.-T.</creatorcontrib><description>In mammals, the structural basis for the interaction between U1 and U2 small nuclear ribonucleoproteins (snRNPs) during the early steps of splicing is still elusive. The binding of the ubiquitin-like (UBL) domain of SF3A1 to the stem-loop 4 of U1 snRNP (U1-SL4) contributes to this interaction. Here, we determined the 3D structure of the complex between the UBL of SF3A1 and U1-SL4 RNA. Our crystallography, NMR spectroscopy, and cross-linking mass spectrometry data show that SF3A1-UBL recognizes, sequence specifically, the GCG/CGC RNA stem and the apical UUCG tetraloop of U1-SL4. In vitro and in vivo mutational analyses support the observed intermolecular contacts and demonstrate that the carboxyl-terminal arginine-glycine-glycine-arginine (RGGR) motif of SF3A1-UBL binds sequence specifically by inserting into the RNA major groove. Thus, the characterization of the SF3A1-UBL/U1-SL4 complex expands the repertoire of RNA binding domains and reveals the capacity of RGG/RG motifs to bind RNA in a sequence-specific manner.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2114092119</identifier><identifier>PMID: 35101980</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Binding ; Biological Sciences ; Crosslinking ; Crystallography ; Crystallography, X-Ray ; Glycine ; Grooves ; Humans ; Life Sciences ; Magnetic resonance spectroscopy ; Mass spectrometry ; Mass spectroscopy ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Nuclear Magnetic Resonance, Biomolecular ; Nucleotide Motifs ; Nucleotide sequence ; Ribonucleic acid ; Ribonucleoprotein, U1 Small Nuclear - chemistry ; Ribonucleoprotein, U1 Small Nuclear - genetics ; Ribonucleoprotein, U2 Small Nuclear - chemistry ; Ribonucleoprotein, U2 Small Nuclear - genetics ; Ribonucleoproteins ; Ribonucleoproteins (small nuclear) ; Ribonucleoproteins (U2 small nuclear) ; RNA ; RNA Splicing Factors - chemistry ; RNA Splicing Factors - genetics ; Splicing ; Ubiquitin</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-02, Vol.119 (6), p.1-11</ispartof><rights>Copyright © 2022 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Feb 8, 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-f0ca7a492d017b4f4e62b95b49fdb8049e61d9378871bd3c63e30dd19c0009a03</citedby><cites>FETCH-LOGICAL-c477t-f0ca7a492d017b4f4e62b95b49fdb8049e61d9378871bd3c63e30dd19c0009a03</cites><orcidid>0000-0003-4126-0725 ; 0000-0003-1361-379X ; 0000-0002-2131-6237 ; 0000-0002-9649-5620 ; 0000-0002-8751-6741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833184/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833184/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35101980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04576105$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>de Vries, Tebbe</creatorcontrib><creatorcontrib>Martelly, William</creatorcontrib><creatorcontrib>Campagne, Sébastien</creatorcontrib><creatorcontrib>Sabath, Kevin</creatorcontrib><creatorcontrib>Sarnowski, Chris P.</creatorcontrib><creatorcontrib>Wong, Jason</creatorcontrib><creatorcontrib>Leitner, Alexander</creatorcontrib><creatorcontrib>Jonas, Stefanie</creatorcontrib><creatorcontrib>Sharma, Shalini</creatorcontrib><creatorcontrib>Allain, Frédéric H.-T.</creatorcontrib><title>Sequence-specific RNA recognition by an RGG motif connects U1 and U2 snRNP for spliceosome assembly</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In mammals, the structural basis for the interaction between U1 and U2 small nuclear ribonucleoproteins (snRNPs) during the early steps of splicing is still elusive. The binding of the ubiquitin-like (UBL) domain of SF3A1 to the stem-loop 4 of U1 snRNP (U1-SL4) contributes to this interaction. Here, we determined the 3D structure of the complex between the UBL of SF3A1 and U1-SL4 RNA. Our crystallography, NMR spectroscopy, and cross-linking mass spectrometry data show that SF3A1-UBL recognizes, sequence specifically, the GCG/CGC RNA stem and the apical UUCG tetraloop of U1-SL4. In vitro and in vivo mutational analyses support the observed intermolecular contacts and demonstrate that the carboxyl-terminal arginine-glycine-glycine-arginine (RGGR) motif of SF3A1-UBL binds sequence specifically by inserting into the RNA major groove. Thus, the characterization of the SF3A1-UBL/U1-SL4 complex expands the repertoire of RNA binding domains and reveals the capacity of RGG/RG motifs to bind RNA in a sequence-specific manner.</description><subject>Binding</subject><subject>Biological Sciences</subject><subject>Crosslinking</subject><subject>Crystallography</subject><subject>Crystallography, X-Ray</subject><subject>Glycine</subject><subject>Grooves</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Magnetic resonance spectroscopy</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Nucleotide Motifs</subject><subject>Nucleotide sequence</subject><subject>Ribonucleic acid</subject><subject>Ribonucleoprotein, U1 Small Nuclear - chemistry</subject><subject>Ribonucleoprotein, U1 Small Nuclear - genetics</subject><subject>Ribonucleoprotein, U2 Small Nuclear - chemistry</subject><subject>Ribonucleoprotein, U2 Small Nuclear - genetics</subject><subject>Ribonucleoproteins</subject><subject>Ribonucleoproteins (small nuclear)</subject><subject>Ribonucleoproteins (U2 small nuclear)</subject><subject>RNA</subject><subject>RNA Splicing Factors - chemistry</subject><subject>RNA Splicing Factors - genetics</subject><subject>Splicing</subject><subject>Ubiquitin</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1vEzEQxS0EomngzAlkiUs5bDv-2LV9QYoqSJGiggI5W16vt3W0a6f2plL-e3aVEqAXW_L7zfPMPITeEbgkINjVLph8SQnhoMZTvUAzAooUFVfwEs0AqCgkp_wMnee8BQBVSniNzlhJgCgJM2R_uoe9C9YVeeesb73F69sFTs7Gu-AHHwOuD9gEvF4ucR8H32IbQ3B2yHhDRqHBG4pzWN_-wG1MOO86b13MsXfY5Oz6uju8Qa9a02X39umeo83XL7-ub4rV9-W368WqsFyIoWjBGmG4og0QUfOWu4rWqqy5aptaAleuIo1iQkpB6obZijkGTUOUnQYzwObo89F3t69711gXhmQ6vUu-N-mgo_H6fyX4e30XH7WUjBHJR4NPR4P7Z2U3i5We3oCXoiJQPpKRvXj6LMVxg3nQvc_WdZ0JLu6zphXlValIOaEfn6HbuE9hXMVESUYFHxuYo6sjZVPMObn21AEBPYWtp7D137DHig__znvi_6Q7Au-PwDYPMZ10KgiRJUj2G6Efra0</recordid><startdate>20220208</startdate><enddate>20220208</enddate><creator>de Vries, Tebbe</creator><creator>Martelly, William</creator><creator>Campagne, Sébastien</creator><creator>Sabath, Kevin</creator><creator>Sarnowski, Chris P.</creator><creator>Wong, Jason</creator><creator>Leitner, Alexander</creator><creator>Jonas, Stefanie</creator><creator>Sharma, Shalini</creator><creator>Allain, Frédéric H.-T.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4126-0725</orcidid><orcidid>https://orcid.org/0000-0003-1361-379X</orcidid><orcidid>https://orcid.org/0000-0002-2131-6237</orcidid><orcidid>https://orcid.org/0000-0002-9649-5620</orcidid><orcidid>https://orcid.org/0000-0002-8751-6741</orcidid></search><sort><creationdate>20220208</creationdate><title>Sequence-specific RNA recognition by an RGG motif connects U1 and U2 snRNP for spliceosome assembly</title><author>de Vries, Tebbe ; Martelly, William ; Campagne, Sébastien ; Sabath, Kevin ; Sarnowski, Chris P. ; Wong, Jason ; Leitner, Alexander ; Jonas, Stefanie ; Sharma, Shalini ; Allain, Frédéric H.-T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-f0ca7a492d017b4f4e62b95b49fdb8049e61d9378871bd3c63e30dd19c0009a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Binding</topic><topic>Biological Sciences</topic><topic>Crosslinking</topic><topic>Crystallography</topic><topic>Crystallography, X-Ray</topic><topic>Glycine</topic><topic>Grooves</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Magnetic resonance spectroscopy</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Nucleotide Motifs</topic><topic>Nucleotide sequence</topic><topic>Ribonucleic acid</topic><topic>Ribonucleoprotein, U1 Small Nuclear - chemistry</topic><topic>Ribonucleoprotein, U1 Small Nuclear - genetics</topic><topic>Ribonucleoprotein, U2 Small Nuclear - chemistry</topic><topic>Ribonucleoprotein, U2 Small Nuclear - genetics</topic><topic>Ribonucleoproteins</topic><topic>Ribonucleoproteins (small nuclear)</topic><topic>Ribonucleoproteins (U2 small nuclear)</topic><topic>RNA</topic><topic>RNA Splicing Factors - chemistry</topic><topic>RNA Splicing Factors - genetics</topic><topic>Splicing</topic><topic>Ubiquitin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Vries, Tebbe</creatorcontrib><creatorcontrib>Martelly, William</creatorcontrib><creatorcontrib>Campagne, Sébastien</creatorcontrib><creatorcontrib>Sabath, Kevin</creatorcontrib><creatorcontrib>Sarnowski, Chris P.</creatorcontrib><creatorcontrib>Wong, Jason</creatorcontrib><creatorcontrib>Leitner, Alexander</creatorcontrib><creatorcontrib>Jonas, Stefanie</creatorcontrib><creatorcontrib>Sharma, Shalini</creatorcontrib><creatorcontrib>Allain, Frédéric H.-T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Vries, Tebbe</au><au>Martelly, William</au><au>Campagne, Sébastien</au><au>Sabath, Kevin</au><au>Sarnowski, Chris P.</au><au>Wong, Jason</au><au>Leitner, Alexander</au><au>Jonas, Stefanie</au><au>Sharma, Shalini</au><au>Allain, Frédéric H.-T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequence-specific RNA recognition by an RGG motif connects U1 and U2 snRNP for spliceosome assembly</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-02-08</date><risdate>2022</risdate><volume>119</volume><issue>6</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In mammals, the structural basis for the interaction between U1 and U2 small nuclear ribonucleoproteins (snRNPs) during the early steps of splicing is still elusive. The binding of the ubiquitin-like (UBL) domain of SF3A1 to the stem-loop 4 of U1 snRNP (U1-SL4) contributes to this interaction. Here, we determined the 3D structure of the complex between the UBL of SF3A1 and U1-SL4 RNA. Our crystallography, NMR spectroscopy, and cross-linking mass spectrometry data show that SF3A1-UBL recognizes, sequence specifically, the GCG/CGC RNA stem and the apical UUCG tetraloop of U1-SL4. In vitro and in vivo mutational analyses support the observed intermolecular contacts and demonstrate that the carboxyl-terminal arginine-glycine-glycine-arginine (RGGR) motif of SF3A1-UBL binds sequence specifically by inserting into the RNA major groove. Thus, the characterization of the SF3A1-UBL/U1-SL4 complex expands the repertoire of RNA binding domains and reveals the capacity of RGG/RG motifs to bind RNA in a sequence-specific manner.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>35101980</pmid><doi>10.1073/pnas.2114092119</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4126-0725</orcidid><orcidid>https://orcid.org/0000-0003-1361-379X</orcidid><orcidid>https://orcid.org/0000-0002-2131-6237</orcidid><orcidid>https://orcid.org/0000-0002-9649-5620</orcidid><orcidid>https://orcid.org/0000-0002-8751-6741</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2022-02, Vol.119 (6), p.1-11
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8833184
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Binding
Biological Sciences
Crosslinking
Crystallography
Crystallography, X-Ray
Glycine
Grooves
Humans
Life Sciences
Magnetic resonance spectroscopy
Mass spectrometry
Mass spectroscopy
NMR
NMR spectroscopy
Nuclear magnetic resonance
Nuclear Magnetic Resonance, Biomolecular
Nucleotide Motifs
Nucleotide sequence
Ribonucleic acid
Ribonucleoprotein, U1 Small Nuclear - chemistry
Ribonucleoprotein, U1 Small Nuclear - genetics
Ribonucleoprotein, U2 Small Nuclear - chemistry
Ribonucleoprotein, U2 Small Nuclear - genetics
Ribonucleoproteins
Ribonucleoproteins (small nuclear)
Ribonucleoproteins (U2 small nuclear)
RNA
RNA Splicing Factors - chemistry
RNA Splicing Factors - genetics
Splicing
Ubiquitin
title Sequence-specific RNA recognition by an RGG motif connects U1 and U2 snRNP for spliceosome assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A31%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequence-specific%20RNA%20recognition%20by%20an%20RGG%20motif%20connects%20U1%20and%20U2%20snRNP%20for%20spliceosome%20assembly&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=de%20Vries,%20Tebbe&rft.date=2022-02-08&rft.volume=119&rft.issue=6&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2114092119&rft_dat=%3Cjstor_pubme%3E27118508%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628327483&rft_id=info:pmid/35101980&rft_jstor_id=27118508&rfr_iscdi=true