Sequence-specific RNA recognition by an RGG motif connects U1 and U2 snRNP for spliceosome assembly
In mammals, the structural basis for the interaction between U1 and U2 small nuclear ribonucleoproteins (snRNPs) during the early steps of splicing is still elusive. The binding of the ubiquitin-like (UBL) domain of SF3A1 to the stem-loop 4 of U1 snRNP (U1-SL4) contributes to this interaction. Here,...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2022-02, Vol.119 (6), p.1-11 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | de Vries, Tebbe Martelly, William Campagne, Sébastien Sabath, Kevin Sarnowski, Chris P. Wong, Jason Leitner, Alexander Jonas, Stefanie Sharma, Shalini Allain, Frédéric H.-T. |
description | In mammals, the structural basis for the interaction between U1 and U2 small nuclear ribonucleoproteins (snRNPs) during the early steps of splicing is still elusive. The binding of the ubiquitin-like (UBL) domain of SF3A1 to the stem-loop 4 of U1 snRNP (U1-SL4) contributes to this interaction. Here, we determined the 3D structure of the complex between the UBL of SF3A1 and U1-SL4 RNA. Our crystallography, NMR spectroscopy, and cross-linking mass spectrometry data show that SF3A1-UBL recognizes, sequence specifically, the GCG/CGC RNA stem and the apical UUCG tetraloop of U1-SL4. In vitro and in vivo mutational analyses support the observed intermolecular contacts and demonstrate that the carboxyl-terminal arginine-glycine-glycine-arginine (RGGR) motif of SF3A1-UBL binds sequence specifically by inserting into the RNA major groove. Thus, the characterization of the SF3A1-UBL/U1-SL4 complex expands the repertoire of RNA binding domains and reveals the capacity of RGG/RG motifs to bind RNA in a sequence-specific manner. |
doi_str_mv | 10.1073/pnas.2114092119 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8833184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27118508</jstor_id><sourcerecordid>27118508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-f0ca7a492d017b4f4e62b95b49fdb8049e61d9378871bd3c63e30dd19c0009a03</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS0EomngzAlkiUs5bDv-2LV9QYoqSJGiggI5W16vt3W0a6f2plL-e3aVEqAXW_L7zfPMPITeEbgkINjVLph8SQnhoMZTvUAzAooUFVfwEs0AqCgkp_wMnee8BQBVSniNzlhJgCgJM2R_uoe9C9YVeeesb73F69sFTs7Gu-AHHwOuD9gEvF4ucR8H32IbQ3B2yHhDRqHBG4pzWN_-wG1MOO86b13MsXfY5Oz6uju8Qa9a02X39umeo83XL7-ub4rV9-W368WqsFyIoWjBGmG4og0QUfOWu4rWqqy5aptaAleuIo1iQkpB6obZijkGTUOUnQYzwObo89F3t69711gXhmQ6vUu-N-mgo_H6fyX4e30XH7WUjBHJR4NPR4P7Z2U3i5We3oCXoiJQPpKRvXj6LMVxg3nQvc_WdZ0JLu6zphXlValIOaEfn6HbuE9hXMVESUYFHxuYo6sjZVPMObn21AEBPYWtp7D137DHig__znvi_6Q7Au-PwDYPMZ10KgiRJUj2G6Efra0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628327483</pqid></control><display><type>article</type><title>Sequence-specific RNA recognition by an RGG motif connects U1 and U2 snRNP for spliceosome assembly</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>de Vries, Tebbe ; Martelly, William ; Campagne, Sébastien ; Sabath, Kevin ; Sarnowski, Chris P. ; Wong, Jason ; Leitner, Alexander ; Jonas, Stefanie ; Sharma, Shalini ; Allain, Frédéric H.-T.</creator><creatorcontrib>de Vries, Tebbe ; Martelly, William ; Campagne, Sébastien ; Sabath, Kevin ; Sarnowski, Chris P. ; Wong, Jason ; Leitner, Alexander ; Jonas, Stefanie ; Sharma, Shalini ; Allain, Frédéric H.-T.</creatorcontrib><description>In mammals, the structural basis for the interaction between U1 and U2 small nuclear ribonucleoproteins (snRNPs) during the early steps of splicing is still elusive. The binding of the ubiquitin-like (UBL) domain of SF3A1 to the stem-loop 4 of U1 snRNP (U1-SL4) contributes to this interaction. Here, we determined the 3D structure of the complex between the UBL of SF3A1 and U1-SL4 RNA. Our crystallography, NMR spectroscopy, and cross-linking mass spectrometry data show that SF3A1-UBL recognizes, sequence specifically, the GCG/CGC RNA stem and the apical UUCG tetraloop of U1-SL4. In vitro and in vivo mutational analyses support the observed intermolecular contacts and demonstrate that the carboxyl-terminal arginine-glycine-glycine-arginine (RGGR) motif of SF3A1-UBL binds sequence specifically by inserting into the RNA major groove. Thus, the characterization of the SF3A1-UBL/U1-SL4 complex expands the repertoire of RNA binding domains and reveals the capacity of RGG/RG motifs to bind RNA in a sequence-specific manner.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2114092119</identifier><identifier>PMID: 35101980</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Binding ; Biological Sciences ; Crosslinking ; Crystallography ; Crystallography, X-Ray ; Glycine ; Grooves ; Humans ; Life Sciences ; Magnetic resonance spectroscopy ; Mass spectrometry ; Mass spectroscopy ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Nuclear Magnetic Resonance, Biomolecular ; Nucleotide Motifs ; Nucleotide sequence ; Ribonucleic acid ; Ribonucleoprotein, U1 Small Nuclear - chemistry ; Ribonucleoprotein, U1 Small Nuclear - genetics ; Ribonucleoprotein, U2 Small Nuclear - chemistry ; Ribonucleoprotein, U2 Small Nuclear - genetics ; Ribonucleoproteins ; Ribonucleoproteins (small nuclear) ; Ribonucleoproteins (U2 small nuclear) ; RNA ; RNA Splicing Factors - chemistry ; RNA Splicing Factors - genetics ; Splicing ; Ubiquitin</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-02, Vol.119 (6), p.1-11</ispartof><rights>Copyright © 2022 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Feb 8, 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-f0ca7a492d017b4f4e62b95b49fdb8049e61d9378871bd3c63e30dd19c0009a03</citedby><cites>FETCH-LOGICAL-c477t-f0ca7a492d017b4f4e62b95b49fdb8049e61d9378871bd3c63e30dd19c0009a03</cites><orcidid>0000-0003-4126-0725 ; 0000-0003-1361-379X ; 0000-0002-2131-6237 ; 0000-0002-9649-5620 ; 0000-0002-8751-6741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833184/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833184/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35101980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04576105$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>de Vries, Tebbe</creatorcontrib><creatorcontrib>Martelly, William</creatorcontrib><creatorcontrib>Campagne, Sébastien</creatorcontrib><creatorcontrib>Sabath, Kevin</creatorcontrib><creatorcontrib>Sarnowski, Chris P.</creatorcontrib><creatorcontrib>Wong, Jason</creatorcontrib><creatorcontrib>Leitner, Alexander</creatorcontrib><creatorcontrib>Jonas, Stefanie</creatorcontrib><creatorcontrib>Sharma, Shalini</creatorcontrib><creatorcontrib>Allain, Frédéric H.-T.</creatorcontrib><title>Sequence-specific RNA recognition by an RGG motif connects U1 and U2 snRNP for spliceosome assembly</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In mammals, the structural basis for the interaction between U1 and U2 small nuclear ribonucleoproteins (snRNPs) during the early steps of splicing is still elusive. The binding of the ubiquitin-like (UBL) domain of SF3A1 to the stem-loop 4 of U1 snRNP (U1-SL4) contributes to this interaction. Here, we determined the 3D structure of the complex between the UBL of SF3A1 and U1-SL4 RNA. Our crystallography, NMR spectroscopy, and cross-linking mass spectrometry data show that SF3A1-UBL recognizes, sequence specifically, the GCG/CGC RNA stem and the apical UUCG tetraloop of U1-SL4. In vitro and in vivo mutational analyses support the observed intermolecular contacts and demonstrate that the carboxyl-terminal arginine-glycine-glycine-arginine (RGGR) motif of SF3A1-UBL binds sequence specifically by inserting into the RNA major groove. Thus, the characterization of the SF3A1-UBL/U1-SL4 complex expands the repertoire of RNA binding domains and reveals the capacity of RGG/RG motifs to bind RNA in a sequence-specific manner.</description><subject>Binding</subject><subject>Biological Sciences</subject><subject>Crosslinking</subject><subject>Crystallography</subject><subject>Crystallography, X-Ray</subject><subject>Glycine</subject><subject>Grooves</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Magnetic resonance spectroscopy</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Nucleotide Motifs</subject><subject>Nucleotide sequence</subject><subject>Ribonucleic acid</subject><subject>Ribonucleoprotein, U1 Small Nuclear - chemistry</subject><subject>Ribonucleoprotein, U1 Small Nuclear - genetics</subject><subject>Ribonucleoprotein, U2 Small Nuclear - chemistry</subject><subject>Ribonucleoprotein, U2 Small Nuclear - genetics</subject><subject>Ribonucleoproteins</subject><subject>Ribonucleoproteins (small nuclear)</subject><subject>Ribonucleoproteins (U2 small nuclear)</subject><subject>RNA</subject><subject>RNA Splicing Factors - chemistry</subject><subject>RNA Splicing Factors - genetics</subject><subject>Splicing</subject><subject>Ubiquitin</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1vEzEQxS0EomngzAlkiUs5bDv-2LV9QYoqSJGiggI5W16vt3W0a6f2plL-e3aVEqAXW_L7zfPMPITeEbgkINjVLph8SQnhoMZTvUAzAooUFVfwEs0AqCgkp_wMnee8BQBVSniNzlhJgCgJM2R_uoe9C9YVeeesb73F69sFTs7Gu-AHHwOuD9gEvF4ucR8H32IbQ3B2yHhDRqHBG4pzWN_-wG1MOO86b13MsXfY5Oz6uju8Qa9a02X39umeo83XL7-ub4rV9-W368WqsFyIoWjBGmG4og0QUfOWu4rWqqy5aptaAleuIo1iQkpB6obZijkGTUOUnQYzwObo89F3t69711gXhmQ6vUu-N-mgo_H6fyX4e30XH7WUjBHJR4NPR4P7Z2U3i5We3oCXoiJQPpKRvXj6LMVxg3nQvc_WdZ0JLu6zphXlValIOaEfn6HbuE9hXMVESUYFHxuYo6sjZVPMObn21AEBPYWtp7D137DHig__znvi_6Q7Au-PwDYPMZ10KgiRJUj2G6Efra0</recordid><startdate>20220208</startdate><enddate>20220208</enddate><creator>de Vries, Tebbe</creator><creator>Martelly, William</creator><creator>Campagne, Sébastien</creator><creator>Sabath, Kevin</creator><creator>Sarnowski, Chris P.</creator><creator>Wong, Jason</creator><creator>Leitner, Alexander</creator><creator>Jonas, Stefanie</creator><creator>Sharma, Shalini</creator><creator>Allain, Frédéric H.-T.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4126-0725</orcidid><orcidid>https://orcid.org/0000-0003-1361-379X</orcidid><orcidid>https://orcid.org/0000-0002-2131-6237</orcidid><orcidid>https://orcid.org/0000-0002-9649-5620</orcidid><orcidid>https://orcid.org/0000-0002-8751-6741</orcidid></search><sort><creationdate>20220208</creationdate><title>Sequence-specific RNA recognition by an RGG motif connects U1 and U2 snRNP for spliceosome assembly</title><author>de Vries, Tebbe ; Martelly, William ; Campagne, Sébastien ; Sabath, Kevin ; Sarnowski, Chris P. ; Wong, Jason ; Leitner, Alexander ; Jonas, Stefanie ; Sharma, Shalini ; Allain, Frédéric H.-T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-f0ca7a492d017b4f4e62b95b49fdb8049e61d9378871bd3c63e30dd19c0009a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Binding</topic><topic>Biological Sciences</topic><topic>Crosslinking</topic><topic>Crystallography</topic><topic>Crystallography, X-Ray</topic><topic>Glycine</topic><topic>Grooves</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Magnetic resonance spectroscopy</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Nucleotide Motifs</topic><topic>Nucleotide sequence</topic><topic>Ribonucleic acid</topic><topic>Ribonucleoprotein, U1 Small Nuclear - chemistry</topic><topic>Ribonucleoprotein, U1 Small Nuclear - genetics</topic><topic>Ribonucleoprotein, U2 Small Nuclear - chemistry</topic><topic>Ribonucleoprotein, U2 Small Nuclear - genetics</topic><topic>Ribonucleoproteins</topic><topic>Ribonucleoproteins (small nuclear)</topic><topic>Ribonucleoproteins (U2 small nuclear)</topic><topic>RNA</topic><topic>RNA Splicing Factors - chemistry</topic><topic>RNA Splicing Factors - genetics</topic><topic>Splicing</topic><topic>Ubiquitin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Vries, Tebbe</creatorcontrib><creatorcontrib>Martelly, William</creatorcontrib><creatorcontrib>Campagne, Sébastien</creatorcontrib><creatorcontrib>Sabath, Kevin</creatorcontrib><creatorcontrib>Sarnowski, Chris P.</creatorcontrib><creatorcontrib>Wong, Jason</creatorcontrib><creatorcontrib>Leitner, Alexander</creatorcontrib><creatorcontrib>Jonas, Stefanie</creatorcontrib><creatorcontrib>Sharma, Shalini</creatorcontrib><creatorcontrib>Allain, Frédéric H.-T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Vries, Tebbe</au><au>Martelly, William</au><au>Campagne, Sébastien</au><au>Sabath, Kevin</au><au>Sarnowski, Chris P.</au><au>Wong, Jason</au><au>Leitner, Alexander</au><au>Jonas, Stefanie</au><au>Sharma, Shalini</au><au>Allain, Frédéric H.-T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequence-specific RNA recognition by an RGG motif connects U1 and U2 snRNP for spliceosome assembly</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-02-08</date><risdate>2022</risdate><volume>119</volume><issue>6</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In mammals, the structural basis for the interaction between U1 and U2 small nuclear ribonucleoproteins (snRNPs) during the early steps of splicing is still elusive. The binding of the ubiquitin-like (UBL) domain of SF3A1 to the stem-loop 4 of U1 snRNP (U1-SL4) contributes to this interaction. Here, we determined the 3D structure of the complex between the UBL of SF3A1 and U1-SL4 RNA. Our crystallography, NMR spectroscopy, and cross-linking mass spectrometry data show that SF3A1-UBL recognizes, sequence specifically, the GCG/CGC RNA stem and the apical UUCG tetraloop of U1-SL4. In vitro and in vivo mutational analyses support the observed intermolecular contacts and demonstrate that the carboxyl-terminal arginine-glycine-glycine-arginine (RGGR) motif of SF3A1-UBL binds sequence specifically by inserting into the RNA major groove. Thus, the characterization of the SF3A1-UBL/U1-SL4 complex expands the repertoire of RNA binding domains and reveals the capacity of RGG/RG motifs to bind RNA in a sequence-specific manner.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>35101980</pmid><doi>10.1073/pnas.2114092119</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4126-0725</orcidid><orcidid>https://orcid.org/0000-0003-1361-379X</orcidid><orcidid>https://orcid.org/0000-0002-2131-6237</orcidid><orcidid>https://orcid.org/0000-0002-9649-5620</orcidid><orcidid>https://orcid.org/0000-0002-8751-6741</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-02, Vol.119 (6), p.1-11 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8833184 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Binding Biological Sciences Crosslinking Crystallography Crystallography, X-Ray Glycine Grooves Humans Life Sciences Magnetic resonance spectroscopy Mass spectrometry Mass spectroscopy NMR NMR spectroscopy Nuclear magnetic resonance Nuclear Magnetic Resonance, Biomolecular Nucleotide Motifs Nucleotide sequence Ribonucleic acid Ribonucleoprotein, U1 Small Nuclear - chemistry Ribonucleoprotein, U1 Small Nuclear - genetics Ribonucleoprotein, U2 Small Nuclear - chemistry Ribonucleoprotein, U2 Small Nuclear - genetics Ribonucleoproteins Ribonucleoproteins (small nuclear) Ribonucleoproteins (U2 small nuclear) RNA RNA Splicing Factors - chemistry RNA Splicing Factors - genetics Splicing Ubiquitin |
title | Sequence-specific RNA recognition by an RGG motif connects U1 and U2 snRNP for spliceosome assembly |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A31%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequence-specific%20RNA%20recognition%20by%20an%20RGG%20motif%20connects%20U1%20and%20U2%20snRNP%20for%20spliceosome%20assembly&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=de%20Vries,%20Tebbe&rft.date=2022-02-08&rft.volume=119&rft.issue=6&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2114092119&rft_dat=%3Cjstor_pubme%3E27118508%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628327483&rft_id=info:pmid/35101980&rft_jstor_id=27118508&rfr_iscdi=true |